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Streamwise turbulence intensity formulation for flat-plate boundary layers

lvan Marusic® and Gary J. Kunkel
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis,
Minnesota 55455

(Received 11 February 2003; accepted 13 May 2003; published 2 July 2003

A similarity formulation is proposed to describe the streamwise turbulence intensity across the entire
smooth-wall zero-pressure-gradient turbulent boundary layer. The formulation is an extension of the
Marusic, Uddin, and PeryPhys. Fluids9, 3718(1997] formulation that was restricted to the outer
region of the boundary layer, including the logarithmic region. The new formulation is found to
agree very well with experimental data over a large range of Reynolds numbers varying from
laboratory to atmospheric flows. The formulation is founded on physical arguments based on the
attached eddy hypothesis, and suggests that the boundary layer changes significantly with Reynolds
number, with an outer flow influence felt all the way down to the viscous sublayer. The formulation
may also be used to explain why the empirical mixed scaling of DeGraaff and Eatéluid Mech.

422 319(2000] appears to work. €003 American Institute of Physics.

[DOI: 10.1063/1.1589014

Introduction.Over the past decade or so, increased con-  maxu,}, ) =1.86+0.28 lod R,),
troversy has arisen concerning the correct form of scaling for _
the streamwise turbulence intensity?) in the near-wall re- WhereR,=60U,/v is the Reynolds number based on mo-
gion of the zero-pressure-gradient turbulent boundary layefMentum thickness and freestream velocity.
Studies such as Mochizuki and Nieuwstaativocate that the DeGraaff and Eatdhconducted careful LDA measure-

classic “law of the wall” type formulation applies with inner ments in a pressurized wind tunnel _whe}r*e<8 for four
. : N T . Reynolds numbers anti"=17 for their highest Reynolds
variable scaling. That is)*™ =f[z" ], whereu is the stream-

. ) : numberR,= 31000 or Re=13500. Here Rg=5, =8,U,/vis
wise component of the fluctuating velocity and overbars defhe Karman number whers, is boundary layer thickness,

note long-time temporal averages. Heré"=u’/U? and  gptained here by a curve-fit of the mean velocity profile to a
z"=zU,/v, whereU is the wall shear velocityz is the  |aw of the wall, law of the wake formulatiofRef. 8. From
distance normal to the wall andis the kinematic ViSCOSity their experimenta| data DeGraaff and Eaton proposed a new
of the fluid. Earlier surveys of data, such as Cdlesd near-wall mixed scaling where all near-wall data should col-
Sreenivasahfound that the classic formulation remains valid lapse on a universal curve when plottedJ_éls(Ulu ;) versus
because any deviations could not be explained beyond the'. Metzgeret al® re-examined the data presented in Ref. 7,
uncertainty in the measurements. More recent surveys bicluding the atmospheric surface layer data, and concluded
Gad-el-Hak and Bandyopadhyagnd Fernholz and Finléy that mixed scaling does apply in the near-wall region for
indicated that Reynolds number effects are present, andpproximatelyz®<30.
therefore inner variable scaling alone is insufficient. In this paper the similarity formulation of Marusic, Ud-
The major difficulty in drawing firm conclusions has din, and Perri (referred to here on as MURs reconsid-
been the accuracy of the measurements, which invariably a®ed. The MUP formulation was restricted 26 >100 and
complicated by spatial resolution and other near-wall meatherefore does not consider any of the near-wall viscous ef-
surement issues. An excellent survey of these issues can fets. It is based on the attached eddy hypothesis of
found in more recent papers by DeGraaff and Etand Townsend" and is given by

Metzger and Klewicki. Metzger and Klewicki considered 7 . .
data from laboratory and smooth wall atmospheric surface —5=B1—A;In| —| -V, zt — ~Wg| |- (1)
layer studies at the SLTEST facility on Utah'’s salt flats. They Uz 2 2 2

restricted their survey to datasets whefe<10, wherel is  The formulation involves the asymptotic logarithmic law
the probe sensing lengtthot-wire or LDA), and found a  jth a wake deviation\(/) in the outer region, and a vis-
clear dependence on the Reynolds number. Most notably, theyus Reynolds number dependent deviatigg) (in the inner
inner normalized rms streamwise velocity peakzat=15  region.(The analytical expressions fv, andV, and values
was found to increase with the Reynolds number approxiof the numerical constants are given in Ref.)Ithe formu-
mately as lation essentially provides a functional form faf* as a
universal function oz* and Re (z/5,=z*/Re). This is as
aTelephone: (612 625 3566; fax: (612 626 1558; electronic mail: €XPected since these are the only relevant dimensionless pa-
marusic@aem.umn.edu rameters for a flat plate boundary layer developing in a
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zero pressure gradient. In the following section an extension 1o ' '
of the MUP formulation will be presented that applies across 9L :
the entire boundary layer including the viscous near-wall
region.

Extended formulationThe form of the new similarity
formulation is derived here by considering physical argu-
ments based on the attached eddy model as was used for the
Marusic et all° formulation. The MUP formulation applies (&
only in the logarithmic region and beyond where the inviscid
attached eddies are considered. The attached eddy mode
(full details of which are given by Perry and Maru€i¢d is
based on the attached eddy hypothesis of TownSkiitie
eddies are assumed to be geometrically similar with varying
population density for different sizes of eddies. They are at- .
tached in the sense that their characteristic length is propor- z
tional to the distance the eddy extends above the wall. The FIG. 1. Schematic of components in the new formulation.
height of the smallest attached eddy is assumed to scale with
vIU ., say 100/U ., while the largest attached eddies are
assumed to be of sizé., the boundary layer thickness. i )

Therefore, it is immediately implied that an increase in Rey-R€ynolds number for whichy=1. Here, the nominal chosen
nolds number, or Karman number (Re3.U_/v), will result  Value is (R€)er=2000. An empirical curve fit fof, is ob-

in a larger range of scales of attached eddies. This also ef@ined using one highly resolved experimental proffef.
plains why the MUP formulation shows an increase’fii at 6). The functional form used to curve fif is

a fixedz" in the log region. For example, at =150 there 0.16z")?

will be more and more eddies abowé =150 for higher fi[z"]= (1+a(z7)d)TA(1+ (a,z") @) T2’ ®
values of Re, and each of these attached eddies have some ' 2 )

significant contribution ta?* at z*=150. This is not ex- Wherea;=0.008,a,=0.115, ancaz=1.6. The function was
pected for the wall—normal turbulence intensity provided thethoSen S0 as to Qave the correct near-wall beh+aV|or, namely
attached eddies have a regular inclined shape extending—(0-427) @z —0. The scaling functiorf[z",Re] is
above the viscous buffer zone. These trends were confirmedSC Shown in the figure for the same Reynolds numbers as
by Perry and Marusi@ using Biot—Savart calculations. shown forfz. It corresponds to a constant v_alue at thg edge
These induced attached eddy motions are consistent withf (€ viscous zone, Ia_lbeled+ here as Y, which ther+1 sim-
what Bradsha## and Townsentf referred to as “inactive P!y drops off linearly in 1fiz"] to a value of 1.0 az” =1.
motions,” although their argument that inactive motions Here we choosez(").=50. The functional form of 1 for

increasing Re,

A7 Re,)

carry no Reynolds shear stress need not apply. z'=1is
The MUP formulation is extended to the near-wall vis- . In[z"]
cous region by proposing that the Reynolds number depen- f1[2Z ,Rer]=1+(a—1)m, (4)
re

dent, outer-layer turbulence intensity acts as an effective _ . . _
forcing on the viscous buffer zone and sublayer, where th&vherea is the value offr at (z")r, and it is obtained by
near-wall vortex formation processes are taking place. Therdaking the asymptotic form of,, that is

fore, for simplicity we consider essentially two components: o B,— A, In[(z"),e/RE ] -
w2 (fifz"]f[z",Re], for z' <z .0 Bi—A1IN[(z") e/ (R&)ref]
U_fz f[z",Re], for z7=2) e 2 For z" <1, the transition function is simply taken &g=1.

The resulting extended formulation is an analytical func-
where the outer region paft is the original MUP formula-  tion which, while not very compact, is easy to code and
tion as given by Eq(1). The inner part of the layer is de- process on a personal computer. Also, it should be noted that
scribed by a universal functioriy[z* ], which is multiplied  the functional forms of the curve-fits presented here are ten-
by a functionf[z",Re] that accounts for the different lev- tative and other curve-fit functions may work just as well.
els of turbulence intensity forcing the near-wall viscous re-The important feature of the formulation is the functional
gion. For simplicity, we complete the formulation by blend- relation given by Eq(2).
ing the two components betwee), o <z" <zge With a Results and discussioA comparison of formulatiori2)
gradient-matched cubic curve-fit. Here we tentatively takewith experimental data is shown in Fig. 2. The laboratory
Zimer= 30 andzg,.= 150, the exact values of which are of range Reynolds numbers correspond to the data of DeGraaff
secondary importance. Figure 1 shows a schematic of thand Eatorf, while the highest Reynolds numbers come from
new formulation. The MUP formulationf¢) is shown for measurements on the Utah salt flats. The data from Metzger
several Reynolds numbers to highlight the increasing level oét al? are as taken from Fig. 2 of their paper withindicat-
uzluf above the near-wall viscous region. The inner regioning 10 independent, 5-minute runs amdthe composite 50
function f; shown on the figure corresponds to a referencaminute averages. The conditions for these runs were re-
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FIG. 2. A comparison of formulatiort2) (lines) with experimental data. ~ FIG. 4. Streamwise turbulence intensities normalized with mixed velocity
Solid symbols are from DeGraaff and Eat@Ref. 6 and symbols and X scaling. Symbols and lines are as in Fig. 2.
are from Metzgeet al. (Ref. 9. Broken symbols are from authors’ experi-
mental study at the SLTEST atmospheric surface layer, with corresponding
broken lines from Eq(2).

<10 given in Refs. 7 and 9. This is in close agreement with

) what was empirically proposed by Metzger and Klewitki.

garded as a nominally smooth waRefs. 7 and 9 Also The good agreement with experimental data also indi-

included on the plot are data taken by the authors on the,ies support for the underlying physical basis of the formu-
Utah salt flats. The data were acquired in August 2000 und@gion, That is, the inner-flow viscous region is directly influ-

neutrally stable, nominally rough wall conditions. Further gpnceq by outer-flow attached eddy motions, and this
experimental detaﬂ}se concerning this study are given ifnseraction changes significantly with Reynolds number. This
Marusic and Kunket” These data and the comparison with rg|ates directly to a discussion in the literature about the so-
Eq. (2) are shown as broken lines since E2) does apply  cajied inner/outer interaction in boundary layers. Our work

f%r both rough and smooth walls in the outer regiamere  |engs support to the findings of Metzger and Klewlcknd
u T=1[z",Re)) but only applies for smooth walls in the qthers that the outer region does have a direct effect on the
inner near-wall region. near-wall region, all the way down to the viscous sublayer.

In all cases the agreement between E2).and the ex-  Thjs is in contrast with the view that viscous-region dynam-
perimental data in Fig. 2 is seen to be very good. A clealcs agre “autonomous” and independent of the outer flow re-
increase in the peak streamwise turbulence intensity is note@\on_ While the inner region can be self-sustaining in isola-
for increasing Reynolds numbers. Figure 3 shows the valugon, as shown from the numerical experiments of Jimenez
of the peaku,:=(u”*)*? as a function of Karman number and Pinelit’ and the dynamical modeling of Waleft,t
Re,. Excellent agreement is seen with experimental data thalould seem that other mechanisms do play a significant role,
are taken from the compilation of measurements Ifor especially at high Reynolds numbers.

An additional point concerning formulatidi2) is that it
may be used to explain why the empirical mixed scaling of
DeGraaff and Eatdhappears to work. Figure 4 shows the
smooth wall data from Fig. 2 replotted with mixed coordi-
nates. The experimental data collapse in the near-wall region
within the scatter of the experimental uncertainty. The lines
correspond to Eq(2) for the different Reynolds numbers.

Strictly, the formulation will only give a true constant for
peaku, at infinite Re.. This can be understood simply by
considering a law of the wall and law of the wake formula-
tion for the mean velocity. For example, using the formula-
tion in Perry, Marusic and Jonés,

45 T T

4.0

35 F

Fas)

max(x,

3.0 -

2.5

Ui 1iRelsas — 4 20 6
U~ <NReJ+A= -+ ——, (6)

20102 163 164 ‘5 ‘6 T
) ~ wherex andA are the logarithmic law of the wall constants
; ms S a function of Karman number. The solid line 5417 s the Coles wake factor, which also becomes a con-
is from Eg.(2) and data points are as taken from Fig. 4 of Metzger and

Klewicki (Ref. 7) where all measurements have sensing lehgth10. The ~ Stant .at high.R?efor zero-pressure-gradient boundary layers.
solid symbols are the data of DeGraaff and Eat@ef. 6. For high Re it is easy to show that fron®2),

FIG. 3. Peak value ofi
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