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Abstract: Extracting street trees from mobile Light Detection and Ranging (LiDAR) point clouds is
still encountering challenges, such as low extraction accuracy and poor robustness in complex urban
environment, and difficulty in the segmentation of overlapping trees. To solve these problems, this
paper proposed a street tree extraction and segmentation method based on spatial geometric features
of object primitives. In this paper, mobile LiDAR point clouds were first segmented into object
primitives based on the proposed graph segmentation method, which can release the computation
burden effectively. According to the spatial geometric features of the segmented object primitives,
stem points were extracted. In doing so, the robustness and accuracy for stem detecting can be
improved. Furthermore, voxel connectivity analysis and individual tree optimization were combined
successively. In doing so, the neighboring trees could be separated successfully. Four datasets located
in Henan Polytechnic University, China, were used for validating the performance of the proposed
method. The four mobile LiDAR point clouds contained 106, 45, 76, and 46 trees, respectively. The
experimental results showed that the proposed method can achieve the performance of individual
tree separation in all the four testing plots. Compared to the other three methods, the proposed
method can make a good balance between the commission and omission errors and achieved the
highest average F1 scores.

Keywords: mobile LiDAR; object primitive; special geometric feature; street tree

1. Introduction

Constructing a high-precision tree model is important for improving environmental
quality and urban resident service [1–3]. The traditional methods of obtaining street tree
information mainly include manual, Real-Time Kinematic, and total station measurements.
These methods require a great deal of manpower and material resources. Moreover, the
low information collecting efficiency of these measurements cannot meet the needs of the
rapid extraction of street tree information [4].

LiDAR technology is a rapidly developing active remote sensing technology that can
quickly obtain accurate three-dimensional (3D) point clouds on the surface of objects [5].
Although commercial photogrammetry software can generate millions of points from
images in a cheaper way, this technique cannot provide additional information, such
as intensity, reflected echoes, etc., which will be also useful for post-application. Thus,
LiDAR technology has been widely applied in road detection, power line extraction, forest
parameter estimation, 3D model reconstruction, and other fields [6,7].

According to different platforms, LiDAR systems can be divided into airborne LiDAR,
terrestrial LiDAR, and mobile LiDAR [8]. The airborne LiDAR has the advantages of wide
measurement range and high efficiency [9]. Therefore, Airborne Laser Scanning (ALS) data
have been widely used in a wide range of trees extraction [10–13]. Yao et al. [14] jointly
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analyzed spectral, geometric, and spatial context attributes from airborne LiDAR data and
imagery. Experimental results showed that the trees in both residential and street areas
could be extracted and segmented well. Zhang et al. [15] proposed an urban vegetation
extraction and segmentation method by combining hyperspectral images and airborne
LiDAR data. Due to canopy overlap, the individual trees are often under-segmented
or over-segmented. To solve the difficulty in determining a segmentation stop criterion,
Amiri et al. [16] proposed an adaptive stop criterion based on the visual appearance of
trees. Although airborne LiDAR can be used to extract 3D urban information in a wide
range, it is a top-down scanning system, whose signal is easily blocked by the canopy,
making it difficult to obtain complete tree stem information [17].

Compared with the airborne LiDAR, terrestrial LiDAR generally can obtain more
dense point clouds with higher accuracy, especially in local areas. Thus, terrestrial LiDAR
is one of the important means in forest inventory, which can be used for individual tree
measurement and reconstruction [18–20]. Kiraly and Brolly [21] proposed a method of
individual tree detection based on statistical clustering. Lindberg et al. [22] adopted the
Hough transform to identify and detect stems in terrestrial laser scanning (TLS) data.
Pueschel et al. [23] firstly stratified the data according to the elevation value and then
used the distance difference between adjacent points as the condition of stem detection to
determine the stem position and extract the complete tree. Zhong et al. [24] proposed a tree
detection and segmentation method based on octree structure. Experimental results showed
that the stem detection method based on an octree node histogram could distinguish stems
from other rod-shaped ground objects such as lamp poles and pedestrians. Although TLS
can obtain dense point clouds, its poor mobility and low efficiency limit TLS to be applied
in larger urban environments [25,26].

Compared with airborne LiDAR and terrestrial LiDAR, mobile LiDAR can obtain the
3D information of urban roads and surrounding objects more efficiently [27,28]. Mobile
laser scanning (MLS) can not only obtain more complete tree stem points than ALS, but
also can achieve a larger measurement range than TLS in a short time. Although TLS
has a similar workflow for individual tree detection as MLS, the point clouds acquired
by TLS must be registered to obtain complete point clouds. Obviously, the registration
process is prone to error. More importantly, the data acquisition efficiency of TLS is much
lower than that of MLS in urban environments. Consequently, the street tree extraction
and segmentation method based on MLS data is still mainstream [29]. Lin et al. [30]
adopted the three-layer frame strategy and the RD-schematic algorithm to detect street
trees using the morphological characteristics of canopy surface model. Zhong et al. [31]
combined RGB information for tree separation. Wu et al. [32] proposed a new voxel-
based marked neighborhood searching method. The experimental results showed that
the completeness and correctness of this method for street tree detection were both above
98%. Guan et al. [33] used Euclidean distance clustering and voxel-based normalized cut
segmentation to extract individual trees. Huang et al. [34] extracted complete street trees,
according to the eigenvalue and horizontal information. Husain et al. [35] proposed an
analytic hierarchy process to classify tree objects. Yadav et al. [36] detected stems with
a bottom-up strategy according to the linearity and data distribution homogeneity. The
experimental results showed that this method could identify trees effectively from the
MLS data of road scenes. Li et al. [37] proposed an individual tree extraction method that
worked on points directed and adopted the supervised learning algorithm. Li et al. [38]
proposed a branch-stem-constrained hierarchical clustering method to extract street trees
from the MLS data.

Although MLS data can be used for extracting street tree information in urban ar-
eas efficiently, street tree extraction and segmentation based on MLS still involve the
following challenges:

i. The robustness of the street tree extraction method is poor; when encountering com-
plex urban environment extraction, accuracy will be low.
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ii. The objects that are linear features are easily mistaken as tree stems, reducing the
accuracy of street tree extraction.

iii. Neighboring clustered trees are difficult to separate, which will lead to a larger
individual tree extraction error.

To solve the problems mentioned above, a street tree extraction and segmentation
method based on spatial geometric features of object primitives was proposed in this paper.
In this paper, constraint conditions were first set to construct a graph structure to obtain the
object primitives from MLS data. Then, stem points were detected according to the spatial
geometric features of the segmented object primitives. After that, the street tree points
were extracted by voxelizing the point clouds and conducting voxel component analysis.
Finally, by comparing the shortest path from each point to the root points, the individual
trees were separated.

The remainder of this paper is organized as follows. Section 2 describes the principle
of the proposed method. In Section 3, the experiments are described. Section 4 discusses
and analyzes the experimental results. Section 5 concludes this paper.

2. Methodology

The flowchart of the proposed method is shown in Figure 1. First, an improved
morphological filtering method proposed by Hui et al. [39] was used to separate the
ground points and non-ground points. Then, the non-ground points with higher elevations
were removed. In this paper, the elevation threshold was set to 2 m. In doing so, almost
all the tree stems can be retained while crown points or high building points can be
removed. Subsequently, the graph structure was constructed and the object primitives
were obtained by graph segmentation under the proposed constraints in this paper. After
that, the spatial characteristics of the object primitives were calculated to extract the tree
stem points. Then, the non-ground points were voxelized, and the initial tree points
were extracted by analyzing the connectivity of adjacent voxels. To separate neighboring
clustered trees successfully, this paper segmented the initial tree points through the shortest
path analysis to obtain the individual trees. Four main steps were included in this paper:
(i) object primitive acquisition based on graph segmentation, (ii) stems detection using
object primitive characteristics, (iii) initial tree identification based on the connectivity
analysis, and (iv) individual tree optimization based on voxel shortest path analysis.
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Figure 1. Flowchart of the proposed method.

2.1. Object Primitives Acquisition Based on Graph Segmentation

To extract tree stems effectively, this paper first acquired the initial object primitives
by building a graph structure of the points. The graph is defined as Equation (1) [40]:

G = (V, E) (1)
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where V represents nodes (vi) and E represents edges (ei,j). vi is made up by all points
(pi,i = 1, 2, . . . , N), while ei,j connects pairs of neighboring points (pi, pj). In general, edge
construction determines the results of the graph segmentation. To extract tree stem objec-
tives effectively, this paper constructed the graph based on the proposed three constraints,
as shown in Figure 2.
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Figure 2. Graph segmentation. The left figure shows the points colored according to the elevation
before segmentation. The right figure shows the result of segmentation; different object primitives
have different colors.

2.1.1. The Constraint of Neighboring Radius

To limit the complexity of the graph, the edges within the graph should be constrained.
The effective way is to construct the edges only within the neighboring points. In general,
there are two means that can be used for defining the neighboring points. One is to set
a fixed number of neighboring points. However, the density of MLS data is varied; if a
fixed number of neighboring points is selected, then there will be longer edges within the
graph. This is because the distance constraint is lacked. The graph structure tends to have
long edges when the point cloud is sparse or outliers exist. The other way of defining
neighboring points is to set a fixed neighboring radius. However, the threshold of the
fixed neighboring radius is hard to determine. To solve this problem, this paper combined
these two neighboring determination methods together. First, n points were selected from
tree points randomly, and then, the k nearest neighboring points for the n points were
detected. For each set of k nearest neighbors, the longest distance within the k points can
be calculated. The fixed neighboring radius is calculated as the average value of these k
longest distances. As shown in Figure 3a, R is the calculated fixed neighboring radius,
which can be defined as Equation (2):

R =

n
∑

i=1
max

(
disi

j, j = 1, 2, · · · , k
)

n
(2)

where n is the number of randomly selected points, disi
j is the j-th neighboring distance,

and k is the number of neighboring points. It must be noted that k influences the graph
complexity and implementation efficiency. Considering the balance between them, k is
set to 10 in this paper [41]. According to Equation (2), the neighborhood radius can be
automatically determined according to the density and spatial distribution of different data.

2.1.2. The Constraint of the Angle between Normal Vectors

In general, the object primitives of tree stems have a normal vector consistency. That
is, the normal vector angle between adjacent points is small. Therefore, this feature can be
used to separate these non-ground objects into the same object primitives. On the contrary,
the points of crowns and low vegetation are scattered and do not have the consistency of
the normal vector. As a result, these objects will be divided into small, scattered object
primitives. Thus, to extract the tree stem correctly, the points within the same object
primitive should have similar normal vectors. In this paper, the angle (θ) of normal vectors
between each point and its neighboring points is calculated to obtain the object primitives
with similar spatial characteristics, as shown in Figure 3b. If θ is less than the threshold, the
edge between the two points is preserved. In this paper, the threshold was set to 30◦ by
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trial and error. Based on this threshold, stem points can be better extracted. θ is defined as
Equation (3).
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θ = arccos
v1 · v2

‖v1‖‖v2‖
(3)

where v1 and v2 are the normal vectors of two adjacent nodes.

2.1.3. The Constraint of the Vertical Angle Changing Rate

In general, stem points have regular vertical distribution, while other points, such
as crown points, are usually in random scattered distribution. In other words, the angles
between the normal vectors of crown points and the Z direction generally change greatly
than that of stem points. Thus, the third constraint was set as the vertical angle changing
rate in this paper, which is defined as Equation (4):

βrate =

√√√√√ num
∑

i=1
∆βi

2

num
(4)

where4βi is the vertical angle difference between the point and its neighboring points; as
shown in Figure 3c, num is the number of neighboring points. As shown in Figure 2, the
points with similar vertical angle changing rates can be divided into the same object primi-
tives, such as tree stems and buildings. Meanwhile, the points with larger vertical angle
changing rates, such as tree canopies, were divided into several smaller object primitives.

2.2. Stems Detection Using Geometric Characteristics of Object Primitives

After the graph segmentation, the point clouds will be divided into multiple object
primitives. The stem primitives usually present independent cylindrical shapes. To extract
stem points accurately, this paper calculated the geometric features of each object primitive,
as shown in Figure 4a. Figure 4b shows the calculation of linearity. It can be found that
most stem primitives own large linearity, such as the yellow points shown in Figure 4c. The
linearity of object primitives is defined as Equation (5):

linearityobj = (λ1 − λ2)/λ1 (5)

where λ is the eigenvalue of the covariance matrix of the primitive. Here, λ1 > λ2 > λ3 > 0.
From Figure 4b, it can be found that, compared with crown points, λ1 of the stem and
branch is significantly larger than λ2. Thus, the linearities of stem and branch points are
generally larger than the ones of crown points.
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Since the objects, such as buildings and low vegetation, may also have high linearities,
another spatial feature was adopted in this paper to detect tree stems. This paper defined it
as the Height-Width (H-W) ratio of the object primitives. In this paper, the H-W ratio refers
to the ratio of the height and width of the minimum bounding box of each object, as shown
in Figure 4d. As the stems are in cylindrical shapes, the H-W ratio of stem primitives is
larger than that of other primitives. Therefore, the stem points can be further optimized by
detecting the primitives with a larger H-W ratio. The H-W ratio is defined as Equation (6):

ratioobj =
hobj√

δx2 + δy2
(6)

Where hobj is calculated as the elevation difference between the highest and lowest
points within the object. δx and δy are the ranges of points within the object primitive on the
X and Y axes, respectively. Based on linearity and the H-W ratio, the stems can be detected
as shown in Figure 4f.

2.3. Initial Tree Points Identification Based on Voxel Connectivity Analysis

After tree stem extraction, initial tree points were acquired based on voxel connectivity
analysis. As shown in Figure 5a, stems (red points) were detected by the method described
in Section 2.2. Subsequently, all the points were voxelized as a series of voxels. To obtain
initial tree points, the voxel connectivity analysis was applied to the voxelization result. The
process of voxel connectivity analysis is shown in Figure 6 [42]. Figure 6a shows the voxels
before segmentation. The voxels with no point are labeled as 0, while the voxels containing
points are labeled as 1. Figure 6b is the six-connected model used in this paper. This means
only the voxels distributed as the six-connected model can be seen as connectivity. In the
step of voxel connectivity analysis, the voxels of stems were selected as the seed voxels.
Then, the neighboring voxels were searched, and the connectivity to the seed voxels was
judged. Only the adjacent voxels with common faces are regarded as having connectivity,
as mentioned above. Subsequently, the connected result can be obtained as shown in
Figure 6c.
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Using the proposed voxel connectivity analysis, the voxels connected to stems can
be merged together, as shown in Figure 5c. According to the connected results, the whole
tree points can be obtained as shown in Figure 5d. It should be noted that, in the step of
stems detection, some elongated objects, such as lamp posts, telephone poles, etc., will also
be misclassified as tree stems. This is because these object primitives also own a larger
linearity and H-W ratio simultaneously. To avoid the influence of these wrongly detected
stems, this paper removed the objects with a smaller number of voxels after the voxel
connectivity analysis. This is because the size of the wrongly detected trees, such as lamp
posts, are generally smaller. Thus, by limiting the number of voxels for each object, the
wrongly detected trees can be removed.

2.4. Individual Trees Optimization Based on Voxel Shortest Path Analysis

From Figure 5, it can be found that, after the voxel connectivity analysis, tree points
can be discriminated from other points based on the detected tree stems. However, there
are some neighboring clustered trees that are connected as one tree, as shown in Figure 5d.
This is because the distance between the two neighboring trees is close; when conduct-
ing voxel connectivity analysis, it will be easy to connect the neighboring trees as one
tree. Thus, further optimization should be conducted to obtain optimal individual tree
separation results.

The flowchart of individual tree optimization is shown in Figure 7. In this method, each
tree primitive was traversed one by one. The tree primitives are the tree point extraction
results after the voxel connectivity analysis. Obviously, there will be one or more trees
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contained in each tree primitive. To determine this, the stems within each tree primitive
are counted. During the traversing, if more than one stem is within the tree, then the tree
primitive is under-segmented and should be further optimized. In the optimization, the
under-segmented tree primitive is first voxelized, and then, the center of each voxel forms
the built graph. In doing so, the calculation burden will be released, and the efficiency
will be improved. Since the under-segmented tree primitive contains more than one stem,
each point within the tree primitive will have a shortest path (SP) to a different base of
stems, according to the Dijkstra algorithm shown in Figure 8. Obviously, the points should
belong to the stems with shorter SPs. The Dijkstra algorithm is a famous SP calculation
method [43]. In the Dijkstra algorithm, the direct path from the source node to the end
nodes is first calculated. Then, the shortest path among them can be calculated, which
will be used for adjusting the other paths. Within the adjusted paths, the shortest one
can be found. This process is iterated until all the SPs from the source node to the other
end nodes are detected. By comparing the SPs, the neighboring trees can be optimized as
individual trees.
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Figure 8. Individual tree optimization. The left figure shows two trees with overlapping crowns
before optimization. The shortest path length from the blue point to the bottom of the left tree is
obviously smaller than the shortest path length from it to the bottom of the right tree, so the blue
point is classified as the same class with the bottom of the left tree. The right figure is the result
of optimization.
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3. Experiment
3.1. Experimental Datasets

To evaluate the performance of the proposed method, four datasets located in the
Henan Polytechnic University, China, were used for testing [44]. The datasets were obtained
by SSW-2 MLS along road scenes in the campus. The acquired point clouds include street
trees, buildings, street lamps, cars, pedestrians, etc. As shown in Figure 9, the street
trees in four areas have different distribution characteristics. In Sample 1 (Figure 9a) and
Sample 4 (Figure 9d), there are a large number of street trees with different heights and
overlapping crowns. In Sample 2 (Figure 9b) and Sample 3 (Figure 9c), most trees are
regularly distributed and have similar heights. In addition, along the street trees of the
four datasets there are many different objects, such as buildings, cars, and road lamps. The
characteristics of the four datasets are tabulated in Table 1. From Table 1, it can be found
that the datasets can test the extraction performance of the proposed method for street
trees with different distribution characteristics to verify the effectiveness and robustness of
the method.
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Table 1. The characteristics of the four testing datasets.

Area Total Points Tree Points Non-Tree Points Street Trees Tree Species Non-Tree Objects

Sample 1 4,463,551 2,185,245 2,278,306 106 firmiana, populus buildings, cars, lamps, bicycles,
pedestrians, low vegetation

Sample 2 2,018,179 792,204 1,225,975 45 populus cars, lamps, bicycles, pedestrians,
low vegetation, advertising boards

Sample 3 2,109,819 709,638 1,400,181 76 populus buildings, cars, lamps,
low vegetation

Sample 4 2,281,056 1,170,290 1,110,766 46 willow, populus buildings, cars, lamps, bicycles,
pedestrians, low vegetation
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3.2. Experimental Results

The proposed method was implemented in a MATLAB 2020a environment on a laptop
computer with an Intel® Core™ i7-9750H CPU, 16.0 GB of RAM, and a Windows 10 64-bit
operating system. The final outcome of the proposed method is the separated individual
trees. Thus, to evaluate the performance of the proposed method, the referenced individual
trees should be obtained. In this paper, the referenced individual trees were acquired
manually using a visual software named CloudCompare [45]. Specially, tree tops of the
segmented individual trees were detected manually, which serve as the reference results.
In this paper, the performance of individual tree separation was accessed based on treetops
matching, which was developed by Eysn et al. [46].

The process of treetop matching algorithm is shown in Figure 10. This matching
method firstly detected the candidates from the highest tree tops. The tree tops within a
radius of the reference tree tops were judged as the candidates. In this paper, the radius
was set to 5 m. After that, the candidates were ranked depending on their height difference
and the two-dimensional (2D) distance between the candidates and the reference tree tops.
Then, the candidate tree tops with a large height difference were removed. If a candidate
tree top showed a better height difference and its 2D distance difference from the nearest
candidate was less than 2.5 m, it was determined as the matching point of the reference
tree top.
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Figure 10. The treetop matching method. The treetops within a radius of the reference tree tops were
judged as the candidates. Voting candidates with the height difference and 2D distance between the
candidates and the reference tree tops. If a candidate tree top showed a better height difference and
its 2D distance difference from the nearest candidate was less than 2.5 m, it was determined as the
matching tree top. The numbers above the points indicate the elevation values.

Five indicators were adopted to evaluate the precision of the individual tree segmen-
tation results. They are extraction rate, matching rate, commission error, omission error,
and F1 score. The above five indicators are calculated as Equations (7)–(11):

Extraction rate =
Num_test
Num_re f

(7)

Matching rate =
Num_match

Num_re f
(8)

Commission error =
Num_test− Num_match

Num_test
(9)

Omission error =
Num_re f − Num_match

Num_re f
(10)

F1 = 2× Num_match
Num_re f + Num_test

(11)
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where Num_test is the number of detected tree tops in the segmentation result, i.e., the
total number of the detected individual trees, Num_re f represents the tree tops in the
reference data, i.e., the accurate number of individual trees, Num_match is the number of
detected tree tops matching the reference data, i.e., the number of correctly detected trees.
The extraction rate represents the percentage of the detected trees to the total number of
reference trees. The matching rate indicates how well the detected trees match the reference.
Omission error is the percentage of trees that are not correctly segmented. Commission
error tends to represent the over-segmentation appearance of the method. F1 score is a
comprehensive indicator that reflect the effectiveness of the method.

Table 2 tabulates the accuracy calculation results of the proposed method. From
Table 2, it can be found that the extraction rates in the four datasets were all close to 1. This
means that the proposed method did not tend to over-segment more trees or wrongfully
detect less trees. The average matching rate is larger than 0.85. Thus, it can be concluded
that the proposed method can achieve a good extraction result compared with referenced
individual trees. The commission and omission errors in Sample 4 are a little larger. This
is because there are many weeping willows in Sample 4. Some branches of the weeping
willows are attached to the ground, which will easily be misclassified as stems. Thus, the
detection errors in this area are larger, while the F1 score is a little smaller. However, the F1
scores of the other three areas are also larger than 0.8. As a result, the average F1 score for
the four areas is still larger than 0.8. This indicates that the proposed method can achieve
good individual tree detection performance.

Table 2. The accuracy indicators of street tree segmentation results.

Area Extraction
Rate

Matching
Rate

Commission
Error

Omission
Error F1

Sample 1 0.9823 0.7965 0.1892 0.2035 0.8036
Sample 2 1.2955 0.9773 0.2456 0.0227 0.8515
Sample 3 0.9868 0.8816 0.1067 0.1184 0.8874
Sample 4 1.2381 0.7619 0.3846 0.2381 0.6809
Average 1.1257 0.8543 0.2315 0.1457 0.8059

4. Discussion and Analysis

In this paper, three main steps were involved, including stem detection, tree point
identification, and individual tree optimization. To further analyze each step in detail, this
paper will discuss these three steps, respectively.

In the process of stem detection, two spatial geometric features of object primitives
were involved, namely linearity (linearityobj) and the H-W ratio (ratioobj). The linearity
reflects the similarity between the overall shape of each object primitive and the stems. The
higher the value, the more likely the object primitive is to be a stem. Figure 11a shows
the object primitives extracted only based on linearity. The linearity values of reserved
object primitives are all higher than 0.9. It can be seen that most of the stems were extracted
correctly, but there were still some other objects (green and yellow points) wrongly reserved.
These are the facades of buildings whose linearity values meet the threshold. Therefore,
when the linearity of the object primitives is only constrained, the vertical distributed stems
and some other artificial objects extending horizontally or slanting are retained at the same
time. Thus, the correctness of street tree extraction is low.
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(c) both linearity and H-W radio constraints are used for stem extraction.

The H-W radio reflects the vertical distribution characteristics of object primitivity.
For example, the H-W radio of the stem object primitive is usually higher than that of other
object primitives. This is because the stem is a slender cylinder that grows vertically, and
the height of the cylinder is significantly greater than its bottom diameter. Figure 11b is
the object primitives extracted only based on the H-W ratio. From Figure 11b, some object
primitives with fewer points were wrongly extracted (red points in Figure 11b). This is
because these object primitives contain a few points, resulting in the widths of these object
primitives being much smaller than the corresponding heights. As shown in Figure 11a,b,
it can be concluded that the extracted stem results cannot be good under the constraint of
linearity or H-W ratio separately. The object primitives wrongly extracted in Figure 11a
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have a smaller H-W ratio, while the object primitives wrongly extracted in Figure 11b have
smaller linearity. Consequently, when the above two spatial geometric feature constraints
are adopted simultaneously, the satisfying stem extraction results can be obtained, as shown
in Figure 11c.

The second main step of the proposed method is tree point identification. The result
of tree point identification directly affects the final individual tree separation outcome. In
this paper, tree points were identified based on a voxel connectivity analysis. After tree
point identification, point clouds in the scene can be classified as two categories, namely
tree points and non-tree points. Thus, Type I, Type II, and total errors can be calculated to
evaluate the performance of the proposed method. Here, Type I error means the percent
of tree points misclassified as non-tree points, while Type II error represents the percent
of non-tree points misclassified as tree points. Total error is the percent of points wrongly
classified. The accuracy calculation results are tabulated in Table 3. From Table 3, it can
be found that the errors of these three types are all smaller, except for the type II error of
Sample 3. This is because there are several trees that are attached with adjacent walls in
Sample 3. When applying voxel connectivity analysis to the detected stems, these wall
points will be misclassified as tree points. As a result, its type II error and total error are a
little larger. When calculating the average values of these three types of errors, it can be
found that all the average errors are smaller than 5%. Thus, it can be concluded that the
proposed method can achieve a good tree point identification result.

Table 3. Three types of errors of tree point identification.

Type I
Error (%)

Type II Error
(%)

Total Error
(%)

Sample 1 3.07 0.59 1.74
Sample 2 1.12 2.56 2.09
Sample 3 1.87 11.01 8.41
Sample 4 3.23 4.68 3.94
Average 2.32 4.71 4.04

After the tree points are detected, individual tree segmentation can be carried out. To
evaluate the performance of the proposed segmentation method objectively, three other
individual tree extraction methods were selected for comparative analysis. Chen et al. [47]
proposed a marker-controlled watershed segmentation method (Watershed). In their
method, the canopy maxima model was first established, and the variable size windows
were used to detect treetops in it. After that, the marker-controlled watershed segmentation
method was adopted to obtain individual trees. Wang [48] proposed an unsupervised
method based on superpoint graph structure (SSSC). The point cloud was recursively
segmented to obtain the object primitives, and the superpoint of each object primitive
was extracted. Then, an undirected superpoint graph was constructed to calculate the
eigenvectors of the superpoints. Finally, the object primitives represented by the superpoint
were clustered based on the eigenvectors and shortest path analysis to achieve individual
tree extraction. Latella et al. [49] proposed a density-based algorithm (ITDM) to detect
individual trees. They first removed the points with low elevation, such as shrub and
grassland points, to reduce the calculation cost. The point cloud was then projected onto a
horizontal plane, and its projection density was calculated to extract locally dense points as
stem points. Finally, the height maximum points around the stem location were extracted
as the treetops.

Figures 12–15 show the accuracy comparison in four plots of the proposed method
with the three methods mentioned above. It can be seen that the satisfying results in four
plots were obtained by the proposed method. The F1 scores of the proposed method in
four plots are all higher than those of other three methods, and the F1 scores of three
plots are greater than 0.8. This shows that the proposed method has higher precision
and stronger robustness compared to the other three methods. In the four plots, the
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proposed method achieves the best on three of five indicators. This indicates that the
overall performance of the proposed method is the best compared with the other three
methods. As shown in Figure 12, the proposed method can achieve the lowest commission
rate and the best extraction rate. This shows that the proposed method performs well in the
street trees with regular distribution and different heights. As shown in Figures 13 and 15,
the proposed method has a low matching rate; however, its extraction rate is the best. It
can be concluded that the proposed method can reduce the over-segmentation as much as
possible, while ensuring the best segmentation. As shown in Figure 15, all methods have a
higher commission error, which is related to the low detection correctness of the street trees.
This is because there are lots of weeping willows in Sample 4. These elongated willow
branches attached to the ground are often mistaken as stems. As a result, the number of
wrongly extracted street trees is increased, leading to larger commission errors. Compared
with the other three plots, the proposed method performed best in Sample 3, as shown
Figure 14. All indicators of Sample 3 are the best out of the other three methods. This shows
that the proposed method has a good detection and segmentation ability on the street trees
with regular distribution.
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Table 4 shows the comparison of the average accuracy of the four methods. From
Table 4, it can be found that the extraction rate of the proposed method is the smallest
one compared to the other three methods. The extraction rate of the Watershed method is
about two times of that of the proposed method. This indicates that the proposed method
will not try to over-segment trees. Although the average matching rate of the proposed
method is slightly lower than that of the ITDM method, the average extraction rate and
commission error of the proposed method are the best compared to the other three methods.
As a result, the average F1 score of the proposed method is much higher than the other
three methods. This shows that the proposed method can achieve good individual tree
segmentation results in four plots.
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Table 4. Comparison of average accuracy of the four methods. The bold represents the best value
among the comparison results.

Method Extraction
Rate

Matching
Rate

Commission
Error

Omission
Error F1

Watershed 2.1778 0.7211 0.6181 0.2789 0.4672
SSSC 1.6346 0.8327 0.4433 0.1673 0.6494
ITDM 1.2790 0.8784 0.2929 0.1216 0.7767

the proposed
method 1.1257 0.8543 0.2315 0.1457 0.8059

5. Conclusions

Street tree extraction is a significant step in the construction of a digital twin city.
In this paper, mobile LiDAR point clouds were first segmented into object primitives
based on the proposed graph segmentation under certain constraints. In doing so, the
computation burden can be released. To improve the accuracy and robustness of stem
detection, both geometric features of linearity and H-W ratio were combined. To most
traditional individual tree detection methods, separating the neighboring trees is still a
challenge. In this paper, voxel shortest path analysis was proposed to achieve optimized
individual tree separation results. The proposed method was validated using four datasets.
The experimental results showed that the proposed method can achieve good street tree
extraction and segmentation performance in all four testing plots. Compared with the other
three methods, the tree segmentation method in this paper achieved the highest average
F1 score. This reveals that the proposed method can balance the commission rate and
omission rate, effectively avoiding over-segmentation. However, the implementation of the
proposed method requires setting some parameters, such as the thresholds of linearity and
H-W ratio of the object primitives. How to improve the automation of the method, making
the parameters determined automatically according to the particularity of each point cloud,
will be focused on in our further research.
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