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Abstract. Data streams are ubiquitous. Examples range from sensor networks 
to financial transactions and website logs. In fact, even market basket data can 
be seen as a stream of sales. Detecting changes in the distribution a stream is 
sampled from is one of the most challenging problems in stream mining, as 
only limited storage can be used. In this paper we analyse this problem for 
streams of transaction data from an MDL perspective. Based on this analysis we 
introduce the STREAMKRIMP algorithm, which uses the KRIMP algorithm to 
characterise probability distributions with code tables. With these code tables, 
STREAMKRIMP partitions the stream into a sequence of substreams. Each switch 
of code table indicates a change in the underlying distribution. Experiments on 
both real and artificial streams show that STREAMKRIMP detects the changes 
while using only a very limited amount of data storage. 

1   Introduction 

Data streams are rapidly becoming a dominant data type or data source. Common ex-
amples of streams are sensor data, financial transactions, network traffic and website 
logs. Actually, it would also be appropriate to regard supermarket basket data as a 
stream, as this is often a – seemingly never-ending – flow of transactions. 

Detecting change in streams has traditionally attracted a lot of attention 
[1,7,10,13], both because it has many possible applications and because it is a hard 
problem. In the financial world, for example, quick reactions to changes in the market 
are paramount. Supermarkets and on-line stores have to respond quickly to changing 
interests of their customers. As a final example, web hosts have to respond to changes 
in the way users use their websites. 

The unbounded growth of a stream causes the biggest challenges in stream mining: 
after all, only limited storage and computational capacity is available. To address this, 
many existing algorithms use a sliding window [1,7,10]. The problem with this ap-
proach is that often a fixed window size has to be set in advance, which strongly in-
fluences the results. Some algorithms avoid this by using an adaptive window size 
[16]. Many current methods focus on single-dimensional item streams or multi-
dimensional real-valued streams [1,2,10,11,13]. 

In this paper, we address the problem of detecting change in what we call data 
streams, that is, streams of transactions. A change in such a stream of transactions is a 
change in the distribution the transactions are sampled from.  So, given a data stream, 
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we would like to identify, on-line, a series of consecutive substreams that have differ-
ent sampling distributions. 

Our approach to the problem is based on the MDL principle. We define pattern 
based models, called code tables, that compress the data stream. These code tables 
characterise the sampling distributions and allow the detection of shifts between such 
distributions. If we would have unbounded data storage, the MDL-optimal partition-
ing of the data stream would be that one that minimises the total compressed length. 
However, unbounded storage is clearly not realistic and we will have to resort to a so-
lution that is at best locally optimal. 

With bounded storage, the best approach is to first identify distribution P1 at the 
beginning of the stream and then look for a shift to distribution P2. When P2 has been 
identified, we look for the next shift, etc. We give MDL-based solutions for both of 
these sub-problems.  

We turn this MDL-based analysis of the problem into algorithms using our earlier 
KRIMP algorithm [12]. It induces code tables that characterise data distributions in de-
tail [14,15]. Here, we use the code tables given by this algorithm as foundation for the 
change detection algorithm STREAMKRIMP, which characterises streams on-the-fly. 

We empirically test STREAMKRIMP on a variety of data streams. Results on two 
types of artificial streams show that changes in distribution are detected at the right 
moment. Furthermore, the experiment on a real stream shows that large data streams 
pose no problem and changes are accurately spotted while noise is neglected. 

2   The Problem Assuming Unbounded Storage 

2.1   Preliminaries 

We assume that our data consists of a stream of transactions over a fixed set of items 
. That is, each transaction is simply a subset of  and a stream S is an unbounded 

ordered sequence of transactions, i.e.,  in which . The individual 
transactions in a stream are identified by an integer; without loss of generality we as-
sume that this index is consecutive. 

A finite stream T is a substream of S if T consists of consecutive elements of S. In 
particular S(i, j) is the substream that starts at the i-th element and stops at the j-th. 

2.2   The Problem in Distribution Terms 

We assume that S consists of a, possibly infinite, set of consecutive non-overlapping 
subsequences  such that 

-  is drawn i.i.d. from distribution  on . 
-  

So, informally, the problem is: 
 

Given such a sequence S, identify the subsequences Si. 
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The, somewhat loosely formulated, assumption underlying this problem is that the  
are big enough to identify. If the source of the stream would change the sample distri-
bution at every transaction it emits, identification would be impossible. 

2.3   From Distributions to MDL 

The two main ingredients of the problem are, of course: 

1. How do we identify the distributions ? 
2. How do we recognise the shift from  to ? 

 

If both these problems are solved, the identification of the  is trivial. 
If the  would belong to some well-known family of distributions, the first prob-

lem would be solvable by parameter estimation. Unfortunately, this is not a reason-
able assumption. 

Rather than trying to estimate the underlying distributions directly, we resort, 
again, to the Minimum Description Length principle (MDL) [9]. The MDL principle 
can be paraphrased as: Induction by Compression. Slightly more formal, this can be 
described as follows. 

Given a set of models , the best model  is the one that minimises 

 

in which 
-  is the length, in bits, of the description of , and 
-  is the length, in bits, of the description of the data when encoded with . 

 
In our earlier research on MDL for item set data we have shown that MDL captures 
the underlying distribution very well indeed [12,14]. In this paper, we employ MDL 
both to identify the  and to identify the shifts from  to . 

Streams of transactions are subtly different from transaction databases. The most 
important difference is that streams are unbounded. This means, e.g., that some care 
has to be taken to define the support of an item set in a stream.  

2.4   Item Sets in Streams 

An item set I is, as usual, a set of items. That is, I . An item set I occurs in a 
transaction si in stream S, iff . While streams may be infinite, at any point in 
time we will only have seen a finite substream. In other words, we only have to con-
sider the support of item sets on finite streams. The support of an item set I on a finite 
stream S is defined as usual: the number of transactions in S in which I occurs. 

2.5   Coding Finite Data Streams 

As in our previous work, we use code tables to compress data streams. Such a code 
table is defined as follows. 
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Definition 1. Let  be a set of items and  a set of code words. A code table CT for  
and  is a two column table such that: 

1. The first column contains item sets over , this column contains at least all sin-
gleton item sets and is ordered descending on item set 1) length and 2) support. 

2. The second column contains elements from , such that each element of   
occurs at most once. 

An item set  occurs in CT, denoted by , iff I occurs in the first col-
umn of CT, similarly for a code . For ,  denotes its code, i.e., 
the corresponding element in the second column.  

To encode a finite data stream S 
over  with code table CT, we 
use the COVER algorithm from 
[12] given in Algorithm 1. Its pa-
rameters are a code table CT and 
a transaction s, the result is a set 
of elements of CT that cover s. 
COVER is a well-defined function 
on any code table and any trans-
action s, since CT contains at 
least the singletons. 

To encode finite stream S, we simply replace each transaction  by the codes 
of the item sets in its cover. Note, to ensure that we can decode an encoded stream 
uniquely, we assume that  is a prefix code. 

Since MDL is concerned with the best compression, the codes in CT should be 
chosen such that the most often used code has the shortest length. That is, we should 
use an optimal prefix code, i.e., the Shannon code. To define this for our code tables, 
we need to know how often a code is used. We define the frequency of an item set I in 
CT as the number of transactions in S in which I occurs in its cover. Normalised, this 
frequency represents the probability that that code is used in the encoding of an arbi-
trary : 

 
The optimal code length is then  of this probability and the coding table is op-

timal if all its codes have their optimal length. That is, a code is optimal for S iff 

 

CT is code-optimal for S if all its codes  are optimal for S. From now on, 
we assume that code tables are code-optimal, unless we state differently. 

For any finite data stream S and any (code-optimal) code table CT, we can now 
compute L(S | CT). The encoded size of a transaction s, denoted , is simply the 
sum of the sizes of the codes of the item sets in its cover:  

 

 

ALGORITHM 1. COVER 

1
2
3
4
5
6

COVER(CT, s) 
T := first element c œ CT for which c Œ s 
if s \ T = « 

then Res := {T} 
else Res:= {T} » COVER(CT, s \ T) 

return Res 
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The size of a data stream S, denoted , is simply the sum of the sizes of its 
transactions: 

 
 
The remaining problem is, what is the size of a code table? For the second column 
this is clear as we know the size of each of the codes, but what about the first column? 
For this, we use the simplest code table, i.e, the code table that contains only the  
singleton elements. This code table, with optimal code lengths for a finite data stream 
S, is called the standard code table for S, denoted by ST. With this choice, the size of 
CT, denoted by , is given by: 

 

With these results, we know the total size of our encoded data stream. It is simply the 
sum of the size of the encoded data stream plus the size of the code table. That is, we 
have the following theorem. 

Theorem 1. Let S be a finite data stream over  and let CT be a code table that is 
code-optimal for S. The total size of the encoded data stream, denoted by , 
is given by: 

 

Clearly, two different code tables will yield a different encoded size, an optimal code 
table is one that minimises the total size. 

Definition 2. Let S be a finite data stream over  and let  be the set of code tables 
that are code-optimal for S.  is called optimal if 

 
The total size of the stream S encoded with an optimal code table  is called its 
optimal size and is denoted by : 

 

2.6   The Problem in MDL Terms 

Now that we know how to code finite data streams, we can formulise our problem in 
MDL terminology: 
 

Let S be a finite data stream, partition S into consecutive substreams 
, such that 
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3   The Problem Assuming Bounded Storage 

3.1   The Problem of Streams 

Let S, T and U be finite data streams, such that U is the concatenation of S and T. 
There is no guarantee that the optimal partition of U coincides with the optimal parti-
tion of S on the S-part of U. This observation points out two disadvantages of the 
problem as stated above. 

1. It assumes knowledge of the complete stream; this is a flagrant contradiction to 
the main idea of data streams: they are too big to store. 

2. It disregards the dynamic nature of data streams. Changes in the underlying dis-
tribution can only be detected after the whole stream has been observed. 
Clearly, such a posteriori results are not that useful. 

In other words, we will have to settle for a partitioning that is at best locally optimal. 

3.2   Too Large to Store: One Distribution 

If the stream S is sampled i.i.d. from one distribution only, the estimates of  
P(I | S(1,n)) get closer and closer to their true value. That is, we have the following 
lemma. 

Lemma 3. Let data stream S be drawn i.i.d from distribution Q on , then 

  
 

This well-known statistical result has an interesting result for code tables: code tables 
converge! To make this more precise, denote by CTn an optimal code table on Sn. 
Moreover, let CT(S(1, j)) be a shorthand for LCT(S(1,j)). 

Theorem 2. Let data stream S be drawn i.i.d from distribution Q on , then 

  

Proof. Let FCT be a code table in which only the left-hand column is specified. 
Lemma 3 implies that 

  

In other words, the optimal codes we assign to the item sets in FCT become the same 
in the limit. But this implies that an optimal code table on S(1, n + k) is, in the limit, 
also an optimal code table on S(1, n).                                                                            Ñ 
 
That is, if our stream comes from one distribution only, we do not need to store the 
complete stream to induce the optimal code table. A large enough sample suffices. 
Denote by CTapp(S) the optimal code table induced from a large enough “head” of the 
stream, i.e., after convergence has set in. This head of the stream is denoted by H(S). 

Note that, Theorem 2 also suggests a way to check that the sample is large enough. 
If for some reasonable sized k, 
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gets small, we may conclude convergence. Small is, of course, a relative notion: if 
L(S(1, n), CTn) is millions of bits, a difference of a few thousand bits can already be 
considered as small. Hence, it is better to look at a weighted version; which is our im-
provement rate, defined as follows.  

Definition 3. With the notations from above, the Improvement Rate IR is given by: 

  

 
When IR becomes small in an absolute sense, we may conclude convergence. We re-
turn to this observation later. 

3.3   Too Large to Store: Detecting Change 

So, for a data stream that comes from one distribution, the problem is easy. The opti-
mal code table can be computed from a large enough head of the stream. After this 
code table has been computed, no further data storage is necessary anymore. The 
problem is, however, that after a while the distribution changes. How can we detect 
that?  

Let the, finite, stream S = S1S2 such that Si is sampled from distribution Pi. More-
over, let CTi denote the optimal code table on Si. To detect the change in distribution, 
we need that: 

  
 
This equation translates to: 
 

   
 
Note that L(S, CT) translates to the sum of the two heads encoded with  be-
cause  has converged. That is, if there is no change in the underlying distribu-
tion,  is still the correct code table. The second summand has the bar |, since we 
count L( ) only once.  

Because S may be too big to store, we store H(S). To weigh both code tables 
equally, we approximate the inequality as follows in the definition of a split. 

Definition 4. Let the, finite, stream S = S1S2 such that Si is sampled from distribution 
Pi. Moreover, let  denote the approximated optimal code table for Si. The pair 
(S1, S2) is called a split of S if: 

  

A split is called minimal if there is no other split (T1, T2) of S such that T1 is a sub-
stream of S1. 

 
Note that this definition implies that we do not have to store H(S1) to detect a change 
in the underlying definition.  provides sufficient information. 
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3.4   The Problem for Data Streams with Bounded Storage 

We can now formalise our problem for data streams with bounded storage. 
 
Let S be a data stream, partition S into consecutive substreams 

, such that 

 

4   The Algorithm 

4.1   KRIMP Preliminaries 

In [12] we proposed a heuristic algorithm – later called KRIMP – to approximate the 
optimal code table from a database. For this, it needs a database and a set of candidate 
item sets. As candidates, all or closed frequent item sets up to a given minsup are 
used. The candidate set is ordered descending on support, item set length and lexico-
graphically. The algorithm starts with the standard code table ST. The code table is 
ordered descending on length and support. One by one, each pattern in the candidate 
set is added to the code table to see if it helps to improve database compression. If it 
does, it is kept in the code table, otherwise it is removed. After this decision, the next 
candidate is tested. Pruning is applied in all experiments reported in this paper, mean-
ing that each time an item set is kept in the code table, all other elements are tested to 
see whether they still contribute to compression. Elements that don’t are permanently 
removed. See [12] for further details.  

Furthermore, in [15] we introduced a method that can be used to generate data-
bases from a KRIMP code table. All statistics showed that the generated databases are 
very similar to the original databases from which the code tables were induced. We 
will use this method to generate synthetic streams in the experiment section. 

4.3   Finding the Right Code Table on a Stream 

We can now translate the formal scheme presented in Subsection 3.2 to a practical 
implementation: assume that the stream S is sampled i.i.d. from one distribution only 
and find  using KRIMP. 

The general idea of the algorithm presented in Algorithm 2 is simple: run KRIMP 
on the growing head of a stream S until the resulting code tables converge. As we 
know that individual transactions don’t make a large difference, we work with blocks 
of blockSize transactions. Start with one block and obtain a code table. For each block 
added to the head, a new code table is induced and the Improvement Rate is com-
puted. Whenever the IR drops below maxIR, the code table is good enough and  
returned.  

The other parameters are an offset that makes it possible to start anywhere within 
the stream and the minsup used for mining KRIMP candidates. 
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Moreover, a Laplace correction is applied to each code table returned by KRIMP; 
this to ensure that each code table can encode each possible transaction. 

4.4   Detecting Change in a Stream 

Given a code table induced on the head of a data stream, we would now like to detect 
change in the sampling distribution of the rest of the stream. More formally, we 
would like to detect the minimal split given . 

The minimal split can be found by inducing code tables on consecutive heads of 
the stream until a split is encountered. We would rather avoid building a code table 
for each and every consecutive head, but luckily we can speed things up in two differ-
ent ways. First of all, change does not come in a single transaction, so again we iterate 
over blocks instead. Secondly, we can skip each block that obviously belongs to 

.  
For this second optimisation, we apply a statistical test that tests whether the en-

coded size of the current block deviates from the expected size. If it does not, discard 
it and skip to the next block. Before discarding the head of a converged code table, 
this data is used to randomly sample encoded block sizes from. Both the lower and 
upper leaveOut percent samples are removed. If the encoded size of a new block falls 
within the range of the remaining samples, the block is considered to belong to the 
distribution of  and skipped. 

For each block that is not skipped, we have to test whether it marks a split or not. 
For this, we have to induce a code table . To be able to reject a code table that 
is only just better than the previous one, we introduce the Code Table Difference: 

Definition 5. Given a code table  and a code table  induced on H(S2), 
the Code Table Difference CTD is given by: 

  

 
Normalised the same way as the Improvement Rate, the CTD tells us how many per-
cent  compresses the new head better than . We can now define a mini-
mum CTD in the overall algorithm, which is presented next. 
 

ALGORITHM 2. FINDCODETABLEONSTREAM 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

FINDCODETABLEONSTREAM(S, offset, blockSize,  minsup, maxIR) 
numTransactions = blockSize 
CT = KRIMP(S(offset, offset+numTransactions), minsup) 
ir = Infinite 
while ir > maxIR 

numTransactions += blockSize 
newCT = KRIMP(S(offset, offset+numTransactions), minsup) 
ir = ComputeIR(CT, newCT) 
CT = newCT 

return CT 
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ALGORITHM 3: STREAMKRIMP

1
2
3
4
5
6
7
8
9

10
11
12
13
14

STREAMKRIMP(S, minsup, blockSize, maxIR, leaveOut, minCTD)
i = 1
CTi = FINDCODETABLEONSTREAM(S, 0, blockSize, minsup, maxIR)
pos =  CTi.endPos
while pos < sizeof(S)

pos = SkipBlocks(S, CTi , pos, blockSize, leaveOut)
candCT = FINDCODETABLEONSTREAM(S, pos, blockSize,  minsup, maxIR)
if ComputeCTD(S, CTi, candCT) >= minCTD

i++
CTi = candCT
pos = candCT.endPos

else 
pos += blockSize

return CT
 

4.5   STREAMKRIMP 

Putting together the algorithms of the previous subsections, we are able to partition a 
stream into consecutive substreams with minimal splits. The complete algorithm is 
shown in Algorithm 3. 

It starts with finding the code table on the head of the stream (line 3) and then iter-
ates over the rest of the stream. Each iteration starts with skipping as many blocks as 
possible (6). When a block cannot be skipped straightaway, it is used as starting posi-
tion for a new candidate code table (7). The Code Table Difference of this candidate 
to the current code table is computed (8) and the code table is either accepted (9-11) 
or rejected (13). When finished, the complete set of code tables is returned (14). Natu-
rally, these could be inspected and used while the algorithm is still running as well. 

4.6   How Large is Zero? 

Or: How should we set our parameters? We will here motivate the default values we 
suggest for the algorithm, which we will use throughout the rest of the paper. 

minsup – Lower minsup levels result in more candidate patterns and therefore bet-
ter compression and better quality code tables. Sensitivity of the change detection 
scheme is influenced through this parameter: lower values result in a higher sensitiv-
ity. To avoid overfitting on very small data segments, we use a minsup of 20 in the 
experiments presented in this paper. 

blockSize – The resolution at which STREAMKRIMP works should always be high 
enough. This will be the case if we choose the size of a block such that, on average, 
every possible item occurs once in every block. Therefore, we choose blockSize to be 
equal to | |. 

leaveOut – Set to 0.01: both the lower 1% and the upper 1% of the randomly sam-
pled blocksizes are discarded by SkipBlocks.  

maxIR – Set to 0.02: if a new code table compresses less than 2% better than its 
predecessor, we decide it has converged. 
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minCTD – Set to 0.10: a new code table is accepted only if it compresses at least 
10% better than the previous code table. 

The choices for maxIR and minCTD may seem arbitrary, but this is not the case. 
They are actually comparable to the dissimilarity values we reported before [15]. Dis-
similarity values between random samples from a single dataset range from 0.045 to 
0.177 on UCI datasets (also reported on in the next section). Therefore, 0.02 and 0.10 
are very conservative and may be considered zero for all practical purposes: with 
these thresholds, code tables converge and significant changes are detected. 

5   Experiments 

5.1   Artificial Streams – UCI Datasets 

The first series of experiments is done on a selection of the largest datasets from the 
well-known UCI repository [6], as shown in Table 1. These datasets are transaction 
databases and not streams, but they have the advantage that each of them consists of 
multiple known classes. This allows for easy validation of the identified splits. 

To transform a UCI dataset into a stream, each dataset is split on class label and the 
class labels are removed from all transactions. This results in a transaction database 
per class. The transactions within each database are ordered (randomly) to form a 
stream. The resulting streams are concatenated into one single stream (in random or-
der). Because of this randomisation, each dataset is turned into a stream 10 times. 

The main results are summarised in Table 2. The ‘#CTs’ column tells us how many 
code tables have been identified for each of the datasets. If we compare these numbers 
to the actual number of classes in Table 1, we see that STREAMKRIMP finds the right 
number of distributions in the stream. Only for Chess, the algorithm doesn’t find 
enough splits, but this is not surprising as there are quite many classes and some of 
them are rather small. Analysing the splits reveals that indeed the larger classes are 
identified and only the smallest ones go undetected. 

The next column, ‘Blocks per CT’, tells us that approximately 4 to 6 blocks are 
enough for code table construction on these datasets. For some datasets, such as 
Adult, Chess and Nursery, quite some code tables are rejected, as is shown under 
‘#CTs rejected’. However, also quite some blocks are skipped by SkipBlocks. These 
values vary quite a bit for the different datasets, telling us that the conservative statis-
tical skip test seems to work better for one dataset than for another. 

Actual split Found split

Adult

Mushroom

Nursery

Two splits  

Fig. 1. Actual and found splits for three of the datasets 
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The last columns show baseline and 
obtained purity values. Purity is the size 
of the majority class relative to the entire 
segment, averaged over all identified 
segments. Baseline purity is the size of 
the largest class. Although the transac-
tions of the classes are not interleaved and 
the task is therefore easier than clustering, 
the attained purity values are very high. 
This indicates that the algorithm correctly 
identifies the boundaries of the classes in 
the streams. This is supported by Figure 1, 
which depicts actual and found splits for 
three datasets. No expected splits are missed by STREAMKRIMP and the shift moments 
are accurately detected. (For each dataset, a single run with average performance is 
shown.) 

5.2   Artificial Streams – Synthetic 

The experiments in the previous subsection show that the proposed algorithm accu-
rately detects changes in a stream. The objective of the following experiments is sim-
ple: which elementary distribution changes are detected? 

We manually create simple code tables and use the KRIMP data generator [15] to 
generate a series of synthetic datasets. Each generated stream consists of two parts: 
5000 rows generated with one code table, followed by 5000 rows generated by a 
variation on this code table. In these experiments, | | is 10 and each item is in the 
code table with a count of 1 (i.e., all individual items are generated with equal prob-
ability). The databases have 5 two-valued attributes (resulting in a total of 10 possible 
items). So, each transaction consists of 5 items. 

Because the number of different items is very small (only 10) we manually set the 
blockSize for these experiments to 200. This way, we ensure that KRIMP gets enough 
data and candidate patterns to learn the structure that is in the data. 

Table 2. Results for 7 UCI datasets. For each dataset, the following is listed: the number of 
code tables found, the average number of blocks used for construction per CT, the number of 
code tables rejected, the number of blocks skipped and finally base and obtained purity. Aver-
ages over 10 randomisations (class order, transaction order within classes). 

Purity 
Dataset #CTs Blocks 

per CT 
#CTs 

rejected 
Blocks 

skipped Baseline Actual 
Adult 3.4 4.7 118 367 76.1% 99.7% 
Chess (kr-k) 13 4.2 165 264 17.8% 80.1% 
Led7 12 3.9 3.5 82 10.9% 95.2% 
LetRecog 27 5.9 0.2 32 4.1% 80.1% 
Mushroom* 2.7 6.2 6.2 44 51.7% 96.5% 
Nursery 6.2 5.7 140 228 33.3% 98.5% 
PenDigits 15 6.0 2.3 34 10.4% 87.2% 

* Closed frequent item sets used as candidates instead of all frequent item sets. 
 

Table 1. Properties of 7 UCI datasets: num-
ber of rows, classes and items 

Dataset #rows | | | | 

Adult 48842 2 97 
Chess (kr-k) 28056 18 58 
Led7 3200 10 24 
LetRecog 20000 26 102 
Mushroom 8124 2 119 
Nursery 12960 5 32 
PenDigits 10992 10 86 
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The basic distribution changes made 
halfway in the synthetic datasets 
(through changing the code tables) are 
depicted in Figure 2. Each rounded box 
represents an item set, with the individ-
ual items given as numbers. All counts 
are set to 5, except for those item sets 
where a multiplier is shown (x4 means 
5x4=20). As data generation is a sto-
chastic process, 10 streams were gener-
ated for each change and the main re-
sults shown in Table 3 are averaged 
over these. The last column indicates 
the number of times the algorithm 
found the optimal solution; two code 
tables and 100% purity (i.e., a split after 
5000 rows). From the results it is clear that STREAMKRIMP is very capable at detect-
ing 4 out of 6 of the tested types of change. Only detection of the subtle addition of a 
single (small) pattern and changing the frequency of an existing pattern turns out to be 
difficult occasionally. In these cases, change is often detected but this takes some 
blocks, resulting in lower purity values. 

5.3   A Real Stream – Accidents Dataset 

A more realistic dataset is taken from [8]. It contains data obtained from the National 
Institute of Statistics (NIS) for the region of Flanders (Belgium) for the period 1991-
2000. More specifically, the data are obtained from the Belgian 'Analysis Form for 
Traffic Accidents' that should be filled out by a police officer for each traffic accident 
that occurs with injured or deadly wounded casualties on a public road in Belgium. In 
total, 340,184 traffic accident records are included in the data set. 

No timestamps are available, but accidents are ordered on time and it is an interest-
ing question whether structural changes can be detected. With over 340,000 transac-
tions over a large number of items (| | = 468), running any regular pattern mining al-
gorithm on the entire dataset is a challenge. Therefore, it is a perfect target for finding 
‘good enough’ code tables and detecting change. As KRIMP candidates we use closed 
frequent item sets with minimum support 500 and we rounded the block size to 500. 

Table 3. Results for 6 synthetic streams. For each dataset, the following is listed: the number of 
code tables found, the number of code tables rejected, obtained purity and the number of opti-
mal solutions found. Averages over 10 generated streams (except for the last column). 

Change #CTs #CTs 
rejected 

Purity % Optimal
(out of 10)

Add pattern 1 1.8 79.8 0
Remove pattern 1.3 3.8 97.0 6
Combine patterns 1.3 2.8 98.6 6
Split pattern 1.1 2.6 98.8 8
Change pattern 1.1 1.8 98.6 7
Change frequency 1.9 15.6 75.2 1

Add pattern

2 4

0 2

2 4

0 2

6 8

Remove pattern

2 4

0 2
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Combine patterns

2 4
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2 4

0 2

2 4

0 3

Split pattern

2 4

0 20 2 4 x2

Change frequency
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Fig. 2. Changes inflicted in the code tables 
used for stream generation 
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Fig. 3. Average encoded length per transaction (left) and improvement rates (right) for the code 
tables built on 15 consecutive blocks from the Accidents dataset  

An important question we have not yet addressed with the (much smaller) artificial 
streams is how well the FINDCODETABLEONSTREAM algorithm approximates the best 
possible code table on a stream. To assess this, the average encoded size per transac-
tion is plotted for a series of code tables in Figure 3 on the left. On the right, Figure 3 
shows the computed Improvement Rates for the same set of code tables. Each code 
table is built on a head of x blocks, where x is the number of blocks indicated on the 
x-axis. Average encoded size is computed on all transactions the code table is induced 
from. The graphs clearly show that the most gain in compression is obtained in the 
first few blocks. After that, the average size per transaction decreases only slowly and 
this is also reflected in the Improvement Rate. With maxIR set to 0.02, STREAMKRIMP 
would pick the code table built on 8 
blocks, which seems a good choice: af-
ter that, improvement is marginal. 

Running STREAMKRIMP on the en-
tire dataset resulted in only 14 code ta-
bles that characterise the entire stream 
of over 340,000 transactions. 140 
blocks were skipped, 429 code tables 
were built but rejected. On average, 
7.43 blocks of data were required for a 
code table to converge and the average 
Code Table Difference of accepted 
code tables was 0.14. This means that 
each consecutive distribution differs 
about 14% from its predecessor in 
terms of compression! 

To further illustrate the differences 
between the identified substreams, Fig-
ure 4 shows compressed block sizes 
over the entire dataset for three con-
secutive code tables. Substreams clear-
ly consist of blocks that are equally 
well compressed. The split the end of 
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Fig. 4. Encoded length per block for three con-
secutive substreams on Accidents. The blocks 
belonging to each of the code tables are indi-
cated with the grey blocks.



686 M. van Leeuwen and A. Siebes 

the last substream shown seems to be a tad late, the rest is spot on. In other words, the 
change detection is both quick and accurate, also on large datasets. 

6   Related Work 

Stream mining has attracted a lot of attention lately, which is nicely illustrated by the 
recent book by Aggarwal et al. [3]. Here, we focus on change detection. 

In many cases, streams are considered to be sequences of single (real-valued) numbers 
or items. Kifer et al. [10] use two sliding windows to obtain two samples of which it is 
statistically determined whether they belong to different distributions. Papadimitriou et 
al. [13] use autoregressive modelling and wavelets, Muthukrishnan et al. [11] avoid a 
fixed window size by introducing a method based on sequential hypothesis testing. 

A second class of stream mining algorithms considers multi-dimensional, real-
valued streams. Aggarwal et al. [1] visualise evolving streams using velocity density 
estimation. The visualisation is inherently 2-dimensional and it is not possible to ac-
curately estimate densities with increasing dimensionality. In [2], Aggarwal et al. use 
a polynomial regression technique to compute statistically expected values. 

Dasu et al. [7] take an information-theoretic approach by using the Kullback-
Leibler distance to measure the difference between distributions. They experiment on 
multi-dimensional real-valued data, but claim the method can also be applied to cate-
gorical data. However, a fixed window size strongly influences the changes that can 
be detected and the method seems better suited for relatively few dimensions (<10). 

Widmer and Kubat [16] use an adaptive window size to do online learning in do-
mains with concept drift. Predictive accuracy is used to detect drift and adjust the 
window size heuristically. This does require (known) binary class labels though. 

The final class of algorithms considers streams of categorical transactions, as we 
do in this paper. Chen et al. [5] propose a method to visualise changes in the cluster-
ing structure of such streams. A disadvantage is that snapshots of these visualisations 
have to be manually analysed. Recently, Calders et al. [4] proposed an alternative 
‘minimum support’ measure for patterns in streams called max-frequency. This meas-
ure uses flexible windows to maintain the max-frequency on patterns in the stream.  

7   Discussion 

The results on both the artificial and realistic streams show that STREAMKRIMP is very 
capable at detecting changes in large data streams. No actual splits are missed and the 
results on the synthetic streams show that even small modifications in the distribution 
can be detected. 

The algorithm satisfies the general requirements for stream mining, as only very lim-
ited data storage is required and online mining is possible. Also, the resulting code tables 
are much smaller than the data itself and can therefore be stored for a much longer time. 
This means that it is possible to store a full characterisation of the entire stream. 

In many stream mining algorithms, a window size has to be defined. This window 
size determines what changes can and can not be found; nothing outside the window 
is seen. Contrary, the block size of our algorithm is only the resolution which deter-
mines how quickly a distribution is detected and characterised. 
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8   Conclusions 

We introduce STREAMKRIMP, an algorithm that detects changes in the sampling dis-
tribution of a stream of transactions. Based on an analysis from MDL perspective, it 
partitions a stream into a sequence of substreams. For each substream, it uses KRIMP 
to characterise its distribution with a code table and each subsequent code table indi-
cates a change in the underlying distribution. Only a very limited amount of data stor-
age is required and STREAMKRIMP facilitates online mining of streams. 

The results of experiments on both artificial and realistic streams show that 
STREAMKRIMP detects the changes that make a difference, no relevant changes are 
missed and noise is neglected. Finally, large streams with many attributes pose no 
problems. 
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