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Special Issue

Street Network Models and Indicators for Every 
Urban Area in the World

Geoff Boeing
Department of Urban Planning and Spatial Analysis, Sol Price School of Public Policy, University of 
Southern California, Los Angeles, CA USA

Cities worldwide exhibit a variety of street network patterns and configurations that shape 
human mobility, equity, health, and livelihoods. This study models and analyzes the street 
networks of every urban area in the world, using boundaries derived from the Global Human 
Settlement Layer. Street network data are acquired and modeled from OpenStreetMap 
with the open-source OSMnx software. In total, this study models over 160 million 
OpenStreetMap street network nodes and over 320 million edges across 8,914 urban areas 
in 178 countries, and attaches elevation and grade data. This article presents the study’s 
reproducible computational workflow, introduces two new open data repositories of ready-
to-use global street network models and calculated indicators, and discusses summary 
findings on street network form worldwide. It makes four contributions. First, it reports the 
methodological advances of this open-source workflow. Second, it produces an open data 
repository containing street network models for each urban area. Third, it analyzes these 
models to produce an open data repository containing street network form indicators for 
each urban area. No such global urban street network indicator data set has previously 
existed. Fourth, it presents a summary analysis of urban street network form, reporting the 
first such worldwide results in the literature.

Introduction

Street networks shape the city. They structure the circulation patterns of people and goods and 
underlie urban accessibility. Differences in street network geometry and topology—collectively, 
form—­worldwide reflect different cultures, political systems, urbanization eras, technology, de-
sign paradigms, climates, and terrain. These networks in turn organize physical urban space and 
influence the ability to traverse it via different modes of transportation.

Yet in this era of post-­globalization, little is known about comparative street network form 
worldwide at the urban scale. This is largely due to data access and computational limitations. 
Traditionally, delineating consistent urban area boundaries was difficult, making it challenging 
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to define consistent study sites (Lemoine-­Rodríguez, Inostroza, and Zepp 2020). Even if con-
sistent study sites could be established, it was nearly impossible to gather consistent compre-
hensive street network data around the world. And even if one did, it was nearly impossible 
to manipulate and organize the hundreds of millions of geospatial elements that would entail, 
then model them in a graph-theoretic way, then compute geometric and topological indicators 
of form. Nevertheless, such models, indicators, and analyses would be useful for understanding 
urbanization patterns, transportation infrastructure planning, and the path to sustainable urban 
form for cities worldwide.

This study takes advantage of several emerging tools, technologies, and open data to model 
the individual street networks of every urban area in the world, compute geometric and topolog-
ical indicators, and analyze them. It uses the Global Human Settlement Layer (GHSL) to define 
the urban area boundaries and other variables. Using OSMnx, it downloads and models urban-
scale street network data globally from OpenStreetMap, attaches elevation data, then calculates 
indicators for each urban area. It places all of the resulting network models, indicators, and code 
into open data repositories for public reuse.

This article reports the novel methods employed in this modeling and analytics project. 
Then, it documents the street network model repository and its contents and the indicators repos-
itory and its contents. Next it presents a high-level analysis of worldwide urban street network 
form, using these models and indicators. Across all urban areas worldwide, both total street 
length and intersection count scale sublinearly with population. Higher per capita GDP is as-
sociated with higher per capita total street length. Validation reveals that the open data used as 
elevation attributes compare favorably with high-quality commercial data. The article concludes 
with notes on reuse. In sum, this study produces the first comprehensive public data repository 
of ready-­to-­use urban street network models and indicators worldwide and reports the first such 
worldwide analytical results.

Background

Street network models
Street network models come in many flavors, but most commonly are mathematical models 
called graphs (Trudeau 1994; Brandes and Erlebach 2005; Gastner and Newman 2006; Newman 
2003, 2010; Vespignani 2018). Graphs can represent both the geometry and the topology of 
a real-world street network. Abstractly, a graph G comprises a set of nodes (i.e., elements) N 
which are linked to one another by a set of edges (i.e., connections) E. Each edge e in set E either 
connects two nodes or connects a single node to itself as a self-loop. Parallel edges exist when 
multiple edges connect the same two nodes.

Network modelers must decide on several theoretical aspects of representation, including 
directedness, planarity, and primality (O’Sullivan 2014; Marshall et al. 2018). In the case of a 
directed graph, all the edges in E point one-way from some node u to another node v. This may 
allow for the possibility of a self-loop where u = v. In the case of an undirected graph, all the 
edges in E point bidirectionally between the nodes they link. If a graph is planar, all the edges 
in E intersect in a two-dimensional plane exclusively at nodes in N. If this condition does not 
hold, the graph is nonplanar (Hopcroft and Tarjan 1974; Székely 2004; Cardillo et al. 2006; 
Masucci et al. 2009; Viana et al. 2013). A primal graph of a street network models intersections 
and dead-­ends as nodes and the street segments that connect them as edges (Porta, Crucitti, and 
Latora 2006b). A dual graph of a street network does the opposite, modeling street segments as 
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nodes and intersections as edges (Porta, Crucitti, and Latora 2006a). Real-­world street networks 
often have self-­loops, parallel edges, flow directionality restrictions such as one-­way streets, and 
nonplanar elements such as overpasses and underpasses (Boeing 2017).

Street network data
Data on street networks around the world exist in various sources of various quality and acces-
sibility. Many are digitized by local or regional authorities, resulting in inconsistencies in digi-
tization standards, spatial validity, attribute data quality, and file formatting. High-­quality street 
network geometry data exist for most developed countries, but data inconsistencies and language 
barriers make international cross-­sectional comparison difficult. Furthermore, most such data 
sets exist in shapefile format and thus contain network geometry but minimal information about 
topology. Yet both geometry and topology are essential to consider in most spatial network anal-
yses. Street networks are spatially embedded and are thus defined by both their geometry (e.g., 
positions, lengths, areas, angles, etc.) and their topology (i.e., connections and configurations) 
(Barthelemy 2011; O’Sullivan 2014).

Given these limitations, better data sources and network models are important for interna-
tional street network analysis. Four key areas of improvement would include: (1) global cover-
age and availability, (2) consistent digitization and attribute data, (3) consistent representation 
of both geometric and topological data, and (4) better public accessibility and usability. Online 
geographic information systems, volunteered geographic information, and crowd-sourced big 
data create new opportunities to address these points. In particular, OpenStreetMap offers an 
important alternative source of street network data (Jokar Arsanjani et al. 2015).

OpenStreetMap is an open-source, collaborative, worldwide mapping project and database. 
One can query its database for street and intersection data, along with attribute data about road 
types, names, and (when available) speeds, widths, and numbers of lanes. It offers good global 
coverage and high geometric and topological data quality (Girres and Touya 2010; Haklay 2010; 
Corcoran, Mooney, and Bertolotto 2013; Zielstra, Hochmair, and Neis 2013; Barron, Neis, and 
Zipf 2014; Maier 2014; Basiri et al. 2016; Sehra et al. 2020). Barrington-­Leigh and Millard-­Ball 
(2017) found that, as of 2016, OpenStreetMap was 83% complete worldwide, over 40% of coun-
tries’ (including many developing countries) street networks were effectively 100% complete, 
and completeness was highest in both dense cities and sparsely populated areas.

As of 2021, OpenStreetMap has more than 7 million contributors who have added over 6.6 
billion nodes (points), 730 million ways (lines and boundaries), and attendant attribute data to its 
database. Volunteers provide editorial oversight of contributions and changes. However, despite 
its large user base, researchers estimate that >95% of these contributors are male, and as such, 
there may be correlated biases in the contributed content (Schmidt and Klettner 2013; Graham, 
De Sabbata, and Zook 2015). While OpenStreetMap road coverage is generally good worldwide, 
other geospatial features have better coverage in developed countries and in cities versus small 
towns. No data source is perfect, but OpenStreetMap is global, publicly accessible, free, and an 
Open Source Initiative affiliate.

Accordingly, OpenStreetMap helps to address the first three of the four areas of improve-
ment listed earlier. However, the fourth problem persists: it is not particularly accessible or us-
able for less-technical urban scholars to use its data for graph models and analytics. Researchers 
usually acquire OpenStreetMap data through its APIs or by downloading a prepackaged data 
extract from a third-­party. Either option offers useful raw data but usually requires writing and 
testing hundreds of lines of code to process topological relations and construct graph models. 
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Doing this on an ad hoc basis introduces challenges for interpretation and replication as many 
small computational and modeling decisions get made along the way, such as the exact handling 
of common street network features like self-loops, parallel edges, and culs-de-sac. A consistent 
set of well-documented models and indicators, generated with an accessible open-source work-
flow, would improve what is otherwise often a black box (Boeing 2020b).

Street network indicators
Several efforts in recent years have aimed to address these challenges and generate sets of urban 
street network indicators. For example, the OSMnx project takes this motivation to develop an 
open-­source Python package for automatically downloading, modeling, and analyzing street 
networks and other geospatial features from OpenStreetMap (Boeing 2017). Using this tool, 
a recent project modeled the street networks of every U.S. city/town, county, urbanized area, 
census tract, and Zillow-­defined neighborhood, placed these models online in a public open data 
repository, and conducted spatial network analyses on them (Boeing 2020a).

Similarly, Dingil et al. (2018) used OSMnx to calculate transportation indicators for 151 
urban areas worldwide. Karduni, Kermanshah, and Derrible (2016) created a data repository 
with 80 worldwide cities’ street networks derived from OpenStreetMap data. da Cruz, Oh, 
and Choumar (2020) developed a database of urban indicators across 58 metropolitan areas 
worldwide, but did not include street network form indicators. Barrington-Leigh and Millard-
Ball (2019, 2020) used all the streets mapped in OpenStreetMap to generate global indicators 
of street network disconnectivity to explore cross-sectional and longitudinal trends in urban 
sprawl.

Methods

Urban area boundaries
The present study builds on this past work to model and analyze the street networks of every 
urban area in the world. It defines these units of analysis using spatial boundaries derived from 
the publicly available GHSL Urban Centre Database1 (UCD) version 2019a 1.2, a project 
supported by the European Commission’s Joint Research Centre and Directorate-­General for 
Regional and Urban Policy (Florczyk et al. 2019). In addition to these urban area boundaries, the 
UCD provides attribute data such as the names of the country and core city, population, built-up 
area, gross domestic product (GDP), UN income class and development group, transport-­sector 
emissions, particulate matter concentration, climate, and land use efficiency.

The GHSL project uses spatial data mining to organize a vast amount of data from satel-
lite image streams, censuses, and volunteered geographic information. Its UCD data product 
delineates urban areas (which it calls urban centers) using these data from the GHSL and 
other scientific open data sources. It defines these urban areas using resident population and 
built-up surface across a global 1 km2 grid, using the DEGURBA method of delineating 
urban/rural areas for international statistical comparison, developed jointly by the European 
Commission, the World Bank, the Organization for Economic Cooperation and Development, 
the UN Food and Agriculture Organization, and the UN Human Settlements Programme. Thus 
the UCD consists of “high-density clusters of contiguous grid cells of 1 km2 with a density 
of at least 1,500 inhabitants per km2 and a minimum population of 50,0000” (Florczyk et al. 
2019, p. 13).
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Graph modeling
This study uses OSMnx2 to download street network data from OpenStreetMap and construct 
graph models of each urban area’s drivable street network. It does this for every urban area in 
the UCD that satisfies three conditions: (1) is marked true positive in the UCD, (2) has ≥1 km2 
built-­up area, and (3) includes at least three OpenStreetMap drivable street network nodes within 
its boundaries. This comprises 8,914 total urban areas.

This study models these street networks as nonplanar directed multigraphs with possible 
self-loops. All of these models are primal graphs to account for the full geographic characteris-
tics of the street network (Ratti 2004; Batty 2005). The workflow retains all graph components 
even if they are not fully connected and is parameterized to retrieve all public drivable streets, 
excluding service roads like alleyways or parking lot circulation. This parameterization includes 
living streets, shared streets, woonerfs, and the like in the models, but does exclude streets and 
other pathways where motor traffic is forbidden, which may impact some cities more than others. 
Additionally, spatial graphs often exhibit adverse periphery effects due to an artificial boundary 
being imposed: OSMnx attenuates some of these by initially downloading and modeling a larger 
area than requested to correctly calculate node degrees before removing peripheral nodes and 
edges that fall outside the requested boundary polygon.

This yields a set of models collectively comprising over 160 million nodes and 320 million 
edges. For better theoretical correspondence, OSMnx next topologically simplifies the graphs to 
retain nodes only at true intersections and dead-ends, while retaining the true spatial geometry of 
each edge (i.e., street segment) between them (Boeing 2017). This is a crucial step before con-
ducting analytics with OpenStreetMap network data, such as calculating intersection density or 
average node degree. Raw OpenStreetMap data represent nodes as geometric vertices of straight-
line segments composing more complex lines. Simplification produces a model that corresponds 
better to graph theory and transportation geography with nodes representing intersections and 
dead-­ends and edges representing street segments. See Fig. 1. Simplification yields a final set of 
models collectively comprising 37 million nodes and 53 million edges.

Figure 1.  The graph of a town’s street network before (left) and after (right) topological 
simplification. Circles are nodes and lines are edges.
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Elevation
Next, we attach elevation above sea level to every node in every graph. These elevations come 
from two publicly available digital elevation models (DEMs): the Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) v2 and the Shuttle Radar Topography Mission 
(SRTM). The ASTER DEM covers the world from 83° N to 83° S at a spatial resolution of one 
arcsecond (roughly 30 meters at the equator). The SRTM DEM covers the world from 60° N to 
56° S at a spatial resolution of three arcseconds (roughly 90 meters at the equator). The ASTER 
DEM is finer resolution but exhibits more noise. The SRTM DEM is coarser resolution but less 
noisy, and was further processed by CGIAR-­CSI to fix errors and fill voids (Gorokhovich and 
Voustianiouk 2006). We additionally collect the elevation of each node using the Google Maps 
Elevation API, but only for validation purposes as Google provides global and high-­quality but 
commercial and closed-­source data with restrictive licensing (cf Rusli, Majid, and Din 2014).

On a node-­by-­node basis, the workflow selects either the ASTER or SRTM value to assign 
as the node’s elevation. It selects for each node whichever of the ASTER or SRTM elevation 
values has the least absolute difference from the corresponding Google value, as a validation 
reference point. Finally it calculates the grade (i.e., incline) of each edge then saves each urban 
area’s graph model to disk as a GeoPackage file, a GraphML file, and node/edge lists in comma-­
separated values (CSV) format.

Indicator calculation
Once the models are all assembled, we load each’s saved GraphML file with OSMnx to calculate 
each indicator described in Table 1. These indicators are merged with a set of essential indicators 
from the UCD and saved as a CSV-­formatted file.

Details and descriptions are in order for the interpretability of some fields in this indicators 
data set. The country field contains the name of the country in which the urban area wholly 
or primarily (in the case of transnational urban areas) lies, while country_iso contains its ISO 
3166-­1 alpha-­3 code for unambiguous identification. The core_city field contains the name of the 
urban area’s core (typically largest) city and the uc_id field contains the unique identifier of this 
urban area in the UCD, allowing downstream users to join these indicators with all of those in the 
UCD. The uc_names field contains a list of city names within this urban area, per the UCD. The 
world_region and world_subregion fields contain the urban area’s major and minor geographical 
region, per the UCD. The resident_pop field contains the UCD’s estimated 2015 resident popu-
lation in the urban area. The area and built_up_area fields contain the UCD’s boundary polygon 
area and built-­up surface area (both in km2), respectively.

The circuity indicator is the graph’s ratio of street lengths to straight-­line distances between 
adjacent nodes, and straightness is its inverse. The former measures how circuitous the street net-
work is on average, whereas the latter measures how closely its streets approximate straight lines 
(Boeing 2021). The elev_mean, elev_median, elev_std, elev_iqr, and elev_range represent the 
calculated mean, median, standard deviation, interquartile range, and range of node elevations, 
in meters. These provide indicators of the topography underlying the network. The grade_mean 
and grade_median fields represent the calculated mean and median street grade absolute values.

The intersect_count indicator represents the number of street intersections in the urban 
area—that is, the number of nodes with more than two incident edges in an undirected represen-
tation of the graph. The intersect_count_clean indicator is calculated by merging intersections 
within 10 meter buffers of each other geometrically (i.e., 10 meter Euclidean radii) before count-
ing them. This prevents the over-­counting of complex intersections. For example, the intersection 



Geoff Boeing Street Network Models and Indicators

7

Table 1. Fields in the Indicators Dataset. Those Carried Over from the UCD are Noted as Such

Indicator Name Type Description

country string Primary country name
country_iso string Primary country ISO 3166-­1 alpha-­3 code
core_city string Urban area core city name
uc_id integer Urban area’s unique identifier in UCD
cc_avg_dir decimal Avg clustering coefficient (unweighted, directed)
cc_avg_undir decimal Avg clustering coefficient (unweighted, undirected)
cc_wt_avg_dir decimal Avg clustering coefficient (weighted, directed)
cc_wt_avg_undir decimal Avg clustering coefficient (weighted, undirected)
circuity decimal Ratio of street lengths to straight-line distances
elev_iqr decimal Interquartile range of node elevations, meters
elev_mean decimal Mean node elevation, meters
elev_median decimal Median node elevation, meters
elev_range decimal Range of node elevations, meters
elev_std decimal Standard deviation of node elevations, meters
grade_mean decimal Mean absolute street grade (incline)
grade_median decimal Median absolute street grade (incline)
intersect_count integer Count of physical street intersections
intersect_count_clean integer Count of physical street intersections (after merging 

nodes within 10 meters geometrically)
intersect_count_clean_topo integer Count of physical street intersections (after merging 

nodes within 10 meters topologically)
k_avg decimal Avg node degree (undirected)
length_mean decimal Mean street segment length (undirected edges), 

meters
length_median decimal Median street segment length (undirected edges), 

meters
length_total decimal Total street length (undirected edges), meters
node_count integer Count of nodes
orientation_entropy decimal Entropy of street bearings
orientation_order decimal Orientation order of street bearings
pagerank_max decimal Maximum PageRank value of any node
prop_4way decimal Proportion of nodes that represent 4-­way street 

intersections
prop_3way decimal Proportion of nodes that represent 3-way street 

intersections
prop_deadend decimal Proportion of nodes that represent dead-ends
self_loop_proportion decimal Proportion of edges that are self-loops
straightness decimal The inverse of circuity
street_segment_count integer Count of street segments (undirected edges)
uc_names string List of city names within this urban area (UCD)
world_region string Major geographical region (UCD)
world_subregion string Minor geographical region (UCD)

(Continues)
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of two divided roads—each comprising two centerline one-way geometries—creates four nodes 
and thus would otherwise be counted as four intersections. Roundabouts similarly create multi-
ple intersection points unless consolidated. The 10 meter parameterization has a track record in 
the literature (e.g., Barrington-­Leigh and Millard-­Ball 2020). The buffer could be customized for 
each study site to reflect local urban design standards, but for the sake of consistent interpretation 
across the data set we use a universal parameterization that works relatively well across all study 
sites.

The intersect_count_clean_topo indicator is calculated by merging intersections within 10 
meters of each other topologically along the network. This prevents topologically remote but 
spatially proximate nodes from being merged. For example, a street intersection may lie di-
rectly below a freeway overpass’s intersection with an on-­ramp. We would not want to merge 
these and count them as a single intersection, even though their planar Euclidean distance is 
approximately zero: in reality, they are distinct junctions in the three-­dimensional system of 
roads. Similarly, in a residential neighborhood, a bollarded street may create a dead-end imme-
diately next to an intersection or traffic circle. We would not want to merge this dead-­end with 
the intersection and connect their edges—­they are not adjacent nodes in the graph’s topology. 
These examples illustrate (two-­dimensional) geometric proximity, but topological remoteness. 
Accordingly, in some situations we may expect higher intersection counts in intersect_count_
clean than intersect_count_clean_topo.

Clustering coefficients measure the extent to which a node’s neighbors form a complete 
graph (Jiang and Claramunt 2004; Opsahl and Panzarasa 2009). The cc_avg_dir and cc_avg_
undir indicators are the urban area’s directed and undirected unweighted average clustering co-
efficient. The cc_wt_avg_dir and cc_wt_avg_undir indicators are its directed and undirected 
length-­weighted average clustering coefficient. The pagerank_max indicator is the maximum 
PageRank value of any node in the urban area: PageRank ranks nodes’ importance based on the 
structure of their links (Agryzkov et al. 2012; Boeing 2020a). The self_loop_proportion mea-
sures the urban area’s proportion of physical street segments that self-­loop.

The k_avg indicator represents the average node degree of the undirected representation 
of the graph—­that is, on average, how many physical streets (rather than directed edges) are 
incident to each node. The length_mean and length_median indicators are the calculated mean 
and median physical street segment (i.e., undirected edge) lengths in meters, representing the 
average and typical linear block lengths. The street_segment_count and node_count fields con-
tain the counts of physical street segments and nodes, respectively. The prop_4way, prop_3way, 
and prop_deadend fields contain the proportions of nodes in the graph that represent four-­way 
intersections, three-­way intersections, and culs-­de-­sac, respectively. The orientation_entropy and 
orientation_order indicators represent the calculated entropy of street bearings and their linear-
ized and normalized order, as developed in Boeing (2019).

Indicator Name Type Description

resident_pop integer Total resident population, 2015 (UCD)
area decimal Area within boundary polygon, km2 (UCD)
built_up_area decimal Built-up surface area in 2015, km2 (UCD)

Table 1.  (Continued)
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Results and discussion

Open data repositories
All of the resulting street network models, indicators, and metadata have been made publicly 
available on the Harvard Dataverse, organized within a top-­level dataverse3 collectively com-
prising approximately 80 gigabytes of data. All of these data sets are freely available for reuse: 
see the conclusion section for usage notes. All model files (in GeoPackage, GraphML, and node/
edge list format) are compressed and zipped at the country level. The top-­level dataverse con-
tains five constituent data sets to organize the street network models, indicators, and metadata 
for retrieval:

•	 Global Urban Street Networks Indicators4: contains the calculated indicators plus essential 
fields carried over from the UCD for use in downstream analyses. See Table 1.

•	 Global Urban Street Networks Metadata5: contains metadata describing the indicators and 
the node/edge attributes in the model files.

•	 Global Urban Street Networks GraphML6: contains all the GraphML street network model 
files, compressed and zipped at the country level.

•	 Global Urban Street Networks GeoPackages7: contains all the street network model 
GeoPackage files, compressed and zipped at the country level.

•	 Global Urban Street Networks Node/Edge Lists8: contains all the street network model node 
and edge lists in CSV file format, compressed and zipped at the country level.

Indicator analysis
Table 2 presents the results of this workflow by aggregating and summarizing a subset of street 
network form indicators of particular interest to transportation researchers. It reports population-­
weighted mean values across all urban areas, aggregated and summarized at the level of the 
world subregion.

Each table column represents an indicator, some of which are transformed for presentation 
as follows. The Circuity Pct column subtracts 1 from the circuity indicator and expresses the 
result as a percent. It thus represents how much more circuitous the streets are than if they were 
all straight lines. The Avg Node Degree, Orientation Order, and Median Street Length columns 
present the k_avg, orientation_order, and length_median indicator values, respectively. The Avg 
Grade column expresses the grade_mean indicator as a percent. The Intersect Density column 
divides the intersect_count_clean_topo indicator by the built_up_area indicator, and thus rep-
resents street intersections per km2.

Finally, each of these indicators is aggregated at the subregion-­level using the population-­
weighted mean. Such weighting reflects the average person’s exposure by measuring the aver-
age indicator value as experienced by the subregion’s residents within their urban areas. These 
population-­weighted means are calculated as shown in Equation 1 where ds is the population-
weighted mean value of indicator d in subregion s, n is the number of urban areas in subregion s
, i indexes those urban areas, di is the value of indicator d in urban area i, pi is the population of 
urban area i, and ps is the total population of subregion s.

(1)ds =

n
∑

i= 1

pi

ps
di
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Southern Africa and Melanesia have the most circuitous street networks, where the weighted-
average urban area has streets 8.6% and 8.5% more circuitous than straight lines. In contrast, 
Northern Africa and South America have the least circuitous, at 3.7% each. South America and 
Eastern Asia have the highest weighted-­average average node degree (3.0 each), a measure of 
network connectedness, whereas Northern Europe and Melanesia (2.5 each) have the lowest. 
Orientation order, a spatial signature of coordinated central planning, is highest in Northern 
America (0.32) and Eastern Asia (0.22) and lowest in Northern Europe (0.02) and Melanesia 
(0.03).

Eastern Asia (169 meters) and South-­Central Asia (139 meters) have the longest weighted-­
average median street segment lengths. In contrast, Northern Africa (50 meters) and Central 
America (63 meters) have the shortest. The weighted-­average urban areas in Australia/New 
Zealand (4.5%) and Southern Europe (4.1%) have the highest average street grades, indicat-
ing cities built on hillier terrain, whereas Eastern (2.1%) and South-­Central Asia (2.0%) have 
the lowest, indicating cities built on flatter land. Finally, intersection densities (topologically 
cleaned) are highest in Northern Africa (284/km2) and Eastern Africa (267/km2) and lowest in 
Eastern Europe (39/km2) and Eastern Asia (46/km2).

Fig. 2 visualizes a set of fundamental bivariate relationships (estimated via ordinary least 
squares with variables transformed as needed for best linear fit) across all urban areas worldwide. 
Urban areas’ intersection counts (topologically cleaned) exhibit a strong linear relationship with 
their total street lengths (R2 = 0.91, p < 0.001), as expected from theory. A 1 intersection increase 
in an urban area’s intersection count is associated with a 178.6 meter increase in its total street 
length, ±1.2 meters (margin of error at 95% confidence).

Total street length and intersection count both scale slightly sublinearly with urban area 
population, as seen in the log–­log plots at the bottom of Fig. 2. A 1% increase in urban area pop-
ulation is associated with a 0.90% (±0.02%) increase in total street length and a 0.95% (±0.03%) 
increase in intersection count, which makes theoretical sense as residents can share public infra-
structure. Similar results have been found in prior studies of a single country (e.g., Bettencourt 
2013).

Urban areas’ per capita GDP estimates (i.e., the UCD’s 2015 urban area GDP, based on pur-
chasing power parity, in 2011 USD) exhibit a moderate linear relationship with total street length 
per capita. Across all urban areas, the mean per capita street length is 2.13 meters, and a $10,000 
USD increase in per capita GDP is associated with a 1.13 (±0.03) meter increase in per capita 
street length. Per capita street length is a common indicator of a city’s “infrastructure accessibil-
ity” and this finding provides new evidence consilient with prior smaller-­sample findings in the 
literature: cities with greater wealth and economic activity tend to have more road infrastructure 
(e.g., Dingil et al. 2018).

Validation
To be useful in urban science and practice, these models must faithfully represent the real world. 
Validation needs to be considered from three perspectives.

First, the source data themselves must accurately represent the real world. In terms of study 
site demarcation, the UCD derives from the state-of-the-art GHSL developed in tandem by inter-
national authorities for this purpose. Numerous researchers have investigated OpenStreetMap’s 
urban street accuracy and completeness (Girres and Touya 2010; Haklay 2010; Neis, Zielstra, 
and Zipf 2011; Corcoran, Mooney, and Bertolotto 2013; Zielstra, Hochmair, and Neis 2013; 
Barron, Neis, and Zipf 2014; Basiri et al. 2016). These data are not perfect. Barrington-­Leigh and 
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Millard-­Ball (2017) note that OpenStreetMap was particularly incomplete in China as of 2016 
due to restrictions on private surveying and publishing geospatial data. The Chinese models and 
indicators may in turn suffer from missing source data, and this could partly explain the low in-
tersection density in Eastern Asia in Table 2 as China accounts for 79% of the subregion’s urban 
population. Nevertheless, OpenStreetMap is the current state-of-the-art for international street 
network analysis and represents the best available global data today.

The second validation perspective considers how well the resulting graph models represent 
the OpenStreetMap street network. Are the models constructed properly? Does the workflow in-
troduce errors? The open source modeling software, OSMnx, has been downloaded and installed 
over 300,000 times from the Anaconda package repository, generating a large test bed of users 
continuously vetting its functionality. To further assess these models, this study tests the resulting 
repository’s data quality by adapting the methodologies of Barrington-­Leigh and Millard-­Ball 

Figure 2. Scatter plots of relationships across all worldwide urban areas with bivariate regression 
lines and shaded 95% confidence intervals. Axes constrained to not display all outliers.



Geoff Boeing Street Network Models and Indicators

13

(2017) and Karduni, Kermanshah, and Derrible (2016) against the original OpenStreetMap 
source data as a reference data set. It randomly samples 100 U.S. urban areas and 100 non-­U.S. 
urban areas then manually compares each with the OpenStreetMap source data. The results con-
form to expectations given the source data and OSMnx’s parameterization. Every graph model 
is also tested to ensure it can be loaded, analyzed, and routed, confirming that this study’s com-
putational workflow created a functioning model as described in the methods section.

Third, the elevation data are validated by comparing the ASTER, SRTM, and Google values 
for each node. Across all 37 million nodes worldwide, the elevation values between these three 
sources exhibit high correlation (all r > 0.999, p < 0.001). Table 3 summarizes their pairwise dif-
ferences. The ASTER and SRTM node elevation values differ by only 19 centimeters on average, 
and the median node has the same elevation value across both. The ASTER and SRTM differ-
ences with the Google validation values are greater but both the mean and median remain near or 
under 1 meter. The high min/max values represent noisy outliers that our node elevation selection 
process mitigated: across all urban areas, the median node’s selected elevation value differs from 
Google by only 32 centimeters. Finally, we compare our street networks’ elev_mean indica-
tor with the UCD’s estimated average elevation for each urban area. They strongly correlate 
(r > 0.999, p < 0.001) and the median difference between the two is 16 centimeters. Overall, the 
high correlations and small pairwise differences demonstrate the tight correspondence between 
the different elevation values and lend confidence to using the ASTER and SRTM open data in 
these models.

Conclusion

New models and indicators for street network science
This article presented new methods to model and analyze the street network of each urban area in 
the world. It used open-­source tools and open data to build these models and calculate geometric 
and topological indicators of street network form. All of its Python source code and resulting data 
have been deposited in open repositories for public reuse. This represents the first such compre-
hensive repository of ready-to-use urban area street network models and indicators worldwide.

Analyzing these indicators reveals a snapshot of street network form around the world. 
We find that both total street length and intersection count scale sublinearly with urban area 
population. Higher per capita GDP in an urban area is associated with higher per capita total 
street length. We also find that elevation open data from ASTER and SRTM compare well to 
Google’s closed source, commercial data. All three sources’ elevation values correlate strongly. 

Table 3. Summary Statistics of Pairwise Differences in Elevation (Meters) from ASTER, SRTM, 
and Google Across all Nodes Worldwide

ASTER−SRTM ASTER−Google SRTM−Google

Mean −0.19 0.99 1.18
Std Dev 7.83 7.90 3.26
Min −319.00 −319.01 −276.55
25% −5.00 −3.55 −0.52
50% 0.00 1.00 0.57
75% 4.00 5.33 2.57
Max 441.00 442.34 138.83
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The median pairwise difference between the nodes’ elevation values and the Google validation 
values is only 32 centimeters, and the median pairwise difference between the urban areas’ mean 
street network elevations and the UCD mean elevations is only 16 centimeters.

The open data repositories generated by this study fill two needs in the research community. 
First, the network models allow researchers to quickly engage in graph-­theoretic street network 
analyses worldwide without first spending weeks writing their own ad hoc code for data collec-
tion and modeling. Second, the indicators data provide the first comprehensive worldwide set of 
geometric and topological street network form indicators at the urban area scale. Together, these 
results help to democratize street network science, opening up quantitative analyses to urban 
planners and policymakers with less-technical backgrounds who otherwise may struggle to de-
velop a complete computational analytics workflow themselves.

While OpenStreetMap itself provides incredibly valuable raw data, this project transforms 
these data into ready-­to-­use models and indicators through substantial processing. For example, 
these topologically simplified graphs provide models that correspond much better to graph the-
ory and transportation geography than raw OpenStreetMap data do, and they are much faster to 
run graph algorithms on because most such algorithms scale with node count. They also include 
elevation and grade data, which are very sparse on OpenStreetMap and are too often ignored in 
street network analytics. Researchers and practitioners can use these models to simulate trips, 
assess network vulnerability to flooding and sea level rise, or measure accessibility to points of 
interest.

The indicators data offer a useful basket of variables for cross-sectional, worldwide studies 
of street network form, and the topologically consolidated intersection counts and densities con-
tribute a more theoretically sound measure than traditional node counts or purely geometric con-
solidation can. Researchers and practitioners can use these indicators to estimate relationships 
between street network characteristics and transport-sector greenhouse gas emissions around the 
world, compare per capita road infrastructure provision across urban areas, or scorecard different 
cities’ street network compactness and connectivity for sustainability initiatives.

How to use these models and indicators
Finally, this article concludes with a few notes on reuse. The indicators data can be loaded with 
any data analysis tool. The street network models can be loaded with most GIS and network 
analysis tools, including OSMnx.

Each graph model file is named as city_name-­uc_id.extension, where uc_id is the urban 
area’s unique identifier in the UCD. The uc_id field thus links each graph model file to its urban 
area in the UCD as well as to its row in the indicators data set. For example, within the china-­
CHN.zip file from the Global Urban Street Networks GraphML repository are all of China’s 
urban areas’ GraphML files, including beijing-­10687.graphml. This GraphML file contains the 
street network model of Beijing and its uc_id is 10687. As such, 10687 is Beijing’s unique iden-
tifier in the indicators data set and in the UCD.

All of the code used for modeling and analysis in this study is open source and available on 
GitHub9 for public inspection, adaptation, and reuse. Comprehensive documentation of OSMnx 
and its modules and functions used in this study is available online10 and OSMnx usage exam-
ples, tutorials, and demonstrations are available on GitHub11 for users interested in working with 
this toolkit.
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Notes
	 1	 UCD: http://data.europa.eu/89h/53473​144-­b88c-­44bc-­b4a3-­4583e​d1f547e
	 2	 The data were downloaded with OSMnx v1.0.0 in January 2021
	 3	 Dataverse: https://datav​erse.harva​rd.edu/datav​erse/globa​l-urban​-stree​t-netwo​rks/
	 4	 Global Urban Street Networks Indicators repository v2: https://doi.org/10.7910/DVN/ZTFPTB
	 5	 Global Urban Street Networks Metadata repository v2: https://doi.org/10.7910/DVN/WMPPF9
	 6	 Global Urban Street Networks GraphML repository v2: https://doi.org/10.7910/DVN/KA5HJ3
	 7	 Global Urban Street Networks GeoPackages repository v2: https://doi.org/10.7910/DVN/E5TPDQ
	 8	 Global Urban Street Networks Node/Edge Lists repository v2: https://doi.org/10.7910/DVN/
DC7U0A

	 9	 Modeling and analysis source code: https://github.com/gboei​ng/stree​t-netwo​rk-models
	 10	 OSMnx documentation: https://osmnx.readt​hedocs.org
	 11	 OSMnx usage examples: https://github.com/gboei​ng/osmnx​-examples
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