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Abstract—We propose a system for performing structural
change detection in street-view videos captured by a vehicle-
mounted monocular camera over time. Our approach is moti-
vated by the need for more frequent and efficient updates in the
large-scale maps used in autonomous vehicle navigation. Our
method chains a multi-sensor fusion SLAM and fast dense 3D
reconstruction pipeline, which provide coarsely registered image
pairs to a deep deconvolutional network for pixel-wise change
detection. To train and evaluate our network we introduce a new
urban change detection dataset which is an order of magnitude
larger than existing datasets and contains challenging changes
due to seasonal and lighting variations. Our method outperforms
existing literature on this dataset, which we make available to the
community, and an existing panoramic change detection dataset,
demonstrating its wide applicability.

I. INTRODUCTION

When viewed at the scale of cities and over periods spanning

seasons or years, the urban visual landscape is a highly

dynamic environment, with many navigational landmarks such

as buildings, traffic signs and other road-side structures being

constantly added or removed [24, 25, 34]. From the viewpoint

of an autonomous driving system, maintaining an up-to-date

map of such landmarks is essential. The higher the frequency

of map updates, the more robust the system’s navigation and

planning is likely to be.

In this work we seek to address the problem of efficient map

maintenance by means of structural change detection using

a minimal sensor suite: low-quality monocular cameras, GPS

and inertial odometry. In a spirit similar to [38], we believe that

a cost-effective solution (obtained by removing the reliance

on LiDAR sensors) could be more widely adopted and lead to

quicker, distributed map updates through crowdsourcing. Up-

to-date maps are not only useful for robust navigation, but may

also yield other benefits such as monitoring the availability

of parking spaces or route closures and diversions due to

temporary roadworks.

Detecting structural changes in images of road scenes from

monocular images is a challenging problem, as illustrated in

Fig. 1. Images taken at different times exhibit large variability

that may be induced by changes of interest, such as struc-

tural changes (construction, building demolition, traffic signs),
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Fig. 1. Challenging examples of street-view change detection taken from
our dataset. Left and middle columns show registered images from time 1
and time 2, right column shows ground truth structural changes highlighted
in red. Note that all examples exhibit significant changes in lighting, weather
and season. In sequence: (a) a new construction appears on the outside of an
existing building; (b) construction materials are left by the side of the road;
(c) a new road signal is installed; (d) a temporary traffic sign blocks the road.

but also from nuisances such as viewpoint changes, outdoor

conditions (lighting, weather, season) and dynamic changes

(pedestrians, vehicles, vegetation). In order to successfully

differentiate between structural changes and nuisances, the

detection method must be capable of modelling both.

Our proposed system is summarised in Fig. 2. We first

register video sequences from different times using an end-

to-end multi-sensor fusion Simultaneous Localization and

Mapping (SLAM) system in combination with an efficient

dense 3D reconstruction system. The SLAM system estimates

vehicle trajectory and a sparse 3D scene reconstruction by

fusing information from GPS, inertial odometry and cameras.

Registration across seasons is achieved by approximate GPS

localization followed by robust feature-matching and Bun-

dle Adjustment (BA). Scene reconstructions from different

time instances are densified using an efficient slanted plane

∗First two authors contributed equally.



smoother approach which is able to cope with the challenge

of untextured or poorly illuminated regions that are commonly

found in urban scenes. The combination of dense geometry

and accurate registration allows images from different times

to be warped into alignment with one another for comparison,

mitigating a key source of nuisance variation caused by

changing viewpoints.

Next, inspired by the recent success of deep Convolu-

tional Neural Networks (CNNs) at learning image invariances

for large-scale image processing tasks (e.g. image classifica-

tion [20], semantic segmentation [21, 28] and place recogni-

tion [37]), we adopt a deep deconvolutional architecture [31]

for the task of structural change detection. Our network,

illustrated in Fig. 3, takes as input the aligned image pairs

and returns a pixel-wise classification of structural changes.

We demonstrate through experimentation on an extensive,

manually labelled test dataset that our method is able to pre-

dict structural changes with better performance than existing

approaches. Our dataset is derived from a subset of the Visual

Localization CMU (VL-CMU) dataset1, originally created for

long-term topometric visual localization [2, 3]. We generate

1,362 registered image pairs (containing 152 sequences of real

changes with corresponding ground truth annotations), taken

of the city of Pittsburgh, PA, USA, over a period of one year.

The main contributions of our paper are as follows:

1) We propose a deep deconvolutional architecture that

significantly outperforms hand-crafted descriptors [18,

23, 40] and a CNN-based approach [32] on the task of

street-view change detection while remaining suitably

lightweight for embedded devices (1.4M parameters).

2) We introduce a novel dataset for the task of change de-

tection in urban scenarios that is an order of magnitude

larger than existing datasets and contains challenging

seasonal and lighting variations. We make this dataset

available for public download and use at our project

website: http://www.saistent.com/proj/RSS2016.html.

3) To create our dataset we have designed a multi-sensor

fusion SLAM system coupled with a fast dense re-

construction pipeline for the approximate alignment of

image pairs for change detection across time.

II. RELATED WORK

Image-based change detection [30] is an important problem

in computer vision and robotics, since identifying the areas

of change in a scene is the first step towards many common

tasks. For example, it can improve the efficiency of 3D map

maintenance by restricting updates to only the changed areas

[38, 41] or allow a system to learn about the nature of objects

in the environment by segmenting them as they change [7].

In urban change detection, which is the focus of our

work, the typical change detection pipeline separates into

two parts: registration and similarity computation. Registration

is needed because for typical large urban datasets, images

are often sparsely sampled and it is common to have a

1Available from: http://3dvis.ri.cmu.edu/data-sets/localization/

baseline of several metres when comparing one image to the

closest matching picture across time (resulting in significant

perspective deformations). Registration is typically addressed

using Structure from Motion (SfM), followed by either multi-

view stereo techniques or model-based reconstruction, which

allow the generation of surface models that can be used

to warp images from one camera viewpoint to another via

reprojection [25, 36, 38].

Generating sufficiently detailed surface models in the wild

is a challenging problem in itself and several works propose al-

ternative solutions. Where cadastral city models are available,

[39] show that they can be used in place of multi-view stereo.

Where more precise, centimetre scale range measurements

from LiDAR sensors are available, methods such as [29] show

that precision can be much improved. The work by [33] defines

a probabilistic framework in which changes over all possible

disparities are evaluated and integrated for each reprojected

ray. While this avoids the need for explicit modelling and

additional information or sensors, their framework makes the

assumption of per-pixel independence in order to be tractable

but still remains computationally expensive.

In our work, we seek a computationally efficient approach

which works from image data, GPS and inertial odometry

on general unstructured scenes. We propose a novel dense

reconstruction technique which copes especially well with

the untextured or poorly illuminated regions that challenge

existing multi-view stereo (MVS) methods [8, 11].

After the image sequences have been aligned through reg-

istration and projection, a similarity measure is employed to

determine changes of interest between the data while ignoring

other nuisance changes. The definition of what constitutes

a change of interest or a nuisance change varies depending

on the task. Changes of interest may be purely geometric,

such as the appearance or disappearance of urban struc-

tures [33, 38, 39], or textural, such as changes in billboards or

shop-fronts [25] or surface defects [36]. Prototypical nuisance

changes which the similarity measure must be invariant to

include vegetation (e.g. a tree changing from green to red in

the autumn, then shedding its leaves in the winter) and lighting

effects (e.g. cast shadows or underexposed images).

The similarity functions are typically a combination of

absolute differences of color, depth and distances between

hand-crafted descriptors. Recently pre-trained deep convolu-

tional networks were proposed to detect changes in urban

scenarios [32]. Despite having reasonable performance, the

method relies on superpixel regularization and sky/ground

segmentation to delineate changes accurately. Other works

such as [36] propose training change detection networks from

scratch on image patches to classify changes for industrial

inspection. In contrast to these prior works, we adopt a

deconvolutional network approach [28, 31] and demonstrate

its ability to learn an appropriate, spatially precise similarity

function for this challenging outdoor problem.

http://www.saistent.com/proj/RSS2016.html
http://3dvis.ri.cmu.edu/data-sets/localization/


Fig. 2. Overview of our image-based change detection system: (a) video sequences from times t1 and t2 are processed using a multi-sensor fusion SLAM
system, taking into account GPS, inertial odometry and RGB image data, to yield vehicle motion and sparse 3D reconstructions; (b) sequences are registered
across time via approximate GPS localization followed by robust feature-matching and Bundle Adjustment; (c) reconstructions are efficiently densified using a
novel slanted plane smoother approach; depth maps are used to align the image by reprojection (π); (d) a deconvolutional network is used to predict changes
between aligned RGB images; (e) the predicted changes of our network are shown in red. Nuisances due to lighting and seasonal change are correctly handled.

III. DECONVOLUTIONAL NETWORKS FOR CHANGE

DETECTION

We propose to detect changes between pairs of images using

an efficient CNN architecture based on the idea of stacking

contraction and expansion blocks [22, 28, 31]. Our network,

which we refer to as CDNet, takes its design from [31],

consisting of 1.4 million parameters, making it very compact

compared to 134 millions for FCN-8s [22]. We use this

architecture as it was found to offer a good trade off between

performance and model size, being small enough to be suitable

for a mobile application and not prone to overfitting on small

datasets.

A. Net Definition

A graphical summary of CDNet is shown in Fig. 3. The

four blocks forming the contraction stage serve to create a

rich representation that allows for recognition as in standard

classification CNNs. The four blocks forming the expansion

stage are used to improve the localization and delineation

of changed regions. The final change decision is made by a

softmax linear classifier operating densely per pixel.

Each contraction block consists of a 7 × 7 convolution

layer with a fixed number of 64 features. Its outputs are

normalized by using batch normalization prior to non-linear

activation, in order to reduce the internal covariate shift [16]

during training and improve convergence. In our case, batch

normalization parameters are not computed using statistics

but instead learned as extra parameters. This allows batch

normalization to be easily bypassed at test time. Non-linear

activations are produced by standard Rectified Linear Units

(ReLU) [10], and are proceeded by a 2×2 max-pooling layer

with stride 2 to reduce each spatial dimension by 2. During

this operation the indices of the maximum responses are stored

for later use in the corresponding expansion block to perform

a clean upsampling of the data. This is necessary to produce

sharp edges and avoid blocky results [28].

Each expansion block starts by upsampling its input using

an unpooling layer. This layer makes use of the previously

stored indices to produce an upsampled version of the input

that conserves activations at the location of edges, and other

high frequency features. This operation is followed by a 7×7
convolution with a fixed number of 64 features. As before,

pre-activations are normalized using batch normalization be-

fore ReLU. This stack of expansion and contraction blocks

makes the network architecture fully symmetric in terms of

numbers of features. No fully-connected layers are used in

our architecture, giving rise to very efficient models suitable

for mobile applications. For further details, refer to [31].

B. Training Approach

Both convolution and deconvolution blocks are randomly

initialized using He’s method [14]. Training was carried out

using the Adam optimizer [19] with default parameters. This

choice resulted in faster training convergence than standard

stochastic gradient descent, converging within 200 epochs,

with 150 batches per epoch and a batch size of 10 image

pairs. The use of weighted cross-entropy as the loss function,

with weights chosen according to the inverse frequencies of the

classes in the training set, was also found to be a necessary

ingredient to achieve the results we report. The model was

implemented and trained using MatConvNet [42].



Fig. 3. We propose a deconvolutional network architecture for change detection called CDNet. Each of the four contraction blocks consists of a convolution
(CONV), batch normalization (BNORM), ReLU and max-pooling layer. Each of the four expansion blocks consists of a guided unpooling (using the stored
pooling indices from the corresponding contraction block), convolution, batch normalization and ReLU layer. The final layer is a linear operator followed by
a soft-max classifier. Channel-wise normalisation is applied to the input RGB images as a pre-processing step.

IV. BUILDING A DATASET OF CHANGES ACROSS SEASONS

We exhaustively explored the VL-CMU dataset to gather

a set of typical urban macroscopic changes such as those

presented in Fig. 1, for training and evaluating our framework.

The VL-CMU dataset was originally proposed for studying

topometric localization [2, 3] and consists of 16 sequences

captured over the period of one year in the city of Pittsburgh,

PA, USA. The sequences are recorded at 15Hz by a pair of

1024×768 pixel Point Grey Flea 2 vehicle-mounted cameras at

45◦ degrees left and right from the forwards direction and zero

overlap between the pair. In each of the sequences the vehicle

traversed approximately the same 8km route. The dataset also

includes measurements from an intertial sensor, GPS and a

single line scanning SICK LiDAR. We do not make use of

the latter since the LiDAR’s external calibration parameters

with respect to the other sensors are not provided within the

dataset.

From the VL-CMU dataset we identified and extracted 152
RGB and depth image sequences for change detection. Each

sequence contains on average 9 pairs of corresponding images

taken from different time instances. These are used to generate

a total of 1, 362 registered image pairs, each with a manually

annotated ground truth structural change mask and sky mask.

Fig. 4. Left: distribution of changes by class in the VL-CMU-CD dataset.
Right: example changes in the training and test data for the category of Signs.
Each change consists of a query and reference image and black and white
change mask.

Our dataset, which we name VL-CMU-CD, is compared

against existing datasets in Table I. It is an order of magnitude

larger than existing datasets. While Taneja et al. [39] use

a dataset of 1,000 panoramic images for street-view change

detection, we exclude them from the table as they compare

images against a cadastral 3D model rather than image-to-

image pairs. In addition to its larger size, since VL-CMU-CD

is captured over the course of a year, it contains challenging

natural seasonal changes, varying environmental and meteoro-

logical conditions, structural changes such as new buildings,

construction areas or changes in road signalling, and is more

representative of the typical types of changes that can be

observed in an urban environment than the perspective datasets

of [33, 38]. The dataset of Sakurada and Okatani [32] is similar

in this regard, but the image pairs are not sequential and do not

allow the recovery of depth for image alignment. In Fig. 4 we

provide a breakdown of the changes in VL-CMU-CD by class

and a selection of the changes for the Construction class in

testing and training datasets. The five most common classes are

bins (24%), signs/traffic-signs (21%), vehicles (16%), refuse

(14%) and construction/maintenance work (11%).

TABLE I
COMPARISON OF EXISTING STREET-VIEW CHANGE DETECTION DATASETS.

Dataset # Seq. # Pairs Type

Taneja et al. [38] 4 ∼50 perspective

Sakurada et al. [33] 23 92 perspective

Sakurada and Okatani [32] - 200 panoramic

VL-CMU-CD (Ours) 152 1,362 perspective

V. IMAGE ALIGNMENT VIA MULTI-SENSOR FUSION

SLAM AND DENSE 3D RECONSTRUCTION

In this section we explain in sequence our multi-sensor

fusion SLAM system for camera trajectory and sparse 3D map

estimation, our approach to sequence-to-sequence registration

across time and season, and our dense reconstruction frame-

work using a slanted plane smoother approach.

A. Multi-Sensor Fusion SLAM

We formulate the multi-sensor fusion SLAM problem as a

factor graph, in which each factor encodes the connectivity
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Fig. 5. A simplified example of a factor graph encoding the relationship
between camera poses and scene structure in multi-sensor fusion SLAM.

between the unknown variable nodes and the sensor mea-

surements. The final goal is to estimate a set of M camera

poses X = {xi}i=1:M and N reconstructed 3D points

Y = {yj}j=1:N , given a set of sensor measurements, Z.

In our formulation we assume Z to consist of 2D image

feature measurements, z
proj
ij , a GPS measurement per camera

pose, z
gps
i , and an equivalent odometry factor (composition of

multiple odometry measurements) between any two camera

frames, zodoi1,i2
. More detailed information about multi-sensor

fusion SLAM can be found in [15].

The joint probability distribution of the navigation variables

Θ = {X∗, Y ∗} given the measurements Z, can be factorized

as the product of the contribution of each individual factor in

the graph:

P (X,Y ;Z) ∝
K
∏

k=1

fk
(

Θk
v

)

, (1)

where Θk
v represents a subset of the variable nodes and K

is the total number of factors in the graph. Each factor fk
represents an error function that connects a set of variables and

measurements. We assume Gaussian noise distributions for all

factors. Fig. 5 illustrates a simplified example of a typical

factor graph for the task. The factor formulations for each

sensor are as follows:

1) Projection factor: measures the reprojection error of a

3D point yj ∈ R
3 for a particular camera pose xi ∈ SE(3)

given the corresponding 2D image measurement z
proj
ij ∈ R

2:

fproj (xi, yj) = exp

(

−
1

2
‖π (xi, yj)− z

proj
ij ‖2Σij

)

, (2)

where π (xi, yj) is the projection of yj into xi assuming known

camera intrinsics and ‖ · ‖2Σij
is the squared Mahalanobis

distance induced by the measurement covariance Σij . In order

to deal with outliers and spurious measurements, we use the

pseudo-Huber loss function as a robust kernel [13].

2) GPS factor: a unary factor that enforces a constraint in

the camera position:

fgps (xi) = exp

(

−
1

2
‖hgps(xi)− z

gps
i ‖2Σi

)

, (3)

where hgps(xi) models the GPS measurement function.

3) Odometry factor: a binary factor measuring the relative

motion between two camera poses:

fodo (xi1 , xi2) = exp

(

−
1

2
‖hodo(xi1 , xi2)− zodoi1i2

‖2Σi1i2

)

,

(4)

where hodo(xi1 , xi2) models the relative transformation be-

tween two camera poses.

We extract and track features for each frame using A-KAZE

features [1], due to its high repeatability and density of de-

tected features. Features are tracked by finding matches within

confidence regions predicted by odometry measurements.

Calculating the maximum-a-posteriori (MAP) estimate of

Eq. (1) is equivalent to minimizing a weighted non-linear

least squares function using the contribution of each fac-

tor in the graph. Our optimization uses a Local Bundle

Adjustment (LBA) formulation [27]. In LBA, the estimated

parameters are the poses of the m most recent keyframes

and 3D points which have at least one observation in these

frames, considering only the reprojection errors from the

MLBA most recent keyframes. In all experiments we set m=3
and MLBA=10.

B. Registering Sequences Across Seasons

The use of GPS in Section V-A provides an approximate

registration between two sequences of images from times t1
and t2. However, GPS errors can often be up to 10 m in urban

areas and do not provide the necessary accuracy for the task of

change detection; as a consequence we refine the registration

by robustly matching A-KAZE descriptors across image sets

via RANSAC and a three-point algorithm. Once the set of

common correspondences is identified, we perform global BA

and refine the set of cameras poses and sparse 3D point

clouds to a common reference frame. This worked well for our

experiments, but in practice may be sensitive to (i) the length

of sequences being matched – shorter sequences may be harder

to match if visual changes are very significant (ii) the spacing

between cameras (speed of the vehicle and image capture rate)

and (iii) outliers in GPS readings. Approaches such as [4]

to train features to match across dynamic lighting conditions

could further improve the registration in challenging scenarios.

C. Dense 3D Reconstruction

We perform dense 3D reconstruction to generate surface

models that can be used to warp images from one cam-

era viewpoint to another via reprojection. Our dense 3D

reconstruction algorithm is partially inspired by the Efficient

Large-Scale Stereo Matching (ELAS) method [9]. ELAS is a

stereo matching method that uses support points (i.e. points

in textured regions that can be matched reliably) to guide

matching in surrounding pixels via a Delaunay triangulation

in the image space using a planarity smoothness term.

One of the drawbacks of ELAS is that it assumes the avail-

ability of a relatively uniform distribution of support points,

to ensure that the set of hypothesized planes resulting from

triangulation exhibit a regular size. This assumption is often

broken in urban scenarios, in which there are many untextured

or poorly illuminated regions that challenge existing multi-

view stereo approaches [8, 11, 17].

We address this drawback by extending ELAS in a coarse-

to-fine fashion and replacing the Delaunay triangulation by

superpixels, as summarised in Alg. 1. For an image Ii with

pose xi, we start at the coarsest octave of scale space, Omax,

and estimate a depth map d. To do so, we first assign a set of



visible 3D points Y vis
i as support points. The set is chosen by

selecting features whose scale lies in the same coarsest octave

of scale space.

We then extract a set of SEEDS superpixels [6], with size

proportional to the scaled image, and fit a plane for the support

points belonging to each superpixel via RANSAC. For each

support point, we use its 2D measurement and depth estimate

as inputs for plane fitting.

For those superpixels in which we have enough support

points to fit a plane (i.e. at least three non-collinear points),

we minimize an energy function based on a data term and two

smoothing terms that penalize deviations between the depth

candidate for a particular pixel dj , the depth planar prior dpl
and the prior depth estimate from the previous scale level dpr:

E(d) = Edata(dj , d̂j)+λ1Es(dj , dpl)+λ2Es(dj , dpr), (5)

where λ1 and λ2 control the contribution of the smoothing

terms Es in the overall energy. As data term, we use the

difference between DAISY descriptors [40] computed for each

pixel in the reference image Ii and its projection in the closest

image Ii+1 using the camera parameters, a hypothesized depth

dj and its projection d̂j . For the smoothing terms, we adopt

Gaussian functions. For superpixels where it is possible to fit

a plane, we evaluate the energy in Eq. (5) for each pixel in

the reference image using a small range of depth hypotheses

centered at the prior value. At the coarsest scale level, for those

superpixels where it is not possible to fit a plane, we explore

the full range of depth values (dmin, . . . , dmax) without any

smoothing terms. The depth estimate is refined by means of a

fast global smoother (FGS) based on weighted least squares as

described in [26]. The solution is then propagated to the next

scale level, repeating until the desired resolution is reached.

While the algorithm has been described for clarity of

exposition on a pair of consecutive views (Ii, Ii+1), it can

be trivially extended to multiple views by expansion of the

data term. Fig. 6 shows the output of our method on a test

image, with support points, superpixels and estimated depth

map using three scale levels.

VI. EXPERIMENTAL RESULTS

In this section, we first describe the suitability of our

dense reconstruction method for the task of image alignment,

compared to the output of [8] utilized by [38]. We then

examine the performance of our proposed deconvolutional

network for change detection versus existing approaches using

both our VL-CMU-CD dataset and the recently published

Tsunami and Google Street View (GSV) datasets from [32].

A. Dense 3D Reconstruction

The goal of our dense 3D reconstruction pipeline was to

efficiently produce dense depth maps with sufficient accuracy

for the alignment of images for change detection. We compare

our dense 3D reconstruction with respect to PMVS [8] used

by [38] on a random image sequence from our dataset.

Since there is no ground truth information available for

dense 3D geometry in VL-CMU, we perform a quantitative

Algorithm 1 Dense 3D Reconstruction from Video Sequences

Input Images Ii, Ii+1, camera poses xi, xi+1, set of visible

3D points Y vis
i , number of octaves Omax

Output Estimated depth map d for image Ii

for j = Omax → 1 do

1. Compute scale factor ratio σ = 2j ; adjust calibration

parameters

2. Compute DAISY descriptors for I
j
i and I

j
i+1

3. Compute SEEDS superpixels for images I
j
i and I

j
i+1.

4. For each superpixel, estimate a plane via RANSAC

5. For each pixel in each superpixel, minimize (5)

6. Use FGS to smooth the depth estimate using image

I
j
i from the scale space as guide image in the smoother

7. Propagate solution to next scale level

end for

Fig. 6. Left: extracted superpixels with projected support points in red. Right:
estimated depth map. Best viewed on screen.

comparison showing the number of reconstructed 3D points

and density of pixels containing a depth estimate as quality

measures. For our method, we fused individual depth maps

considering geometric consistency between three consecutive

views. Fig. 7 depicts a close-up view from the renderings of

the 3D point clouds of the two methods. Table II details the

pixel density for which we obtain a depth estimate and the

total number of reconstructed 3D points. Our method obtains

a much higher density and number of 3D points than PMVS,

which struggles on textureless regions. A high density allows

accurate image warping from one camera viewpoint to another

via reprojection without resorting to time-consuming meshing

methods. On average our method takes about 2 seconds for

processing a pair of images on a single threaded implemen-

tation on a 3 GHz desktop PC and may be accelerated by

parallelization. We include a video as supplementary material

to illustrate the quality of our reconstruction.

One of the key differences between our approach and

existing literature is that we do not require the concatenation

of several sequential batch steps. Methods like [35, 38] first

employ an SfM pipeline to obtain camera positions followed

by PMVS and promotion of the resulting point cloud to a

mesh. For example, Poisson surface reconstruction is used

in [38] to obtain a denser surface model from the original

PMVS point cloud. The same approach is employed in [35]

but coupled with an edge-preserving smoother and information

from occluding contours. In [5], the sparse point cloud from

PMVS is used as an input for local warping of superpixels

for view synthesis. Such methods are batch by nature and



Fig. 7. Qualitative comparison of dense 3D reconstruction. Left: Our method.
Right: PMVS results after ball pivoting surface reconstruction. Our approach
is denser and one order of magnitude faster to compute (26×).

TABLE II
DEPTH RECONSTRUCTION COMPARISON FOR A SEQUENCE OF 43 FRAMES.

Method Density % # 3D Points Processing Time (s)

PMVS 25 217,703 2,666

Ours 77 3,449,148 102

comparatively more computationally expensive. Our proposed

method may in future be incorporated into incremental recon-

struction pipelines and is well suited to real-time processing

via substantial code optimisation and parallel processing.

B. VL-CMU-CD Dataset

To evaluate CDNet on our VL-CMU-CD dataset, we divided

it into a training set of 933 image pairs (98 sequences) and a

test set of 429 image pairs (54 sequences). The split between

the sequences was chosen at random, with whole image

descriptor matching used to confirm that test and training sets

did not contain similar looking sequences. We used a small

subset of the training data for validation to tune convergence

for optimization. For final experiments, we trained on the full

training set without validation, performing early stopping after

150 epochs in all cases to ensure fairness. In addition, we used

data augmentation to help prevent overfitting during training,

by adding image pairs containing both artificial changes (by

adding synthetic changes to existing images) and no changes

of interest, in the manner of [36]. These were added in the

approximate ratio of 35% real changes to 65% augmented

changes.

We compared CDNet against multiple baselines includ-

ing depth only (obtained with our dense 3D reconstruction

pipeline), hand-crafted descriptors such as dense SIFT [23],

DAISY [40], DASC [18]), and a pre-trained CNN for im-

age recognition combined with superpixel regularization, as

described in [32]. For the depth-only approach we compare

raw absolute difference between depth maps normalised by

the larger of the two depths per pixel.

Quantitative Comparison. Fig. 8 depicts a quantitative

comparison of our method’s test set performance on VL-CMU-

CD versus baseline methods. We show both False Positive

Rate (FPR) vs. True Positive Rate (TPR or Recall) and

Precision-Recall graphs. Table III compares our method over

different change detection metrics [12] for an FPR of 0.10

and 0.01. Our deconvolutional network outperforms other

methods on all metrics by a significant margin.

Qualitative Comparison. Fig. 9 illustrates the predicted
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Fig. 8. VL-CMU test results: (a) FPR vs TPR curves. (b) Recall vs
Precision curves.

TABLE III
QUANTITATIVE COMPARISON VS BASELINE METHODS AT FPR = 0.10

AND 0.01. BEST RESULTS ARE HIGHLIGHTED IN BOLD.

FPR = 0.10 FPR = 0.01
Method Pr Re F1 Pr Re F1

Depth 0.18 0.28 0.22 0.08 0.01 0.02

D-SIFT [23] 0.20 0.31 0.24 0.25 0.04 0.07

DAISY [40] 0.15 0.22 0.18 0.11 0.02 0.03

DASC [18] 0.20 0.30 0.23 0.29 0.05 0.08

CNN [32] 0.31 0.57 0.40 0.48 0.12 0.18

CDNet (ours) 0.40 0.85 0.55 0.79 0.46 0.58

change maps of several of the methods for randomly selected

test image pairs. The performance of our network is markedly

better than other methods; in the majority of cases it is able

to locate and delineate the changes of interest. The closest

performing method of [32] is relatively good at identifying

change, but misses numerous key changes (the post in S2,

truck in S4, sign in S6, fence in S7), and delineation of the

changes is rather poor despite the use of superpixels.

C. Tsunami and Google Street View Datasets

Additionally, we evaluate the performance of CDNet on the

panoramic change detection datasets of [32]. Because CDNet

is “fully convolutional”, we apply it directly to the 224×1024
pixel images of the dataset without resizing. However, because

the data is from a very different domain to VL-CMU-CD,

captured using a panoramic camera, we first fine-tune CDNet

over 30 epochs on a training set extracted from the data.

Table IV reports our average F1 score for each dataset

trained using 5-fold cross validation on 80-20 training-

validation splits. We improve on the method of [32] for the

Tsunami dataset, despite using a single end-to-end network,

without superpixel smoothing or sky segmentation, and using

one order of magnitude fewer parameters (1.4 million vs 14.7

million). However, our performance on the GSV dataset is

slightly worse. Close inspection of the dataset revealed that

registration errors between image pairs are more significant in

this latter, more sparsely captured dataset. It is likely that our

network cannot achieve translation invariance as effectively

as the much deeper net used by [32] but conversely, when

registration is better, our model is more discriminative despite

its small relative size. This justifies the use of efficient dense
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Fig. 9. Illustration of change detection performance of our method versus existing methods on a variety of challenging sequences of the test dataset. Images
exhibit significant changes in lighting, weather and season. Changes detected are labelled in red. From left to right: (i) reference image; (ii) registered query
image; change detection results at 10% false positive rate using (iii) Dense SIFT [23], (iv) CNN [32], (v) Depth, (vi) proposed approach; (vii) ground truth.

reconstruction for image alignment in our approach.

TABLE IV
F1 SCORE FOR TSUNAMI AND GOOGLE STREET VIEW DATASETS [32].

Method Tsunami GSV

Dense SIFT 0.649 0.528

Sakurada and Okatani [32] 0.724 0.639

CDNet (ours) 0.774 0.614

VII. CONCLUSIONS AND FUTURE WORK

We have proposed and evaluated a novel approach to street-

view change detection from monocular video sequences. Our

method combines geometric methods (SLAM and dense 3D

reconstruction, used for the approximate registration of video

sequences) with the learning of an efficient deconvolutional

network to discriminate between actual changes and nuisance

changes such as caused by lighting and seasonal variation.

Our approach has been shown to outperform existing ap-

proaches on a novel, large and challenging change detection

dataset which we make available for public download and

use at our project website. We have additionally shown the

effectiveness of the deconvolutional network on an existing

benchmark dataset.

We are aware that our dataset, despite being significantly

larger than currently available collections, remains some dis-

tance from the size of classification datasets such as ImageNet

and can be scaled up much further. We are convinced that an

approach such as ours will scale effectively to larger datasets

as they become available. Two promising directions for scaling

such change detection datasets are to leverage dense LiDAR

scans to reduce the need for manual annotation or to generate

realistic synthetic data.

http://www.saistent.com/proj/RSS2016.html
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