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Although the equations governing fluid flow are well known, there are no analytical expressions
that describe the complexity of turbulent motion. A recent proposition is that in analogy to low
dimensional chaotic systems, turbulence is organized around unstable solutions of the governing
equations which provide the building blocks of the disordered dynamics. We report the discovery
of periodic solutions which just like intermittent turbulence are spatially localized and show that
turbulent transients arise from one such solution branch.

PACS numbers: 47.52.+j,47.27.Cn,47.54.-r

Fluids move in a well ordered fashion (laminar flow)
when their velocity is small and in this case the flow
field can usually be analytically derived from the equa-
tions of motion, the Navier–Stokes equations. However,
as the inherent velocity and length scales become large,
turbulence sets in and most flows of practical interest
are highly disordered in space and time. Landau and
Hopf proposed in the forties that this transition occurs
via an infinite sequence of bifurcations starting from lam-
inar flow [1]. This route to turbulence, later shown to
consist of only a few bifurcations by Ruelle and Tak-
ens [2], is a well established paradigm for transition in
many systems. In flow down a straight circular pipe,
however, turbulence arises despite linear stability of the
laminar flow [3], and thus the former scenario is in prin-
ciple inapplicable. Moreover, in pipes just like in many
other wall-bounded flows turbulence first manifests it-
self in localized spots surrounded by laminar flow. Al-
though experimental observations of localized turbulent
structures date back to the first comprehensive investiga-
tions of turbulence [3] and their structure and kinemat-
ics have been studied extensively [4], a theoretical under-
standing is missing. More recent studies have shown that
turbulent spots (called puffs in pipe flow) are generally
of transient nature and that their decay is memoryless
[5, 6]. Nevertheless turbulence eventually becomes sus-
tained once these structures begin to proliferate and their
spreading rate outweighs their decay [7]. The Reynolds
number (Re = DU/ν, where D is the pipe diameter, U
the mean velocity and ν the kinematic viscosity of the
fluid) at which these processes balance marks a phase
transition to sustained turbulence. Despite such recent
advances, how these turbulent structures arise from the
equations of motion is unknown.

Numerical studies of flows in short periodic domains
led to the important discovery of invariant solutions of
the Navier–Stokes equations featuring the main ingredi-
ents of the self-sustaining cycle of turbulent shear flows
[8]. In pipe flow, the simplest of these solutions are trav-

eling waves [9], satisfying

v(x, r, θ, t) = v(x− ct, r, θ), (1)

where (x, r, θ) are cylindrical coordinates, t time and c
the wave-speed. Traveling waves are frozen as they prop-
agate, i.e. they are relative equilibria. Although all these
exact numerical solutions are unstable, and hence cannot
be directly observed in experiments, the number of un-
stable directions is small, so it is expected that they play
an important role in organizing the phase-space dynamics
of turbulence [10]. As traveling waves have no dynamics
but only drift in the propagation direction, more com-
plex solutions are required to capture the properties of
turbulent flows. The next level of complexity in the hi-
erarchy of invariant solutions of the governing equations
is provided by relative periodic orbits (RPOs)

v(x, r, θ, t) = v(x− cT, r, θ, t+ T ), (2)

for which the motion appears as T -periodic in a frame co-
moving at speed c. Relative periodic orbits bifurcating
from traveling waves [11] and embedded in turbulence
[12] have been recently discovered in short pipes.
Although some aspects of the traveling wave solutions

found in small domains, like the symmetry and the vor-
tex streak arrangement have also been observed in tur-
bulent pipe experiments [13], the streamwise structure is
qualitatively different. While traveling waves are stream-
wise periodic, with a periodicity of a few D, all turbulent
structures observed close to onset are localized. Turbu-
lent puffs have distinct laminar-turbulent interfaces char-
acterized by a sharp velocity change at the upstream in-
terface and a slow adjustment downstream. In this Let-

ter, we present the first localized solutions that contain
all spatial features of turbulent puffs and show how tur-
bulent transients emerge from them.
Numerical simulations of pipe flow were carried out

using a spectral code [14] and a hybrid spectral finite-
difference code [17], with excellent agreement between

http://arxiv.org/abs/1212.0230v4
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FIG. 1. Dynamics of pipe flow at the edge (Re = 2200). At
t = 0 a disturbance is applied to the laminar flow and the evo-
lution of kinetic energy (of three-dimensional Fourier modes)
is subsequently monitored. The dashed lines correspond to
flow trajectories that shoot up to turbulence, whereas the
solid lines show trajectories that relaminarize. The edge-
tracking algorithm is applied to obtain trajectories that hang
around on the edge of chaos. The periodic oscillations shown
in the inset (close up) suggest that trajectories on the edge
are attracted to a RPO.

them. The computational domain was chosen to be long
(40D) with periodic boundary conditions in the stream-
wise direction. In such long domains, just like in exper-
iments, turbulence takes the form of localized puffs and
the agreement with experiments even of very subtle fea-
tures like lifetime statistics is very good [6].
At first our investigation focused on the laminar-

turbulent phase-space boundary by looking for initial
conditions that neither turn turbulent nor relaminarise
but remain in the dividing edge [15]. In long pipes the
attractor in the edge (called edge state) was found to
be localized but at the same time chaotic [16, 17] and
the dynamics turned out to be too complex to identify
underlying invariant solutions. Although approaches to
nearly periodic dynamics were reported in studies of sym-
metric invariant subspaces, in long pipes the edge state
was always found to be chaotic [18]. Here we simplified
the problem by restricting the dynamics subject to a π-
rotational symmetry with respect to the pipe axis

[u, v, w](x, r, θ, t) = [u, v, w](x, r, θ + π, t) (3)

and the reflectional symmetry

[u, v, w](x, r, θ, t) = [u, v,−w](x, r,−θ, t), (4)

where u, v and w are the axial, radial and azimuthal
velocities, respectively. The reflectional symmetry (4)
prohibits rotations about the pipe axis. Note that any
solutions found in the subspace are necessarily also solu-
tions of the full space and hence represent physical (sym-
metric) flow states.
The edge-tracking algorithm is as follows. First a local-

ized disturbance is applied to the laminar flow [19] and if
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FIG. 2. (a) Turbulent puff at Re = 1900 and reflection-
symmetric RPOs with π-rotational-symmetry at: (b) the edge
(LB) at Re = 1900 and (c) UB at Re = 1500. Isosurfaces
of streamwise velocity at 0.2U (red) and −0.2U (blue) are
shown. The laminar profile has been subtracted in all cases
to highlight the three-dimensional structure of the flow and
the views have been shrank by a factor of 4 in the streamwise
direction. 40D are shown out of a simulation domain of 50D
(puff) and 40D (LB, UB). (d) Streamwise velocity along the
pipe centerline for the structures in (a)–(c).

sufficiently strong it evolves into a turbulent puff. Subse-
quently, the amplitude of this puff, to which the laminar
parabolic flow has been subtracted, is rescaled to obtain
a new initial condition vα = vlam + α(v − vlam), where
α is a constant α ∈ (0, 1), v the velocity field of the
puff and vlam the laminar flow. A simple bisection algo-
rithm is then used to find the value of α for which the
temporal evolution of vα neither relaminarizes nor goes
to turbulence but remains on the edge. The procedure
is illustrated in figure 1 at Re = 2200. After an initial
transient the temporal evolution rapidly relaxes onto a
periodic oscillation, suggesting that the edge state is a
RPO. Note that as time evolves new refinement bisec-
tion iterations have to be applied to keep the trajectory
on the edge.

A snapshot of the edge velocity field was fed as initial
guess into a purposely designed Newton–Krylov solver
based on the time-stepping code [14] using standard tech-
niques [11, 20] and rapidly converged to a RPO with pe-
riod T = 15.0D/U and average drift speed c = 1.52U .
Note that in order to achieve convergence we require that
the residual r = ||v(T ) − v(0)|| < 10−10||v(0)||, where
the velocity field v(T ) has been appropriately shifted to
account for drift. Figure 1 shows that the energy oscilla-
tions have a period of T/2. This is due to a spatiotem-
poral symmetry possessed by this solution: at t = T/2
the velocity field is the same as t = 0 but reflected with
respect to the plane at θ = 45◦ (note that the plane of im-
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posed reflection-symmetry is at θ = 0). Figure 2b shows
a snapshot of the RPO. The similarity in the topology of
its low and high velocity streaks with those of a turbulent
puff (shown in 2a) is remarkable. A close inspection of
the topology of streaks and vortices of this solution points
at a possible connection with a stream-wise periodic trav-
eling wave [21] (D2). We found that at Re = 2200 this
traveling wave is the edge state in short pipes of length
λ . 5D, whereas in the range 5 . λ . 10D the edge
state is chaotic. Although a localized RPO is obtained
as long as λ & 10D, for λ . 15D the periodic boundary
conditions ostensibly interfere with localization. For the
pipe length λ = 40D used in the results presented here,
the periodic boundary conditions have no longer an ef-
fect on localization (which was tested by repeating some
simulations for λ = 80D).

As the Reynolds number is reduced the localized RPO
(henceforth referred to as LB, which stands for lower
branch solution) keeps fulfilling its role of separating tra-
jectories that relaminarize from those that increase in
energy towards turbulence. For Re < 1530 trajectories
above the edge no longer result in turbulent transients
but approach instead a stable (within the π-rotational-
and reflection-symmetric space) localized RPO. The vi-
sualisation of this new solution (hereafter UB, standing
for upper branch solution) is shown in figure 2c and re-
veals a striking structural resemblance to turbulent puffs.
As pointed out above, a typical signature of puffs is the
sharp transition from laminar to turbulent flow at the
trailing interface followed by a slow recovery towards the
laminar velocity along its diffuse leading interface (see
the black curve in figure 2d). This landmark of puffs
is shared by LB (red curve) and UB (blue curve) and
further demonstrates that the properties of localized tur-
bulence can be captured by exact numerical solutions of
the Navier–Stokes equations.

At Re ≈ 1430 UB merges with LB at a saddle-node
bifurcation (see figure 3a) and below this bifurcation no
dynamics other than laminar are found. By continuing
the UB towards larger Reynolds number we could iden-
tify a bifurcation cascade leading to turbulent transients.
At Re ≈ 1530 the UB undergoes a Neimark–Sacker bi-
furcation leading to a stable 2-torus that breaks up into
chaos at Re ≈ 1540. Although at the onset of chaos
the attractor explores only a small portion of the phase
space, this portion grows explosively as Re is increased
and the chaotic attractor appears to collide with LB at
Re ≈ 1545. This boundary crisis is likely related to the
appearance of a homoclinic tangle on the edge [22]. Be-
yond this point the attractor becomes leaky: trajecto-
ries can relaminarize after long transients. Following the
ensuing chaotic saddle to larger Re confirms that turbu-
lence in the subspace originates at this bifurcation, as
illustrated in the phase-space portrait of figure 3b. We
note that similar bifurcation scenarios but starting from
relative equilibria have been observed in short pipes [23]
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FIG. 3. (a) A saddle-node bifurcation gives rise to localized
RPOs at Re ≈ 1430: UB is stable up to Re ≈ 1530, where it
undergoes a supercritical Neimark-Sacker bifurcation leading
to a relative 2-torus. Subsequently the torus breaks up to
chaos at Re ≈ 1540 and the chaos becomes transient at Re ≈

1545. The bars show the variation of energy over a period
(Newton-converged LB and UB) and over long runs (torus
and chaos). LB has a single unstable direction and is the
edge state. (b) Phase-portrait of the dynamics at several Re

projected onto a two-dimensional plane defined by the energy
(of three-dimensional Fourier modes) and pressure gradient
required to drive a constant flow rate, normalized with the
pressure gradient of laminar flow. The inset is a close up
showing the UB and torus.

and in small plane Couette cells [24], thus lacking the
spatial complexity and laminar turbulent interfaces ob-
served in practice. In these small cells a chaotic attrac-
tor emerges via period doubling bifurcations and subse-
quently leads to transients [24].

The robustness of the RPOs and transition scenario
were tested with respect to spatial resolution and time-
step δt. We used δt = 0.0025D/U and K = ±320 axial
Fourier modes, M = ±16 azimuthal Fourier modes (for
θ ∈ [0, π]) and N = 40 points in the radial direction.
With these values the solutions are well converged and
the bifurcation points are accurate to better than 0.5%.
For lower resolutions the bifurcations are shifted towards
lower Re, whereas the opposite effect is observed by in-
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creasing δt. Nevertheless, the scenario remains qualita-
tively unchanged. Note that in the full space the so-
lutions found here have several additional instabilities
and hence cannot be computed by edge tracking and
time-stepping. We performed several simulations start-
ing from them but dropping the symmetry restrictions
and observed similar transients.

In summary, we have discovered exact numerical solu-
tions of the Navier–Stokes equations that share structure
and spatial complexity with turbulence at onset. We
have furthermore shown that a bifurcation sequence is
responsible for giving rise to transient turbulence. In
contrast to the classical Ruelle–Takens model, in pipe
flow chaotic motion arises locally originating from the
discovered localized solutions. This is a key difference to
the much simpler transition scenarios in linearly unsta-
ble flows, such as Rayleigh–Bénard convection [25] and
Taylor–Couette flow [26], where the bifurcation sequence
starts from the base flow and instability occurs globally
in space. Localized solutions can therefore be regarded
as the nuclei of disordered motion in linearly stable shear
flows. It is likely that in full space chaotic dynamics si-
multaneously arises from distinct nuclei and that the cor-
responding repellers merge in global bifurcations as Re
grows, increasing the complexity of the turbulent tran-
sients. One of the outstanding challenges towards an
understanding of the spatiotemporal complexity encoun-
tered in shear flows close to onset is the identification of
the mechanism leading to spatial localization [27].

We thank A. P. Willis for sharing his code. The re-
search leading to these results has received funding from
the Max Planck Society and the European Research
Council under the European Union’s Seventh Frame-
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