
1 Location and centrality in a city

`̀No matter how good its offering, merchandising, or customer service, every retail

company still has to contend with three critical elements of success: location,

location, and location''
Taneja (1999, page 136).

What is location? Why does it matter? A simple and intuitive answer is: centrality.

A central place has one special feature to offer to those who live or work in a city:

easy accessibility from immediate surroundings and more distant places. Accessibility

may be transformed to visibility and popularity. Therefore, a central place tends to

attract more customers and has a greater potential to develop into a social catalyst.

Important landmarks such as museums, theatres, or office headquarters favour the

central locations. A more central location commands a higher real estate value and

is occupied by a more intensive land use. Central locations in an urban area have the

potential to sustain higher densities of retail and services, and are a key factor for

supporting the formation and vitality of urban `nodes' (Newman and Kenworthy, 1999).

Centrality emerges as one of the most powerful determinants for urban planners

and designers to understand how a city works and to decide where renovation and

redevelopment need to be placed.

Centrality not only affects how a city works today, but also plays an important role

in shaping its growth. If one looks at where a city centre is located, it is most likely to

sprout from the intersection of main routes, where some special configuration of the
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terrain or some particular layout of the river system (or water bodies in general) makes

the place compulsory to pass through. That is one of the dominant theories that

explain where a city begins. Then, departing from such central locations, the city grows

up over time with gradual additions of dwellings, residents, and activities: first along

the main routes, then filling the in-between areas, and then developing streets that

realize loops and points of return. As the structure becomes more complex, new

central streets and places are formed and stimulate a growth in the number of residents

and activities around them. This evolutionary process has been driving the formation

of urban fabrics and the advancement of human civilization throughout most of the

seven millenniums of city history.

Centrality appears to be somehow at the heart of that marvellous hidden order that

supports the formation of `spontaneous' and organic cities (Jacobs, 1961; 1993). It is

also a crucial issue in the contemporary debate on searching for more bottom-up and

`natural' strategies of urban planning beyond the modernistic heritage. Centrality has

been studied in many branches of urban research, especially in economic geography

and regional analysis (Wilson, 2000) and in transportation planning (Goulias, 2002;

Meyer and Miller, 2000). In most cases centrality has been dealt with as a means of

measuring the relationship between activities among places. In essence, this has led to

an interpretation of centrality through an intuitive notion that a more central location

is a place c̀loser' to all others. In urban planning and design, centrality is the core issue

addressed by space syntax, a methodology of spatial analysis, through the notions of

`visibility' and `integration' (Hillier, 1996; Hillier and Hanson, 1984). Space syntax has

opened a whole new range of opportunities for urban designers to develop a deeper

understanding of several structural properties of city spaces. The model has achieved

significant successes in the practice of countless urban regeneration programmes in the

UK and elsewhere, and has helped urban planners and designers in making good

decisions and reframing the debate on pivotal issues such as crime, self-surveillance,

community building, and renovation of large housing estates in the last two decades or

so. Despite these successes, urban designers often perceive space syntax as a quantita-

tive threat to the creativity embedded in the art of city design, while on the other side

researchers in spatial analysis and geocomputation often find it lacks rigorous expression

and clear disciplinary references.

The multiple centrality assessment (MCA) model follows broader traditions in

centrality assessment, which draw on structural sociology since the early 1950s (Bavelas,

1948; 1950; Freeman, 1977; 1979; see also an overview by Wasserman and Faust, 1994),

and the more recent new physics of complex networks (Boccaletti et al, 2006). Imple-

menting these traditions in a spatial environment, MCA works at the forefront of a

growing wave of interest for geographic information research (Batty, 2005). Therefore,

the MCA model shares with space syntax the fundamental values that refer to the

structural interpretation of urban spaces for urban planning and design, while offering

a new and deeply alternative technical perspective (Cardillo et al, 2006; Crucitti et al,

2006a; 2006b; Porta et al, 2006a; 2006b; Scellato et al, 2006; Scheurer and Porta, 2006;

Scheurer et al, 2007).

The hypothesis for this study is that centrality captures the essence of location

advantage in an urban area, and its values should be reflected in the intensity of land

usesöin this case, densities of retail and service activities. We test the hypothesis in

Bologna, a northern Italian city. The remainder of this paper is organized as follows.

Section 2 describes the study area and data preparation. Section 3 reviews the MCA

model for measuring urban network centralities. Section 4 shows how kernel density

estimation (KDE) is used to transform both the MCA measures and densities of retails

and services to one scale unit, which permits the correlation analysis between them.
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Section 5 presents the analysis results with some discussion. The paper is concluded

in section 6 with a brief summary.

2 Study area and data preparation

Bologna is a regional capital in northern Italy with some half a million residents. It is

an important urban centre located in the middle of the River Po Plain. Historical

major routes connecting Florence and southern Italy with northern Italy converge

here (see figure 1). Bologna is a relatively wealthy city and a national transportation

hub with a rich history and culture: it is where the Àlma Mater', the most ancient

university in the world, originated. The aim of this study is to examine how the variation

of street centrality (measured by the MCA model) correlates with the distributions of

retail shops and community services in Bologna.

Data for this study were provided by the municipality of Bologna in two separate

datasets. The first dataset is an ArcGIS (ESRI Inc., Redlands, CA) point shapefile

including all ground-floor retail and service activities in Bologna in 2003. Each of the n

activities is indicated in the following as Xi , where i � 1, 2, .::, n. In Bologna these

retail and service entities are in general comparable in floor size. Ideally, we would like

to have the data of floor space or even the rental value for each activity to capture

more effectively the intensity of land uses. We are in the process of collecting such

data and will report the results when available. For the purpose of this study, we

then extracted two separated layers from this dataset: one for retail shops alone

(ncomm � 7257 points), and one for retail and service activities altogether

(ncomm�serv � 9676 points). The second dataset is an ArcGIS line shapefile containing

all streets in Bologna in 2004. The street network has 7191 street segments (edges) and

5448 intersections (nodes). Figure 2(a) shows the distribution of retail (commercial)

and service activities on the street network in Bologna.

3 Measuring urban network centralities with multiple centrality assessment

The MCA model focuses on measuring centrality in urban networks constituted by

streets as links (or edges), and by intersections as nodes. The main characteristics of the

MCA are: (1) utilizing a standard `primal' format for the street network representation;

Figure 1. Location of Bologna in northern Italy.
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(2) anchoring all measures on a metric computation of distances along the real street

network; and (3) defining centrality by a set of multiple peer indices (Porta et al,

2006b). While the first two characteristics differentiate the MCA from space syntax,

the third one makes it distinctive from traditional regional analysis, transportation

planning, and urban geography. The MCA model in fact measures a location as `being

central' not only in terms of being close to all others, but also in terms of being the

intermediary between others, being accessible via a straight route to all others, and

being critical for the efficiency of the system as a whole.

Results from the MCA analysis include several maps of a street network, each of

which shows one set of centrality values for the edges of the network. The following is a

brief review of the MCA model. For more detailed discussions of MCA, see the

references cited in section 1.

Streets (links or edges) are represented in a GIS system as linear features with two

end nodes and, possibly, one or more intermediate vertices. The MCA model assigns a

set of centrality values to each street segment (Crucitti et al, 2006a; 2006b; Porta et al,

2006a; 2006b). Here we discuss three of them: closeness (CC ), betweenness (CB ), and

straightness (C S ).

Closeness centrality CC measures to what extent a node is close to all the other

nodes along the shortest paths of the network. CC for a node i is defined as:

CC
i �

Nÿ 1

X

N

j � 1; j 6� i

dij

, (1)

where N is the total number of nodes in the network, and dij is the shortest distance

between nodes i and j. In other words, the closeness centrality for a node is the inverse

of the average distance from this node to all other nodes.

After calibrating the shortest path between any two nodes, it is straightforward to

compute CC for all the nodes in the network. CC may be interpreted as proximity, and

also captures the notion of accessibility of a place. The closer a place is to other places,

the more accessible it is. The family of closeness measures has been widely used in

urban and regional analysis. In essence, it reflects the cost of overcoming spatial

separations between places with population and activities.

Betweenness centrality CB is based on the idea that a node is more central when it is

traversed by a larger number of the shortest paths connecting all couples of nodes in

the network. CB is defined as:

CB
i �

1

�Nÿ 1��Nÿ 2�

X

N

j � 1; k � 1; j 6� k 6� i

njk �i �

njk
, (2)

where njk is the number of shortest paths between nodes j and k, and njk (i ) is the

number of these shortest paths that contain node i. Using a social network analogue,

CB is like the kind of prominence of a person who acts as intermediary among a large

number of other persons. In MCA terms, CB captures a special property for a place in a

city: it does not act as an origin or a destination for trips, but as a pass-through point.

CB represents a node's volume of through traffic. A place with better betweenness may

benefit from this important property.

Straightness centrality C S originates from the idea that efficiency of communication

between two nodes increases when there is less deviation of their shortest path from

the virtual straight line connecting themöthat is, a greater `straightness' of the shortest

path. C S is defined as:

C S
i �

1

Nÿ 1

X

N

j � 1; j 6� i

dEucl
ij

dij
, (3)
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where dEucl
ij is the Euclidean distance between nodes i and j, or the length of the virtual

straight connection.

C S was originally proposed in nonspatial networks as a normalization procedure

(Vragov|© c et al, 2004). In spatial networks C S reveals a totally different meaning related

to human cognitive processes in navigating complex spatial structures. C S measures the

extent to which a place can be reached directly, on a straight line, from all other places

in a city. This is a quality that makes it prominent in terms of `legibility' and `presence'

(Conroy-Dalton, 2003).

In this study all three global centrality indices were calculated first, as all nodes and

edges in the network participated in the computation: namely, global closeness CC
glob ,

global betweenness CB
glob , and global straightness C S

glob . As an example, figure 2(c)

shows the variation of global betweenness CB
glob across the street network in Bologna.

In addition, two local centrality indices were calculated for the nodes located within a

certain distance d from each node i. As shown in a previous study (Porta et al, 2006b),

local measures are useful to overcome the edge effectöthat is, the distortion that

lowers the centrality values near the edge of a network. Such a distortion turns out

to be very significant for the closeness index when calculated on highly fragmented

networks. Moreover, the global centrality measures do not reveal network properties

on a local scale, whereas local measures nicely capture properties of space at the

neighbourhood or district scale that have to do with a nonmotorized experience of

cities. In Bologna the search range for local centrality measures was set at d � 800 m,

and, therefore, the local closeness and local straightness are denoted as CC
800 and C S

800 ,

respectively.

We have developed an ArcGIS extension to prepare the street network data for

MCA computation. The module first cleans up the street network in an ArcGIS

shapefile format for most common errors, then generates nodes at intersections and

links the node identification to the polyline attribute table, and finally generates a

c̀onnectivity table' that stores, for each street, its length, identification of the two end

nodes, and their coordinates. The connectivity table is then processed outside of GIS

by a C�� script that computes centralities of each node and each street (ie the average

centrality values of the street's two end nodes). The result from the C�� program is

fed back to ArcGIS for mapping and other spatial analysis such as the KDE in the

next phase.

4 Using kernel density estimation to compute densities of street centralities and retail

and service activities

4.1 Transforming data to one analysis unit

The objective of this research is to examine whether the variation of street centralities

is indeed reflected in the intensity of land usesöin our case densities of retail and

service activities in Bologna. In accordance with the MCA model, three centralities

(CB, CC, and CS ) for each of the 5448 nodes were computed, on the basis of which,

centralities for each of the 7191 edges were calculated as the average of two end nodes.

Correspondingly, there were 7257 retail shops (or 9676 retail shops and service facilities

altogether) in the study area. The street network and points of retail and service

activities were two distinct spatial features. In order to analyze the relationship

between them our first task was to transform the two datasets to one scale (analysis

unit), so that such a comparison could be made.

Several approaches may be employed to facilitate such a comparison study. One is

to use the distribution of retail and service activities as the base framework, to

compute the street network centralities at (or around) each retail and service facility,

and then to examine the relationship between them. The second approach is the other
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way aroundöthat is, computing the density of retail and service activities along each

street and matching with the centralities for that street. The third approach is to

transform both activities to a new framework (eg a raster system), and to examine

the relationship between the street centralities and land-use intensity at the same scale.

In all cases, data transformations from one scale or analysis unit to another utlize

spatial smoothing and/or spatial interpolation techniques (Wang, 2006, page 47). The

current research uses the third approach, mainly for the convenience of taking advan-

tage of some built-in tools available in ArcGIS. Our future work will explore the first

and second approaches.

There are also rich choices of spatial smoothing (eg floating catchment area, KDE,

and empirical Bayes estimation) and spatial interpolation methods (eg trend surface

analysis, inverse distance weighted, thin-plate splines, and kriging) (Wang, 2006,

pages 35 ^ 53). Here, the KDE method was used. Basically, the KDE uses the density

within a range (window) of each observation to represent the value at the centre of the

window.Within the window, the KDE weighs nearby objects more than distant objects,

on the basis of a kernel function (Bailey and Gatrell, 1995; Fotheringham et al, 2000,

pages 146^ 149; Silverman, 1986). By doing so, the KDE generates a density of the events

(discrete points) as a continuous field (eg raster), and therefore converts the two datasets to

the same raster framework and permits the analysis of relationships between them. The

roots of KDE may be traced back to several pioneering studies in mathematical

statistics (Akaike, 1954; Parzen, 1962; Rosenblatt, 1956), and it has since been used in

many fields such as geography, epidemiology, criminology, demography, ethology,

hydrology and others, including two recent examples (Anselin et al, 2000; Borruso,

2003).

While the choice of a particular smoothing or interpolation technique should not

affect the outcome of this research, our choice of KDE was made for at least three

reasons.

. First, and most importantly, by using the density (or average attributes) of nearby

objects to represent the property at the middle location, the KDE captures the

very essence of location measured by centralities and reflected by densities of

retail and service facilities. In contrast to studies of a direct correlation between

street integration and socioeconomic and environmental indicators (eg Penn and

Turner, 2003), this approach emphasizes that it is not the place itself but rather

its surroundings that make it special and explain its setting. Using the KDE

here is not only a requirement for converting the data scale but also a necessity

for accurately capturing the true intention of analyzing the relationship between

two neighbourhood features.

. Secondly, the KDE uses a kernel function to value the contribution of a nearby

object to the density estimate more than a remote one, as stated in Tobler's

(1970) first law of geographyöthat is, `̀ everything is related to everything else,

but near things are more related than distant things.'' This property of distance

decay for spatial interaction is widely recognized by urban researchers. The family

of gravity models follow the same notion with strong theoretical foundations and

have many successful applications in urban and regional studies (Fotheringham

et al, 2000, pages 213 ^ 235).

. Finally, the KDE is a standard tool in the ArcGIS spatial analyst module, and

the results can be easily integrated in ArcGIS for mapping.
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4.2 Kernel density estimation

A kernel function looks like a bump centred at each point xi and tapering off to zero

over a bandwidth or window. The kernel density at point x at the centre of a grid cell is

estimated to be the sum of bumps within the bandwidth:

f̂ �x� �
1

nh

X

n

i � 1

K

�

xÿ xi

h

�

, (4)

where K is the kernel function, h is the bandwidth, n is the number of points within the

bandwidth, and n is the total number of events. All events xi within the bandwidth of x

generate some bumps reaching the point x, and contribute to the estimated kernel

density there.

The kernel function K( y) is a function satisfying the normalization for a two-

dimensional vector y such as:
�

R 2

K� y�dy � 1 .

A regularly adopted kernel is the standard normal curve:

K� y� � �2p�
ÿ1=2

exp

�

ÿ
1

2
y
2

�

.

For convenience, our computation in ArcGIS used the following kernel function, as

described in Silverman (1986, page 76):

K� y� �
�3p�

ÿ1
�1ÿ y

2 �
2
; if y

2 < 1,

0; otherwise:

(

(5)

One advantage of equation (5) is its faster calculation than the regular kernel. As

the formula indicates, any activity beyond the bandwidth h from the centroid of the

considered cell does not contribute to the summation.

For our study area, the raster framework is a rectangular region R with 2771956

grid cells, and each cell is a 10 m�10 m square. Experimenting with other cell sizes

yielded similar results. The following explains how the distributions of retail shops and

services and the centrality indices of street networks are both transformed to this raster

system by the KDE method.

4.3 Estimating kernel densities of retail and service activities and street centralities

As discussed in section 2, retail and service facilities are represented as points in a GIS

system. Such points were also provided with information about the size of the shop or

service, but we decided in this first application to correlate just with the presence of

shops and servicesöthat is, their broad numer and locationöand to leave more

detailed analysis to further investigations: therefore facilities were not weighted here.

ArcGIS has a built-in tool for kernel estimation. To access the tool in ArcGIS, click the

Spatial Analyst dropdown arrow>Density> choose Kernel for Density Type in the dia-

logue. Applying the tool to the dataset of retail and service activities yielded the kernel

densities. For this study we computed the densities of retail shops alone, and also

the densities of retail (commercial) and service activities together in Bologna.

To compute the kernel densities of the street network we used centrality values for

each street segment (edge) to weigh the contribution of each edge to the kernel `bump'

within a grid cell. In other words, a kernel function is applied to each street, yielding

values which are greatest on the line, diminish with distance from the line, and reach 0

at the distance h from the line. Unlike the densities of retail or service activities,

the kernel density of street centrality at each grid cell in region R is the sum of all the
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kernel surfaces within the bandwidth multiplied by the value of centrality at each

surface. In ArcGIS, this is implemented by selecting one of the centrality indices as

the `population' (weight) field. By doing so, we are not computing just the density of

streets, but the density of street centrality.

One problem in using the KDE is the choice of a particular kernel function and

bandwidth h. Several methods have been proposed to pick up the best kernel function

(Fotheringham et al, 2000, pages 155 ^ 157) or to optimize h (Cao et al, 1994) according

to the global structure of the dataset. However, Epanechnikov (1969) finds that the

choice among the various kernel functions does not affect significantly the outcomes

of the process. Williamson et al (1998) and Levine (2004) point out that the choice of

bandwidth is an important issue in any KDE application. Recent advancement has

suggested using an adaptive, rather than fixed, bandwidth höthat is to say, h is larger

in areas where events are sparser, and smaller where they are denser (Brunsdon, 1995;

Fotheringham et al, 2002).

As explained earlier, the KDE is not the methodological focus of this research, and

is used here to transform the two data features to the same analysis unit. Our study

used a fixed bandwidth, but we did experiment with different h values to show the

robustness of the results. The choice of a fixed bandwidth pertains to the purpose of

the study: we are interested in understanding the relationship between the street net-

work and basic services in an ordinary city. In Bologna we chose h � 300 m, 200 m

Table 1. Twenty-one raster layers from kernel density estimation (KDE) in Bologna. MCA
denotes multiple centrality assessment.

Layer Centralities KDE

index description MCA bandwidth
distance distance
factor d(m) factor h(m)

1 CB
glob global betweenness centrality all 300

2 CC
glob global closeness centrality all 300

3 C S
glob global straightness centrality all 300

4 CB
glob global betweenness centrality all 200

5 CC
glob global closeness centrality all 200

6 C S
glob global straightness centrality all 200

7 CB
glob global betweenness centrality all 100

8 CC
glob global closeness centrality all 100

9 C S
glob global straightness centrality all 100

10 CC
800 local closeness centrality 800 300

11 C S
800 local straightness centrality 800 300

12 CC
800 local closeness centrality 800 200

13 C S
800 local straightness centrality 800 200

14 CC
800 local closeness centrality 800 100

15 C S
800 local straightness centrality 800 100

16 comm� serv retail commerce and commercial service 300

17 comm retail commerce 300

18 comm� serv retail commerce and commercial service 200

19 comm retail commerce 200

20 comm� serv retail commerce and commercial service 100

21 comm retail commerce 100
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and 100 m, which are widely used in urban planning and design to model the pedes-

trian catchment area at the scale of neighbourhood, block, and street, respectively

(Calthorpe and Fulton, 2001; Cervero, 1998; 2004; Frey, 1999; Urban Task Force, 1999).

In summary, the KDE analysis was performed on: (1) two point layers (one is retail

shops and the other is retail and service activities altogether) using no weights, and (2)

the street layer using five different weights (CC
glob , CB

glob , C S
glob , CC

800 , and C S
800 ). For

each of these seven measures, three bandwidths (h � 100 m, 200 m, and 300 m)

were tested, yielding a total of twenty-one kernel density raster layers (see table 1).

For example, figure 2(b) shows the KDE of retail and service activities, and figure 2(d)

shows the KDE of global betweenness (CB
glob ) of the street network in Bologna. Both

used a bandwidth of 300 m.

5 Analyzing the relationship between street centralities and retail and service activities

The above KDE analysis converted the measures of street centralities and the densities

of retail and service activities to the same raster framework, where each cell contains

attributes in multiple raster layers (see figure 3) for an illustration). In this section we

Figure 2. [In colour online, see http://dx.doi.org/10.1068/b34098] Density of activity and street
centrality: (a) location of commercial and service activities (red dots); (b) kernel density estima-
tion (KDE) (h � 300 m) of commercial and service activities; (c) street global betweenness CB

glob

(blue for lower values and red for higher); (d) KDE (h � 300 m) of CB
glob .
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evaluate the statistical distribution of each of the density measures in the raster layers,

and analyze the relationship between the densities of street centralities and the

retail and service activities. For the latter, one of the two activity variables is paired

with each of the five street centrality variables to examine their relationshipöthat is,

2� 5 � 10 pairs of relationships. Only variables calculated at the same bandwidth can

be matchedöfor example, the density of CC
glob with h � 300 m matches with that of

retail shops with h � 300 m; with three bandwidths tested, this led us to examine

thirty correlations.

5.1 Density distributions of street centrality and commercial and service activities

Figure 4 shows the distribution of density of activities for the case h � 300 m. Namely,

we report the number of cells with a density of activities (in this case, commercial and

service activities) in the range [a, a� Da]. The increment was set to be equal to

Da � 3:396� 10ÿ5. The distribution follows closely the power law, which is a straight

line in the log ^ log scale used in the plot. That is to say, as the density declines, the

number of cells increases geometrically. Higher density areas are few, and lower density

areas are plentiful. Results for the density of retail shops and other bandwidths are

very similar to figure 4, and are thus not shown here.

Figure 3. Illustration of a grid cell with attributes in various raster layers. KD denotes kernel
density.
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We now examine how many cells have a density range of a centrality index c.

Figures 5(a) ^ 5(d) show only four of the fifteen centrality indices calculated by MCA,

namely global betweenness [CB
glob , in figure 5(a)], global straightness [C S

glob in fig-

ure 5(b)], global closeness [CC
glob in figure 5(c)], and local closeness evaluated within

800 m [CC
800 in figure 5(d)]. In all four cases the KDE bandwidth was h � 300 m.

Defining the density range as [c, c� Dc ], the increment Dc � 45 310 for CB
glob ,

Dc � 476 902 for C S
glob , and Dc � 1767 for both CC

glob and CC
800 . All centrality measures

exhibit significant variations across Bologna. Such a wide range of difference

in centrality reflects the typical concentric structure of the medieval street network.
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Figure 5. Distribution of kernel densities of street centrality (h � 300 m) in Bologna.
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Figure 4. Distribution of kernel density of retail commerce (comm) and commercial service
(serv) activities (h � 300 m) in Bologna.
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The concentration of best centrality in a very few places indicates that the best

accessibility to the functional backbone of community life is enjoyed only by a small

segment of the population or businesses. This appears to be the natural outcome of a

historical evolution of Bologna's street network. Among the four centrality densities,

the distribution of CB
glob [shown in figure 5(a)] is the only graph in a log ^ log scale.

It resembles most that of the commercial and service activities, and can be fitted by a

power law. This indicates that the distribution of betweenness is the most heteroge-

neous one: in fact, the density values of CB
glob span from 10 to over 1000, with over

100 000 cells having a density equal to 10 and only a few hundred cells having a density

larger than 1000. The distributions of the other three centralities (C S
glob , C

C
glob , and CC

800

exhibit more uniform patterns with rapidly declining tails. Note that for CC
glob [shown in

figure 5(c)], the vertical axis is a log scale and the horizontal axis is a linear scale.

Therefore, the distribution of CC
glob is well approximated by a decreasing exponential

curve. For either C S
glob or CC

800 both the axes are plotted in a linear scale, and distribu-

tions are characterized by two peaks. A similar pattern with the presence of two peaks

has also been observed for straightness and closeness indices evaluated locally but on

different scales.

5.2 Correlating street centrality and commercial or service activities

The main hypothesis of this study is that centrality acts as a driving force in the forma-

tion and constitution of urban structure in terms of land uses such as commercial and

service activities. Here the relationship is examined by analyzing the correlations

between the densities of street centrality and retail or service activities in the same

raster framework. As explained earlier, the study involves examining thirty paired

correlations of kernel densities based on the same bandwidth. The methodology shares

some common ground with an earlier study by Thurstain-Goodwin and Unwin (2000)

that combined estimated density values on a cell-by-cell basis in a correlation of the

same factors.

As our focus is on the developed areas along the street network, we first excluded

cells of zero values in either of the coupled raster layers. This reduced the number

of cells for analysis from 2771956 to 1500 000 ^ 1800 000. For each pair of variables,

a simple linear correlation coefficient (or Pearson's r ) was computed. Pearson's r,

ranging from ÿ1 to 1, determines the extent to which values of the two variables are

`proportional' to each other. In general, the value of Pearson's r decreases as the sample

size increases, owing to statistical fluctuations (Taylor, 1982).

The emphasis of this research is on examining how the street network centrality

and retail and service density are related to each other. It is not our objective to

explain, one factor by another, which would require rigorous regression analysis.

Spatial data (including those in this study) often exhibit spatial autocorrelation, in

which values of a variable are systematically related to geographic location (eg similar

or dissimilar values are near each other). In that case spatial regression models such

as the spatial lag model or the spatial error model (Fotheringham et al, 2000,

pages 167 ^ 169; Wang, 2006, pages 181 ^ 185) ought to be used, and more advanced

techniques such as the maximum likelihood method (Anselin and Bera, 1998) are

needed to calibrate the models. This will be explored in our future work, which may

consider more factors in addition to the centrality measures.

The analysis in Bologna shows that all thirty paired correlations are positive. A very

strong positive association emerges, especially considering the large sample size. Among

the fifteen pairs with the highest r (see table 2), all the r values are higher than 0.5.

In table 2 six of the correlations between the global betweenness centrality (CB
glob ) and

retail activities are among the top fifteen; so are five of the correlations between the
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global closeness centrality (CC
glob ) and retail activities. However, the global straightness

centrality (C S
glob ) is only present twice in the table. Global betweenness CB

glob emerges to

have by far the strongest correlation with retail activities at all scales, with r values

above 0.7. Interestingly, betweenness centrality captures the potential of a place to be

traversed by passenger or freight trips between other places in the system, or `through-

traffic', even if it does not serve as an origin or destination. In other words, a place itself

may not attract people or cargo as a major trip destination, but it may take advantage

of its unique location as merely a pass-through nexus to generate great business oppor-

tunities. Hence a high value of betweenness centrality often implies a high concentration

of commercial or service activities.

Figure 6 plots the densities of retail shops and services versus centrality. Like the

histograms in figure 5, each graph in figure 6 is drawn on the basis of the average

densities of retail and service activities within each range of the street centrality. The

graphs indicate that higher values of centrality generally correspond to higher average

densities of retail and service activities. The pattern is clear for global between-

ness [figure 6(a)] and global closeness [figure 6(c)], particularly for CB
glob , which has

an almost linear relationship. Note the inset of figure 6(a) (using a bandwidth

h � 100 m for comparison) showing greater fluctuations. With regard to the global

straightness [figure 6(b)] and the local closeness [figure 6(d)], the curves are flat in the

lower range of centrality values and then climb up a steep slope when the centrality

values are higher. In other words, in terms of global straightness or local closeness,

concentrations of activities are slow in responding to the improving centrality initially,

but get more intense after the centrality passes a certain threshold.

In summary, the results from the correlation analysis in the city of Bologna support

the hypothesis that street network centrality, measured by the MCA model, acts as a

driving force in the formation and constitution of urban structure, as reflected in the

distribution of commercial and service activities at the neighbourhood level.

Table 2. Top fifteen Pearson correlations between kernel densities of street centralities and
commercial and service activities in Bologna. KDE denotes kernel density estimations. comm
and serv denote retail commerce and commercial services, respectively.

Rank Correlated variables KDE bandwidth Linear correlation

centralities activities
(m) (Pearson's r )

1 CB
glob comm� serv 300 0.727

2 CB
glob comm 300 0.704

3 CB
glob comm� serv 200 0.673

4 CB
glob comm 200 0.653

5 CC
glob comm 300 0.641

6 C S
800 comm� serv 300 0.620

7 C S
glob comm� serv 300 0.615

8 CC
glob comm� serv 300 0.608

9 CC
glob comm� serv 200 0.583

10 CB
glob comm� serv 100 0.567

11 CC
800 comm� serv 300 0.565

12 CB
glob comm 100 0.555

13 CC
glob comm 200 0.547

14 C S
glob comm� serv 200 0.546

15 CC
glob comm 300 0.533
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6 Conclusions

This paper examines the relationship between street centrality and land-use intensity in

the city of Bologna, northern Italy. Street centrality is calibrated in a multiple centrality

assessment model composed of multiple measures such as closeness, betweenness, and

straightness. In this study land-use intensity is measured in terms of ground floor

commercial and service activities. Kernel density estimation is used to transform

both the centrality measures and the densities of retail and services to one scale unit,

which permits the correlation analysis between them.

Results indicate that retail and service activities in Bologna tend to concentrate in

the areas that enjoy better centralities. The distribution of these activities correlates

highly with the global betweenness of the street network, and also with the global

closeness, but to a slightly lesser extent. This confirms the hypothesis that street

centrality plays a crucial role in shaping the formation of urban structure and land

uses. Betweenness centrality captures the potential of a place to be traversed or to

attract `through-traffic'. That is to say, a place itself inside a city may not need to be a

major trip destination but merely a pass-through nexus in order to generate great

business opportunities.

The study also suggests that the multiple centrality assessment model be an effec-

tive tool for mapping street centrality as a fundamental property in a cityöthat is,

`location advantage'öand thus can serve as a very useful guide for urban planning

and design. By analyzing the statistical distributions both of densities of centrality and

of activities, it is observed that values of betweenness centrality and the density of

activities follow a power function, which indicates that very few places enjoy the best

location and thus command a high concentration of business in contrast to the vast

majority of urban space. Such a distribution pattern is found in most self-organized
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Figure 6. Correlations between kernel densities of street centrality and retail commerce
and commercial service activities (comm and serv, respectively) (h � 100 m for inset and
h � 300 m in all other cases).
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complex systems in nature, technology, and society, implying that cities may be a

self-organized system following some `organic' order in their evolution over time.
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