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Special Issue

Street Network Models and Indicators for Every 
Urban Area in the World

Geoff Boeing
Department of Urban Planning and Spatial Analysis, Sol Price School of Public Policy, University of 
Southern California, Los Angeles, CA USA

Cities worldwide exhibit a variety of street network patterns and configurations that shape 
human mobility, equity, health, and livelihoods. This study models and analyzes the street 
networks of every urban area in the world, using boundaries derived from the Global Human 
Settlement Layer. Street network data are acquired and modeled from OpenStreetMap 
with the open- source OSMnx software. In total, this study models over 160 million 
OpenStreetMap street network nodes and over 320 million edges across 8,914 urban areas 
in 178 countries, and attaches elevation and grade data. This article presents the study’s 
reproducible computational workflow, introduces two new open data repositories of ready- 
to- use global street network models and calculated indicators, and discusses summary 
findings on street network form worldwide. It makes four contributions. First, it reports the 
methodological advances of this open- source workflow. Second, it produces an open data 
repository containing street network models for each urban area. Third, it analyzes these 
models to produce an open data repository containing street network form indicators for 
each urban area. No such global urban street network indicator data set has previously 
existed. Fourth, it presents a summary analysis of urban street network form, reporting the 
first such worldwide results in the literature.

Introduction

Street networks shape the city. They structure the circulation patterns of people and goods and 
underlie urban accessibility. Differences in street network geometry and topology— collectively, 
form—worldwidereflectdifferentcultures,politicalsystems,urbanizationeras,technology,de-
signparadigms,climates,andterrain.Thesenetworksinturnorganizephysicalurbanspaceand
influencetheabilitytotraverseitviadifferentmodesoftransportation.

Yetinthiseraofpost-globalization,littleisknownaboutcomparativestreetnetworkform
worldwide at the urban scale. This is largely due to data access and computational limitations. 
Traditionally,delineatingconsistenturbanareaboundarieswasdifficult,makingitchallenging
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todefineconsistentstudysites(Lemoine-Rodríguez,Inostroza,andZepp2020).Evenifcon-
sistent study sites could be established, it was nearly impossible to gather consistent compre-
hensive street network data around the world. And even if one did, it was nearly impossible 
tomanipulateandorganizethehundredsofmillionsofgeospatialelementsthatwouldentail,
then model them in a graph- theoretic way, then compute geometric and topological indicators 
of form. Nevertheless, such models, indicators, and analyses would be useful for understanding 
urbanizationpatterns,transportationinfrastructureplanning,andthepathtosustainableurban
form for cities worldwide.

This study takes advantage of several emerging tools, technologies, and open data to model 
the individual street networks of every urban area in the world, compute geometric and topolog-
icalindicators,andanalyzethem.ItusestheGlobalHumanSettlementLayer(GHSL)todefine
the urban area boundaries and other variables. Using OSMnx, it downloads and models urban- 
scale street network data globally from OpenStreetMap, attaches elevation data, then calculates 
indicatorsforeachurbanarea.Itplacesalloftheresultingnetworkmodels,indicators,andcode
into open data repositories for public reuse.

This article reports the novel methods employed in this modeling and analytics project. 
Then, it documents the street network model repository and its contents and the indicators repos-
itory and its contents. Next it presents a high- level analysis of worldwide urban street network 
form, using these models and indicators. Across all urban areas worldwide, both total street 
length and intersection count scale sublinearly with population. Higher per capita GDP is as-
sociated with higher per capita total street length. Validation reveals that the open data used as 
elevation attributes compare favorably with high- quality commercial data. The article concludes 
withnotesonreuse.Insum,thisstudyproducesthefirstcomprehensivepublicdatarepository
ofready-to-useurbanstreetnetworkmodelsandindicatorsworldwideandreportsthefirstsuch
worldwide analytical results.

Background

Street network models
Street networkmodels come inmanyflavors, butmost commonly aremathematicalmodels
calledgraphs(Trudeau1994;BrandesandErlebach2005;GastnerandNewman2006;Newman
2003, 2010;Vespignani 2018).Graphs can represent both thegeometry and the topologyof
a real- world street network. Abstractly, a graph Gcomprisesasetofnodes(i.e.,elements)N 
whicharelinkedtooneanotherbyasetofedges(i.e.,connections)E.Eachedgee in set E either 
connects two nodes or connects a single node to itself as a self- loop. Parallel edges exist when 
multiple edges connect the same two nodes.

Network modelers must decide on several theoretical aspects of representation, including 
directedness,planarity,andprimality(O’Sullivan2014;Marshalletal.2018).Inthecaseofa
directed graph, all the edges in E point one- way from some node u to another node v. This may 
allow for the possibility of a self- loop where u = v.Inthecaseofanundirectedgraph,allthe
edges in Epointbidirectionallybetweenthenodestheylink.Ifagraphisplanar,alltheedges
in E intersect in a two- dimensional plane exclusively at nodes in N.Ifthisconditiondoesnot
hold, thegraph isnonplanar (Hopcroft andTarjan1974;Székely2004;Cardillo et al. 2006;
Masuccietal.2009;Vianaetal.2013).Aprimalgraphofastreetnetworkmodelsintersections
anddead-endsasnodesandthestreetsegmentsthatconnectthemasedges(Porta,Crucitti,and
Latora2006b).Adualgraphofastreetnetworkdoestheopposite,modelingstreetsegmentsas



Geoff Boeing Street Network Models and Indicators

3

nodesandintersectionsasedges(Porta,Crucitti,andLatora2006a).Real-worldstreetnetworks
oftenhaveself-loops,paralleledges,flowdirectionalityrestrictionssuchasone-waystreets,and
nonplanarelementssuchasoverpassesandunderpasses(Boeing2017).

Street network data
Data on street networks around the world exist in various sources of various quality and acces-
sibility.Manyaredigitizedbylocalorregionalauthorities,resultingininconsistenciesindigi-
tizationstandards,spatialvalidity,attributedataquality,andfileformatting.High-qualitystreet
network geometry data exist for most developed countries, but data inconsistencies and language 
barriersmake international cross-sectional comparisondifficult.Furthermore,most suchdata
setsexistinshapefileformatandthuscontainnetworkgeometrybutminimalinformationabout
topology. Yet both geometry and topology are essential to consider in most spatial network anal-
yses.Streetnetworksarespatiallyembeddedandarethusdefinedbyboththeirgeometry(e.g.,
positions,lengths,areas,angles,etc.)andtheirtopology(i.e.,connectionsandconfigurations)
(Barthelemy2011;O’Sullivan2014).

Given these limitations, better data sources and network models are important for interna-
tionalstreetnetworkanalysis.Fourkeyareasofimprovementwouldinclude:(1)globalcover-
ageandavailability,(2)consistentdigitizationandattributedata,(3)consistentrepresentation
ofbothgeometricandtopologicaldata,and(4)betterpublicaccessibilityandusability.Online
geographic information systems, volunteered geographic information, and crowd- sourced big 
datacreatenewopportunities toaddress thesepoints. Inparticular,OpenStreetMapoffersan
importantalternativesourceofstreetnetworkdata(JokarArsanjanietal.2015).

OpenStreetMap is an open- source, collaborative, worldwide mapping project and database. 
One can query its database for street and intersection data, along with attribute data about road 
types,names,and(whenavailable)speeds,widths,andnumbersoflanes.Itoffersgoodglobal
coverageandhighgeometricandtopologicaldataquality(GirresandTouya2010;Haklay2010;
Corcoran,Mooney,andBertolotto2013;Zielstra,Hochmair,andNeis2013;Barron,Neis,and
Zipf2014;Maier2014;Basirietal.2016;Sehraetal.2020).Barrington-LeighandMillard-Ball
(2017)foundthat,asof2016,OpenStreetMapwas83%completeworldwide,over40%ofcoun-
tries’(includingmanydevelopingcountries)streetnetworkswereeffectively100%complete,
and completeness was highest in both dense cities and sparsely populated areas.

Asof2021,OpenStreetMaphasmorethan7millioncontributorswhohaveaddedover6.6
billionnodes(points),730millionways(linesandboundaries),andattendantattributedatatoits
database. Volunteers provide editorial oversight of contributions and changes. However, despite 
itslargeuserbase,researchersestimatethat>95%ofthesecontributorsaremale,andassuch,
theremaybecorrelatedbiasesinthecontributedcontent(SchmidtandKlettner2013;Graham,
DeSabbata,andZook2015).WhileOpenStreetMaproadcoverageisgenerallygoodworldwide,
other geospatial features have better coverage in developed countries and in cities versus small 
towns. No data source is perfect, but OpenStreetMap is global, publicly accessible, free, and an 
OpenSourceInitiativeaffiliate.

Accordingly,OpenStreetMaphelpstoaddressthefirstthreeofthefourareasofimprove-
ment listed earlier. However, the fourth problem persists: it is not particularly accessible or us-
able for less- technical urban scholars to use its data for graph models and analytics. Researchers 
usuallyacquireOpenStreetMapdata through itsAPIsorbydownloadingaprepackageddata
extractfromathird-party.Eitheroptionoffersusefulrawdatabutusuallyrequireswritingand
testing hundreds of lines of code to process topological relations and construct graph models. 
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Doing this on an ad hoc basis introduces challenges for interpretation and replication as many 
small computational and modeling decisions get made along the way, such as the exact handling 
of common street network features like self- loops, parallel edges, and culs- de- sac. A consistent 
set of well- documented models and indicators, generated with an accessible open- source work-
flow,wouldimprovewhatisotherwiseoftenablackbox(Boeing2020b).

Street network indicators
Several efforts in recent years have aimed to address these challenges and generate sets of urban 
streetnetworkindicators.Forexample,theOSMnxprojecttakesthismotivationtodevelopan
open-source Python package for automatically downloading,modeling, and analyzing street
networks and other geospatial features fromOpenStreetMap (Boeing 2017).Using this tool,
arecentprojectmodeledthestreetnetworksofeveryU.S.city/town,county,urbanizedarea,
censustract,andZillow-definedneighborhood,placedthesemodelsonlineinapublicopendata
repository,andconductedspatialnetworkanalysesonthem(Boeing2020a).

Similarly,Dingiletal.(2018)usedOSMnxtocalculatetransportationindicatorsfor151
urbanareasworldwide.Karduni,Kermanshah,andDerrible(2016)createdadatarepository
with 80worldwide cities’ street networks derived fromOpenStreetMap data. daCruz,Oh,
andChoumar (2020)developedadatabaseofurban indicatorsacross58metropolitanareas
worldwide, but did not include street network form indicators. Barrington- Leigh and Millard- 
Ball(2019,2020)usedallthestreetsmappedinOpenStreetMaptogenerateglobalindicators
of street network disconnectivity to explore cross- sectional and longitudinal trends in urban 
sprawl.

Methods

Urban area boundaries
Thepresentstudybuildsonthispastworktomodelandanalyzethestreetnetworksofevery
urbanareaintheworld.Itdefinestheseunitsofanalysisusingspatialboundariesderivedfrom
the publicly available GHSL Urban Centre Database1 (UCD) version 2019a 1.2, a project
supportedby theEuropeanCommission’s JointResearchCentreandDirectorate-General for
RegionalandUrbanPolicy(Florczyketal.2019).Inadditiontotheseurbanareaboundaries,the
UCD provides attribute data such as the names of the country and core city, population, built- up 
area,grossdomesticproduct(GDP),UNincomeclassanddevelopmentgroup,transport-sector
emissions,particulatematterconcentration,climate,andlanduseefficiency.

TheGHSLprojectusesspatialdataminingtoorganizeavastamountofdatafromsatel-
liteimagestreams,censuses,andvolunteeredgeographicinformation.ItsUCDdataproduct
delineates urban areas (which it calls urban centers) using these data from theGHSLand
otherscientificopendatasources.Itdefinestheseurbanareasusingresidentpopulationand
built- up surface across a global 1 km2 grid, using the DEGURBAmethod of delineating
urban/ruralareasforinternationalstatisticalcomparison,developedjointlybytheEuropean
Commission,theWorldBank,theOrganizationforEconomicCooperationandDevelopment,
theUNFoodandAgricultureOrganization,andtheUNHumanSettlementsProgramme.Thus
the UCD consists of “high- density clusters of contiguous grid cells of 1 km2 with a density 
of at least 1,500 inhabitants per km2andaminimumpopulationof50,0000”(Florczyketal.
2019,p.13).
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Graph modeling
This study uses OSMnx2 to download street network data from OpenStreetMap and construct 
graphmodelsofeachurbanarea’sdrivablestreetnetwork.Itdoesthisforeveryurbanareain
theUCDthatsatisfiesthreeconditions:(1)ismarkedtruepositiveintheUCD,(2)has≥1km2 
built-uparea,and(3)includesatleastthreeOpenStreetMapdrivablestreetnetworknodeswithin
itsboundaries.Thiscomprises8,914totalurbanareas.

This study models these street networks as nonplanar directed multigraphs with possible 
self- loops. All of these models are primal graphs to account for the full geographic characteris-
ticsofthestreetnetwork(Ratti2004;Batty2005).Theworkflowretainsallgraphcomponents
eveniftheyarenotfullyconnectedandisparameterizedtoretrieveallpublicdrivablestreets,
excludingserviceroadslikealleywaysorparkinglotcirculation.Thisparameterizationincludes
living streets, shared streets, woonerfs, and the like in the models, but does exclude streets and 
otherpathwayswheremotortrafficisforbidden,whichmayimpactsomecitiesmorethanothers.
Additionally,spatialgraphsoftenexhibitadverseperipheryeffectsduetoanartificialboundary
being imposed: OSMnx attenuates some of these by initially downloading and modeling a larger 
area than requested to correctly calculate node degrees before removing peripheral nodes and 
edges that fall outside the requested boundary polygon.

This yields a set of models collectively comprising over 160 million nodes and 320 million 
edges.Forbettertheoreticalcorrespondence,OSMnxnexttopologicallysimplifiesthegraphsto
retain nodes only at true intersections and dead- ends, while retaining the true spatial geometry of 
eachedge(i.e.,streetsegment)betweenthem(Boeing2017).Thisisacrucialstepbeforecon-
ducting analytics with OpenStreetMap network data, such as calculating intersection density or 
average node degree. Raw OpenStreetMap data represent nodes as geometric vertices of straight- 
linesegmentscomposingmorecomplexlines.Simplificationproducesamodelthatcorresponds
better to graph theory and transportation geography with nodes representing intersections and 
dead-endsandedgesrepresentingstreetsegments.SeeFig.1.Simplificationyieldsafinalsetof
modelscollectivelycomprising37millionnodesand53millionedges.

Figure 1. The graph of a town’s street network before (left) and after (right) topological
simplification. Circles are nodes and lines are edges.
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Elevation
Next, we attach elevation above sea level to every node in every graph. These elevations come 
fromtwopubliclyavailabledigitalelevationmodels(DEMs):theAdvancedSpaceborneThermal
EmissionandReflectionRadiometer(ASTER)v2andtheShuttleRadarTopographyMission
(SRTM).TheASTERDEMcoverstheworldfrom83°Nto83°Sataspatialresolutionofone
arcsecond(roughly30metersattheequator).TheSRTMDEMcoverstheworldfrom60°Nto
56°Sataspatialresolutionofthreearcseconds(roughly90metersattheequator).TheASTER
DEMisfinerresolutionbutexhibitsmorenoise.TheSRTMDEMiscoarserresolutionbutless
noisy,andwasfurtherprocessedbyCGIAR-CSItofixerrorsandfillvoids(Gorokhovichand
Voustianiouk2006).WeadditionallycollecttheelevationofeachnodeusingtheGoogleMaps
ElevationAPI,butonlyforvalidationpurposesasGoogleprovidesglobalandhigh-qualitybut
commercialandclosed-sourcedatawithrestrictivelicensing(cfRusli,Majid,andDin2014).

Onanode-by-nodebasis,theworkflowselectseithertheASTERorSRTMvaluetoassign
asthenode’selevation.ItselectsforeachnodewhicheveroftheASTERorSRTMelevation
values has the least absolute difference from the corresponding Google value, as a validation 
referencepoint.Finallyitcalculatesthegrade(i.e.,incline)ofeachedgethensaveseachurban
area’sgraphmodeltodiskasaGeoPackagefile,aGraphMLfile,andnode/edgelistsincomma-
separatedvalues(CSV)format.

Indicator calculation
Oncethemodelsareallassembled,weloadeach’ssavedGraphMLfilewithOSMnxtocalculate
each indicator described in Table 1. These indicators are merged with a set of essential indicators 
fromtheUCDandsavedasaCSV-formattedfile.

Detailsanddescriptionsareinorderfortheinterpretabilityofsomefieldsinthisindicators
data set.Thecountryfield contains thenameof the country inwhich theurbanareawholly
orprimarily(inthecaseoftransnationalurbanareas)lies,whilecountry_isocontainsitsISO
3166-1alpha-3codeforunambiguousidentification.Thecore_cityfieldcontainsthenameofthe
urbanarea’score(typicallylargest)cityandtheuc_idfieldcontainstheuniqueidentifierofthis
urban area in the UCD, allowing downstream users to join these indicators with all of those in the 
UCD.Theuc_namesfieldcontainsalistofcitynameswithinthisurbanarea,pertheUCD.The
world_regionandworld_subregionfieldscontaintheurbanarea’smajorandminorgeographical
region,pertheUCD.Theresident_popfieldcontainstheUCD’sestimated2015residentpopu-
lationintheurbanarea.Theareaandbuilt_up_areafieldscontaintheUCD’sboundarypolygon
areaandbuilt-upsurfacearea(bothinkm2),respectively.

Thecircuityindicatoristhegraph’sratioofstreetlengthstostraight-linedistancesbetween
adjacent nodes, and straightness is its inverse. The former measures how circuitous the street net-
work is on average, whereas the latter measures how closely its streets approximate straight lines 
(Boeing2021).Theelev_mean,elev_median,elev_std,elev_iqr,andelev_rangerepresentthe
calculated mean, median, standard deviation, interquartile range, and range of node elevations, 
inmeters.Theseprovideindicatorsofthetopographyunderlyingthenetwork.Thegrade_mean
andgrade_medianfieldsrepresentthecalculatedmeanandmedianstreetgradeabsolutevalues.

The intersect_count indicator represents the number of street intersections in the urban
area— that is, the number of nodes with more than two incident edges in an undirected represen-
tationofthegraph.Theintersect_count_cleanindicatoriscalculatedbymergingintersections
within10meterbuffersofeachothergeometrically(i.e.,10meterEuclideanradii)beforecount-
ingthem.Thispreventstheover-countingofcomplexintersections.Forexample,theintersection
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Table 1.FieldsintheIndicatorsDataset.ThoseCarriedOverfromtheUCDareNotedasSuch

IndicatorName Type Description

country string Primary country name
country_iso string PrimarycountryISO3166-1alpha-3code
core_city string Urban area core city name
uc_id integer Urbanarea’suniqueidentifierinUCD
cc_avg_dir decimal Avgclusteringcoefficient(unweighted,directed)
cc_avg_undir decimal Avgclusteringcoefficient(unweighted,undirected)
cc_wt_avg_dir decimal Avgclusteringcoefficient(weighted,directed)
cc_wt_avg_undir decimal Avgclusteringcoefficient(weighted,undirected)
circuity decimal Ratio of street lengths to straight- line distances
elev_iqr decimal Interquartilerangeofnodeelevations,meters
elev_mean decimal Mean node elevation, meters
elev_median decimal Median node elevation, meters
elev_range decimal Range of node elevations, meters
elev_std decimal Standard deviation of node elevations, meters
grade_mean decimal Meanabsolutestreetgrade(incline)
grade_median decimal Medianabsolutestreetgrade(incline)
intersect_count integer Count of physical street intersections
intersect_count_clean integer Countofphysicalstreetintersections(aftermerging

nodeswithin10metersgeometrically)
intersect_count_clean_topo integer Countofphysicalstreetintersections(aftermerging

nodeswithin10meterstopologically)
k_avg decimal Avgnodedegree(undirected)
length_mean decimal Meanstreetsegmentlength(undirectededges),

meters
length_median decimal Medianstreetsegmentlength(undirectededges),

meters
length_total decimal Totalstreetlength(undirectededges),meters
node_count integer Count of nodes
orientation_entropy decimal Entropyofstreetbearings
orientation_order decimal Orientation order of street bearings
pagerank_max decimal Maximum PageRank value of any node
prop_4way decimal Proportionofnodesthatrepresent4-waystreet

intersections
prop_3way decimal Proportion of nodes that represent 3- way street 

intersections
prop_deadend decimal Proportion of nodes that represent dead- ends
self_loop_proportion decimal Proportion of edges that are self- loops
straightness decimal The inverse of circuity
street_segment_count integer Countofstreetsegments(undirectededges)
uc_names string Listofcitynameswithinthisurbanarea(UCD)
world_region string Majorgeographicalregion(UCD)
world_subregion string Minorgeographicalregion(UCD)

(Continues)
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of two divided roads— each comprising two centerline one- way geometries— creates four nodes 
and thus would otherwise be counted as four intersections. Roundabouts similarly create multi-
pleintersectionpointsunlessconsolidated.The10meterparameterizationhasatrackrecordin
theliterature(e.g.,Barrington-LeighandMillard-Ball2020).Thebuffercouldbecustomizedfor
eachstudysitetoreflectlocalurbandesignstandards,butforthesakeofconsistentinterpretation
acrossthedatasetweuseauniversalparameterizationthatworksrelativelywellacrossallstudy
sites.

Theintersect_count_clean_topoindicatoriscalculatedbymergingintersectionswithin10
meters of each other topologically along the network. This prevents topologically remote but 
spatially proximate nodes frombeingmerged. For example, a street intersectionmay lie di-
rectlybelowafreewayoverpass’sintersectionwithanon-ramp.Wewouldnotwanttomerge
theseandcount themasa single intersection,even though theirplanarEuclideandistance is
approximately zero: in reality, they are distinct junctions in the three-dimensional systemof
roads. Similarly, in a residential neighborhood, a bollarded street may create a dead- end imme-
diatelynexttoanintersectionortrafficcircle.Wewouldnotwanttomergethisdead-endwith
theintersectionandconnecttheiredges—theyarenotadjacentnodesinthegraph’stopology.
Theseexamplesillustrate(two-dimensional)geometricproximity,buttopologicalremoteness.
Accordingly,insomesituationswemayexpecthigherintersectioncountsinintersect_count_
cleanthanintersect_count_clean_topo.

Clusteringcoefficientsmeasure the extent towhichanode’sneighbors forma complete
graph(JiangandClaramunt2004;OpsahlandPanzarasa2009).Thecc_avg_dirandcc_avg_
undirindicatorsaretheurbanarea’sdirectedandundirectedunweightedaverageclusteringco-
efficient. The cc_wt_avg_dir and cc_wt_avg_undir indicators are its directed and undirected
length-weighted average clustering coefficient.Thepagerank_max indicator is themaximum
PageRankvalueofanynodeintheurbanarea:PageRankranksnodes’importancebasedonthe
structureoftheirlinks(Agryzkovetal.2012;Boeing2020a).Theself_loop_proportionmea-
surestheurbanarea’sproportionofphysicalstreetsegmentsthatself-loop.

Thek_avg indicator represents the averagenodedegreeof theundirected representation
of thegraph—that is,onaverage,howmanyphysicalstreets (rather thandirectededges)are
incidenttoeachnode.Thelength_meanandlength_medianindicatorsarethecalculatedmean
andmedianphysicalstreetsegment(i.e.,undirectededge)lengthsinmeters,representingthe
averageandtypicallinearblocklengths.Thestreet_segment_countandnode_countfieldscon-
tainthecountsofphysicalstreetsegmentsandnodes,respectively.Theprop_4way,prop_3way,
andprop_deadendfieldscontaintheproportionsofnodesinthegraphthatrepresentfour-way
intersections,three-wayintersections,andculs-de-sac,respectively.Theorientation_entropyand
orientation_orderindicatorsrepresentthecalculatedentropyofstreetbearingsandtheirlinear-
izedandnormalizedorder,asdevelopedinBoeing(2019).

IndicatorName Type Description

resident_pop integer Totalresidentpopulation,2015(UCD)
area decimal Area within boundary polygon, km2(UCD)
built_up_area decimal Built- up surface area in 2015, km2(UCD)

Table 1. (Continued)
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Results and discussion

Open data repositories
All of the resulting street network models, indicators, and metadata have been made publicly 
availableontheHarvardDataverse,organizedwithinatop-leveldataverse3 collectively com-
prising approximately 80 gigabytes of data. All of these data sets are freely available for reuse: 
seetheconclusionsectionforusagenotes.Allmodelfiles(inGeoPackage,GraphML,andnode/
edgelistformat)arecompressedandzippedatthecountrylevel.Thetop-leveldataversecon-
tainsfiveconstituentdatasetstoorganizethestreetnetworkmodels,indicators,andmetadata
for retrieval:

• GlobalUrbanStreetNetworksIndicators4: contains the calculated indicators plus essential 
fields carried over from the UCD for use in downstream analyses. See Table 1.

• Global Urban Street Networks Metadata5: contains metadata describing the indicators and 
the node/edge attributes in the model files.

• Global Urban Street Networks GraphML6: contains all the GraphML street network model 
files,compressedandzippedatthecountrylevel.

• Global Urban Street Networks GeoPackages7: contains all the street network model 
GeoPackagefiles,compressedandzippedatthecountrylevel.

• GlobalUrbanStreetNetworksNode/EdgeLists8: contains all the street network model node 
andedgelistsinCSVfileformat,compressedandzippedatthecountrylevel.

Indicator analysis
Table2presentstheresultsofthisworkflowbyaggregatingandsummarizingasubsetofstreet
networkformindicatorsofparticularinteresttotransportationresearchers.Itreportspopulation-
weightedmeanvalues across all urbanareas, aggregatedand summarizedat the levelof the
world subregion.

Eachtablecolumnrepresentsanindicator,someofwhicharetransformedforpresentation
as follows. The Circuity Pct column subtracts 1 from the circuity indicator and expresses the 
resultasapercent.Itthusrepresentshowmuchmorecircuitousthestreetsarethaniftheywere
all straight lines. The Avg Node Degree, Orientation Order, and Median Street Length columns 
presentthek_avg,orientation_order,andlength_medianindicatorvalues,respectively.TheAvg
Gradecolumnexpressesthegrade_meanindicatorasapercent.TheIntersectDensitycolumn
dividestheintersect_count_clean_topoindicatorbythebuilt_up_areaindicator,andthusrep-
resents street intersections per km2.

Finally,eachoftheseindicatorsisaggregatedatthesubregion-levelusingthepopulation-
weightedmean.Suchweightingreflectstheaverageperson’sexposurebymeasuringtheaver-
ageindicatorvalueasexperiencedbythesubregion’sresidentswithintheirurbanareas.These
population-weightedmeansarecalculatedasshowninEquation1whereds is the population- 
weighted mean value of indicator d in subregion s, n is the number of urban areas in subregion s
, i indexes those urban areas, di is the value of indicator d in urban area i, pi is the population of 
urban area i, and ps is the total population of subregion s.

(1)ds =

n
∑

i= 1

pi

ps
di
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Southern Africa and Melanesia have the most circuitous street networks, where the weighted- 
averageurbanareahasstreets8.6%and8.5%morecircuitousthanstraightlines.Incontrast,
NorthernAfricaandSouthAmericahavetheleastcircuitous,at3.7%each.SouthAmericaand
EasternAsiahavethehighestweighted-averageaveragenodedegree(3.0each),ameasureof
networkconnectedness,whereasNorthernEuropeandMelanesia (2.5each)have the lowest.
Orientation order, a spatial signature of coordinated central planning, is highest in Northern 
America(0.32)andEasternAsia(0.22)andlowest inNorthernEurope(0.02)andMelanesia
(0.03).

EasternAsia(169meters)andSouth-CentralAsia(139meters)havethelongestweighted-
averagemedian street segment lengths. In contrast,NorthernAfrica (50meters) andCentral
America (63meters) have the shortest. Theweighted-average urban areas inAustralia/New
Zealand (4.5%)andSouthernEurope (4.1%)have thehighest average street grades, indicat-
ingcitiesbuiltonhillierterrain,whereasEastern(2.1%)andSouth-CentralAsia(2.0%)have
the lowest, indicating cities built onflatter land.Finally, intersectiondensities (topologically
cleaned)arehighestinNorthernAfrica(284/km2)andEasternAfrica(267/km2)andlowestin
EasternEurope(39/km2)andEasternAsia(46/km2).

Fig.2visualizesasetoffundamentalbivariaterelationships(estimatedviaordinaryleast
squareswithvariablestransformedasneededforbestlinearfit)acrossallurbanareasworldwide.
Urbanareas’intersectioncounts(topologicallycleaned)exhibitastronglinearrelationshipwith
theirtotalstreetlengths(R2 = 0.91, p<0.001),asexpectedfromtheory.A1intersectionincrease
inanurbanarea’sintersectioncountisassociatedwitha178.6meterincreaseinitstotalstreet
length,±1.2meters(marginoferrorat95%confidence).

Total street length and intersection count both scale slightly sublinearly with urban area 
population,asseeninthelog–logplotsatthebottomofFig.2.A1%increaseinurbanareapop-
ulationisassociatedwitha0.90%(±0.02%)increaseintotalstreetlengthanda0.95%(±0.03%)
increase in intersection count, which makes theoretical sense as residents can share public infra-
structure.Similarresultshavebeenfoundinpriorstudiesofasinglecountry(e.g.,Bettencourt
2013).

Urbanareas’percapitaGDPestimates(i.e.,theUCD’s2015urbanareaGDP,basedonpur-
chasingpowerparity,in2011USD)exhibitamoderatelinearrelationshipwithtotalstreetlength
per capita. Across all urban areas, the mean per capita street length is 2.13 meters, and a $10,000 
USDincreaseinpercapitaGDPisassociatedwitha1.13(±0.03)meterincreaseinpercapita
streetlength.Percapitastreetlengthisacommonindicatorofacity’s“infrastructureaccessibil-
ity”andthisfindingprovidesnewevidenceconsilientwithpriorsmaller-samplefindingsinthe
literature: cities with greater wealth and economic activity tend to have more road infrastructure 
(e.g.,Dingiletal.2018).

Validation
To be useful in urban science and practice, these models must faithfully represent the real world. 
Validation needs to be considered from three perspectives.

First,thesourcedatathemselvesmustaccuratelyrepresenttherealworld.Intermsofstudy
site demarcation, the UCD derives from the state- of- the- art GHSL developed in tandem by inter-
nationalauthoritiesforthispurpose.NumerousresearchershaveinvestigatedOpenStreetMap’s
urbanstreetaccuracyandcompleteness(GirresandTouya2010;Haklay2010;Neis,Zielstra,
andZipf2011;Corcoran,Mooney, andBertolotto2013;Zielstra,Hochmair, andNeis2013;
Barron,Neis,andZipf2014;Basirietal.2016).Thesedataarenotperfect.Barrington-Leighand
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Millard-Ball(2017)notethatOpenStreetMapwasparticularlyincompleteinChinaasof2016
due to restrictions on private surveying and publishing geospatial data. The Chinese models and 
indicators may in turn suffer from missing source data, and this could partly explain the low in-
tersectiondensityinEasternAsiainTable2asChinaaccountsfor79%ofthesubregion’surban
population. Nevertheless, OpenStreetMap is the current state- of- the- art for international street 
network analysis and represents the best available global data today.

The second validation perspective considers how well the resulting graph models represent 
theOpenStreetMapstreetnetwork.Arethemodelsconstructedproperly?Doestheworkflowin-
troduce errors? The open source modeling software, OSMnx, has been downloaded and installed 
over 300,000 times from the Anaconda package repository, generating a large test bed of users 
continuously vetting its functionality. To further assess these models, this study tests the resulting 
repository’sdataqualitybyadaptingthemethodologiesofBarrington-LeighandMillard-Ball

Figure 2. Scatter plots of relationships across all worldwide urban areas with bivariate regression 
linesandshaded95%confidenceintervals.Axesconstrainedtonotdisplayalloutliers.
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(2017) and Karduni, Kermanshah, and Derrible (2016) against the original OpenStreetMap
sourcedataasareferencedataset.Itrandomlysamples100U.S.urbanareasand100non-U.S.
urban areas then manually compares each with the OpenStreetMap source data. The results con-
formtoexpectationsgiventhesourcedataandOSMnx’sparameterization.Everygraphmodel
isalsotestedtoensureitcanbeloaded,analyzed,androuted,confirmingthatthisstudy’scom-
putationalworkflowcreatedafunctioningmodelasdescribedinthemethodssection.

Third,theelevationdataarevalidatedbycomparingtheASTER,SRTM,andGooglevalues
foreachnode.Acrossall37millionnodesworldwide,theelevationvaluesbetweenthesethree
sourcesexhibithighcorrelation(allr > 0.999, p <0.001).Table3summarizestheirpairwisedif-
ferences.TheASTERandSRTMnodeelevationvaluesdifferbyonly19centimetersonaverage,
andthemediannodehasthesameelevationvalueacrossboth.TheASTERandSRTMdiffer-
ences with the Google validation values are greater but both the mean and median remain near or 
under 1 meter. The high min/max values represent noisy outliers that our node elevation selection 
processmitigated:acrossallurbanareas,themediannode’sselected elevation value differs from 
Googlebyonly32centimeters.Finally,wecompareour streetnetworks’ elev_mean indica-
torwith theUCD’sestimatedaverageelevation for eachurbanarea.Theystronglycorrelate
(r > 0.999, p<0.001)andthemediandifferencebetweenthetwois16centimeters.Overall,the
high correlations and small pairwise differences demonstrate the tight correspondence between 
thedifferentelevationvaluesandlendconfidencetousingtheASTERandSRTMopendatain
these models.

Conclusion

New models and indicators for street network science
Thisarticlepresentednewmethodstomodelandanalyzethestreetnetworkofeachurbanareain
theworld.Itusedopen-sourcetoolsandopendatatobuildthesemodelsandcalculategeometric
and topological indicators of street network form. All of its Python source code and resulting data 
havebeendepositedinopenrepositoriesforpublicreuse.Thisrepresentsthefirstsuchcompre-
hensive repository of ready- to- use urban area street network models and indicators worldwide.

Analyzing these indicators reveals a snapshot of street network form around theworld.
Wefind thatboth total street lengthand intersectioncount scale sublinearlywithurbanarea
population. Higher per capita GDP in an urban area is associated with higher per capita total 
streetlength.WealsofindthatelevationopendatafromASTERandSRTMcomparewellto
Google’sclosedsource,commercialdata.Allthreesources’elevationvaluescorrelatestrongly.

Table 3.SummaryStatisticsofPairwiseDifferencesinElevation(Meters)fromASTER,SRTM,
andGoogleAcrossallNodesWorldwide

ASTER−SRTM ASTER−Google SRTM−Google

Mean −0.19 0.99 1.18
Std Dev 7.83 7.90 3.26
Min −319.00 −319.01 −276.55
25% −5.00 −3.55 −0.52
50% 0.00 1.00 0.57
75% 4.00 5.33 2.57
Max 441.00 442.34 138.83
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Themedianpairwisedifferencebetweenthenodes’elevationvaluesandtheGooglevalidation
valuesisonly32centimeters,andthemedianpairwisedifferencebetweentheurbanareas’mean
street network elevations and the UCD mean elevations is only 16 centimeters.

Theopendatarepositoriesgeneratedbythisstudyfilltwoneedsintheresearchcommunity.
First,thenetworkmodelsallowresearcherstoquicklyengageingraph-theoreticstreetnetwork
analysesworldwidewithoutfirstspendingweekswritingtheirownadhoccodefordatacollec-
tionandmodeling.Second,theindicatorsdataprovidethefirstcomprehensiveworldwidesetof
geometric and topological street network form indicators at the urban area scale. Together, these 
resultshelp todemocratizestreetnetworkscience,openingupquantitativeanalyses tourban
planners and policymakers with less- technical backgrounds who otherwise may struggle to de-
velopacompletecomputationalanalyticsworkflowthemselves.

WhileOpenStreetMapitselfprovidesincrediblyvaluablerawdata,thisprojecttransforms
thesedataintoready-to-usemodelsandindicatorsthroughsubstantialprocessing.Forexample,
thesetopologicallysimplifiedgraphsprovidemodelsthatcorrespondmuchbettertographthe-
ory and transportation geography than raw OpenStreetMap data do, and they are much faster to 
run graph algorithms on because most such algorithms scale with node count. They also include 
elevation and grade data, which are very sparse on OpenStreetMap and are too often ignored in 
street network analytics. Researchers and practitioners can use these models to simulate trips, 
assessnetworkvulnerabilitytofloodingandsealevelrise,ormeasureaccessibilitytopointsof
interest.

The indicators data offer a useful basket of variables for cross- sectional, worldwide studies 
of street network form, and the topologically consolidated intersection counts and densities con-
tribute a more theoretically sound measure than traditional node counts or purely geometric con-
solidation can. Researchers and practitioners can use these indicators to estimate relationships 
between street network characteristics and transport- sector greenhouse gas emissions around the 
world, compare per capita road infrastructure provision across urban areas, or scorecard different 
cities’streetnetworkcompactnessandconnectivityforsustainabilityinitiatives.

How to use these models and indicators
Finally,thisarticleconcludeswithafewnotesonreuse.Theindicatorsdatacanbeloadedwith
anydataanalysis tool.Thestreetnetworkmodelscanbe loadedwithmostGISandnetwork
analysis tools, including OSMnx.

Eachgraphmodelfile isnamedas city_name-uc_id.extension,whereuc_id is theurban
area’suniqueidentifierintheUCD.Theuc_idfieldthuslinkseachgraphmodelfiletoitsurban
areaintheUCDaswellastoitsrowintheindicatorsdataset.Forexample,withinthechina-
CHN.zipfile fromtheGlobalUrbanStreetNetworksGraphMLrepositoryareallofChina’s
urbanareas’GraphMLfiles,includingbeijing-10687.graphml.ThisGraphMLfilecontainsthe
streetnetworkmodelofBeijinganditsuc_idis10687.Assuch,10687isBeijing’suniqueiden-
tifierintheindicatorsdatasetandintheUCD.

All of the code used for modeling and analysis in this study is open source and available on 
GitHub9 for public inspection, adaptation, and reuse. Comprehensive documentation of OSMnx 
and its modules and functions used in this study is available online10 and OSMnx usage exam-
ples, tutorials, and demonstrations are available on GitHub11 for users interested in working with 
this toolkit.
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Notes
 1 UCD:http://data.europa.eu/89h/53473144-b88c-44bc-b4a3-4583ed1f547e
 2 The data were downloaded with OSMnx v1.0.0 in January 2021
 3 Dataverse: https://datav erse.harva rd.edu/datav erse/globa l- urban - stree t- netwo rks/
 4 GlobalUrbanStreetNetworksIndicatorsrepositoryv2:https://doi.org/10.7910/DVN/ZTFPTB
 5 GlobalUrbanStreetNetworksMetadatarepositoryv2:https://doi.org/10.7910/DVN/WMPPF9
 6 GlobalUrbanStreetNetworksGraphMLrepositoryv2:https://doi.org/10.7910/DVN/KA5HJ3
 7 GlobalUrbanStreetNetworksGeoPackagesrepositoryv2:https://doi.org/10.7910/DVN/E5TPDQ
 8 Global Urban Street Networks Node/Edge Lists repository v2: https://doi.org/10.7910/DVN/
DC7U0A

 9 Modeling and analysis source code: https://github.com/gboei ng/stree t- netwo rk- models
 10 OSMnx documentation: https://osmnx.readt hedocs.org
 11 OSMnx usage examples: https://github.com/gboei ng/osmnx - examples
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