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Abstract

We describe a structure-from-motion framework that

handles “generalized” cameras, such as moving rolling-

shutter cameras, and works at an unprecedented scale—

billions of images covering millions of linear kilometers

of roads—by exploiting a good relative pose prior along

vehicle paths. We exhibit a planet-scale, appearance-

augmented point cloud constructed with our framework and

demonstrate its practical use in correcting the pose of a

street-level image collection.

1. Introduction

Google Street View has a repository of billions of 2D
images captured with rolling-shutter camera rigs along ve-
hicle trajectories. Although we use GPS and inertial sensors
to estimate the pose of this imagery, it still contains low-
frequency error due to challenging GPS environments in
cities and elsewhere. To improve the pose of these images,
we have extended traditional Structure from Motion (SfM)
techniques to construct a point-based model of the street-
level world where each point carries both its geometric po-
sition as well as its local appearance from several views (see
Figure 1). We use the appearance information from this
model to find corresponding 3D points viewed from nearby
images, and the geometric information to align the cameras
that view them, thereby globally correcting the imagery’s
pose: motion-from-structure-from-motion.

To create our SfM model, we must overcome two impor-
tant challenges not encountered in typical SfM problems:
rolling-shutter cameras and planet-wide scale. We use the
same tool to tackle both: a good initial estimate of the local
vehicle trajectory. Although GPS may introduce global er-
ror of many meters in our estimate of the trajectory, the local
shape is determined almost entirely by integration of inertial
sensors. These sensors are trustworthy over short distances
and they give us an accurate estimate of the vehicle’s motion
during image capture as well as the relative pose of images
nearby each other in the trajectory, as depicted in Figure 2.
In Sections 3 and 4, we present a generalized camera model
that uses this local pose to handle rolling shutters in the

Figure 1. An appearance-augmented point cloud comprising 404
billion tracked features, computed from street-level imagery. Ev-
ery point in the cloud carries with it local appearance descriptors
from at least three different viewpoints. Frames zoom successively
closer to a detail of Sydney harbor.

context of projection, triangulation, and bundle adjustment.
Then, in Section 5, we use local pose to overcome superlin-
ear matching cost and achieve planet scale. In Section 6, we
descibe how we apply the resulting appearance-augmented
SfM model to reduce the global pose error of our imagery
by more than 85% in the densest urban environments in the
world.
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Figure 2. The vehicle’s path establishes good relative pose and
natural connectivity for the panoramic imagery we capture.

2. Related work

Perspective cameras and SfM for perspective cameras
are well studied [14]. Generalized cameras, with arbitrary
relationships between points in the world and the image,
were formalized by Grossberg and Nayar [12]. A corre-
sponding generalized epipolar constraint and optical flow
are treated by Pless [22]. Rigorous efforts to solve for gen-
eralized camera models exist: 8 solutions for 3 camera rays
to intersect 3 known world points [21], 64 solutions for 6
corresponding camera ray pairs [25]. The latter technique
can be used with RANSAC for motion estimation between
two generalized cameras, but the method is complex and ul-
timately unnecessary with a good relative pose prior, which
we possess.

Rolling-shutter cameras are a particularly common type
of generalized camera, and have a literature of their own.
Moving, rolling-shutter cameras are studied and modeled
by Geyer et al. [10]. Much work has been done to re-
cover object motion and shape from rolling-shutter images
and video taken from fixed viewpoints [3] [4] [20]. Com-
plementary work has been done to remove rolling shutter
distortion from images and video created when the camera
moves [18] [7] [9] [5] [13].

Perhaps the most directly related work on bundle adjust-
ment is that of Hedborg et al. [15], which aims to bundle
adjust rolling-shutter video sequences. As we do, it approx-
imates the complex rolling-shutter camera model as locally
linear near points of interest. We consider static images in-
stead of video, which makes tracking harder, but we have
the advantage of starting with a better high-frequency pose
prior.

Large-scale (i.e., many-camera) SfM reconstruction is a
hot topic in computer vision research, with most efforts aim-
ing to tackle ever more cameras in a single problem [24] [2].
Our approach is unlike these efforts: we deliberately limit
our BA to a modestly sized (1500-camera) window. Global
accuracy is achieved through loop closing as described in
Section 6.

Our use of appearance-augmented 3D points is not un-
precedented. Such points are employed for for image local-
ization relative to an SfM model by Se et al. [23], Gordon &
Lowe [11], Irschara et al. [16], and Li et al. [17]. In those
works, each 3D point is augmented with SIFT descriptors
(perhaps averaged, perhaps quantized). We similarly aug-

Figure 3. Example panoramic rosettes with 6, 9, and 15 cameras.

ment our 3D SfM points with descriptors from all views.
Instead of matching an image to a 3D model, we match 3D
models to each other for the purpose of loop closing.

3. Generalized camera model

Most of our images come from rolling-shutter cameras.
Rolling-shutter cameras do not capture all pixels of an im-
age instantaneously. Instead, the exposure “rolls” across
the image sensor, often column-by-column. If the camera
moves while the shutter rolls, different pixels in the image
have different projection centers. Moving, rolling-shutter
cameras are an example of a generalized camera [12].

In addition, our camera rigs consist of a rigid assembly,
or rosette, of cameras. Figure 3 shows some of our camera
rigs, with rosettes composed of between 6 and 15 cameras.
Figure 4 shows how the rolling shutter complicates pixel
projection for the 15 camera rig. In our rigs, rosette intrin-
sics and rolling shutter timings are calibrated. We require a
generalized camera model for these moving rosettes of cal-
ibrated rolling-shutter cameras.

Notation: Let xa denote a point x in frame “a” and let b⊤a

denote a possibly non-linear transform⊤ from frame “a” to
frame “b”. Thus, xb= b⊤a·xa, inv b⊤a= a⊤b, c⊤b·b⊤a= c⊤a, and
so on.

We may write the generalized camera model as a non-

30
cm

≈ 3m

Figure 4. Left: a visualization of pixel rays from our 15-camera
rosette, with each camera’s rays assigned a different color. Right:
the same rays when the rosette undergoes typical vehicle motion
(30kph). Each pixel has a different projection center, in this case
spread over several meters of vehicle trajectory. Traditional multi-
view geometry algorithms do not work with such cameras.
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t(k)t1 t2

Figure 5. A rolling shutter exposure that starts at t1 and ends at
t2. The vehicle moves so each image column may have a different
projection center.

linear transform im⊤w(t) from the world frame “w” to the
image frame “im”. Due to the rolling shutter, this transform
is a function of time t:

xim = im⊤w(t) · xw (1)

We decompose the world-to-image transform in order to
separate the non-linear component (lens model) from the
time-dependent component (rosette pose):

im⊤w(t) =

Lens Model
︷︸︸︷

im⊤c · c⊤r ·

Rosette Pose
︷︸︸︷

r⊤w(t)
︸�����������︷︷�����������︸

Camera Pose

(2)

where “c” is the camera frame and “r” is the rosette frame.
The non-linear transform im⊤c represents the lens model.

All frames are in motion, but the image and camera
frames are fixed relative to the rosette. Thus, the only time-
dependent component of the camera model is the world-
to-rosette transform r⊤w(t) because the rosette is moving
rigidly through the world frame. The quantity r⊤w(t) rep-
resents the 6 DOF pose of the rosette in the world frame.

The rolling shutter model relates pixel coordinates and
time as some function t(xim). In our case, t(xim) is a linear
function of the column index (see Figure 5).

3.1. Projection

Mapping from the image frame to the world frame is
straightforward. The image point xim yields an exposure
time t(xim) from the rolling shutter, which in turn sets the
rosette pose w⊤r:

xw = w⊤r(t(xim)) · r⊤c · c⊤im · xim (3)

Projection from the world frame into the image, however,
is not well defined for a generalized camera. Some world
points may be imaged multiple times, whereas other world
points may not be imaged at all. Figure 6 depicts this issue

(a) (b)

Figure 6. Because the projection center may move in a generalized
camera, some points may be exposed multiple times (a) or not at
all (b), making world-to-camera projection ill-defined.

geometrically. In a rolling-shutter camera in particular, im-

age coordinates and time are interchangeable. The world-
to-image projection equation is therefore implicit in xim:

xim = im⊤c · c⊤r · r⊤w(t(xim)) · xw (4)

In practice, if the speed of the camera in the world is slow
relative to the speed of the rolling shutter across objects in

the scene, which is generally the case for a vehicle-mounted
camera that rotates slowly, the mapping is well behaved.
The circularity in the equation may be broken by estimat-
ing the exposure time and iterating on the solution. In-
stead, in the following sections, we show how the gener-
alized camera model may be approximated effectively by
local linearization at feature locations.

3.2. Triangulation

A fundamental operation in bundle adjustment is trian-
gulation from multiple views. Given multiple image obser-
vations x̂k

im (superscripts hereafter dropped for clarity) of an
unknown 3D world point, we wish to find the world point
xw that minimizes reprojection error:

argmin
xw

∑

views

‖xim − x̂im‖
2 s.t. Equation 4 (5)

The constraint is implicit in xim, but we can make the con-
straint explicit with a simple assumption. Because rolling
shutters tend to be fast, t(xim) is a slowly changing function
and therefore t(xim) ≈ t(x̂im). Then we may avoid comput-
ing t(xim) entirely: the projection of x̂w into each camera
may be done at the a priori known exposure times t(x̂im) for
each feature location x̂im. The optimization problem is now:

argmin
xw

∑

views

‖

Lens
︷︸︸︷

im⊤c ·

Camera Pose
︷������������︸︸������������︷

c⊤r · r⊤w(t(x̂im)) ·xw
︸���������������������������︷︷���������������������������︸

xim

−x̂im‖
2 (6)

which is a standard triangulation problem with known cam-
era poses. As the rolling shutter approaches an instanta-
neous shutter, t(xim) becomes constant, and the equation
simplifies to that of standard multi-view triangulation.

This approximation degrades as x̂im and xim diverge, but,
critically for optimization, the approximation is exact at
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Figure 7. We establish a virtual, linear “feature camera” at each
feature whose optical axis is the projection of the feature center
through the generalized camera model.

the feature location. Moreover, the approximation diverges
slowly in practice: For our cameras, over a very large fea-
ture of diameter 100 pixels, lens distortion varies by a few
percent and pose varies by ∼1 cm at 30 kph.

3.3. Feature cameras

In addition to the simplification that t(xim) ≈ t(x̂im),
we may further simplify triangulation by linearizing the
(smooth) lens model at each feature location. The mono-
lithic, generalized camera model is thereby shattered into
a constellation of simple, global-shutter, linear perspective
feature cameras, depicted in Figure 7. This constellation
would appear as a denuded porcupine,1 like that in Figure 4
but with only the quills that survive feature tracking. To
project a world point into a feature camera,

xf = f⊤c · c⊤r · r⊤w(t(x̂im))
︸������������������︷︷������������������︸

f⊤w

·xw (7)

where the f⊤w transform is both linear and constant given the
rosette pose. It is as if each feature has its own linear lens.
The feature frame “f” is centered on the feature point x̂im,
so if x̂im is an exact view of xw, then xf is (0, 0). Thus, the
projection coordinates xf directly yield reprojection error,
and the triangulation problem is simply:

argmin
xw

∑

views

‖xf‖
2 s.t. Equation 7 (8)

To control for varying magnification across the image due to
lens distortion, we sample the angular resolution of the lens
model at the feature location and scale the feature camera
focal length so that all feature camera frames have compat-
ible pixel scale.

4. Generalized bundle adjustment

The previous section provides the essential elements re-
quired for bundle adjustment with general cameras. How-

1Not shown in the expurgated version of this paper.

ever, in contrast to global shutter cameras, the triangulation
sub-problems of bundle adjustment are coupled through the
camera trajectory r⊤w(t). Using feature cameras, the bundle
adjustment optimization for generalized cameras is:

argmin
{xw, r⊤w(t)}

∑

points

∑

views

‖xf‖
2 s.t. Equation 7 (9)

The twist with bundle adjustment using generalized cam-
eras is that the camera trajectory influences the camera
model. With traditional cameras, only the instantaneous

pose of the camera is used (as camera extrinsics). For gen-
eralized cameras, the trajectory of the camera during the
rolling shutter becomes part of the camera intrinsics. In the
context of bundle adjustment and triangulation, one must
choose a representation for the trajectory that constrains the
feature cameras’ relative poses.

In the work of Hedborg et al. [15], for rolling-shutter
video, the trajectory is represented by a single key pose for
each frame, with the pose during the rolling shutter linearly
interpolated between successive key poses. In general, one
may insert as many key poses as the tracked features sup-
port.

If a relative pose prior is available, for example from a
calibrated IMU, then the prior may be used to constrain bun-
dle adjustment in a variety of ways depending on the accu-
racy of the prior and the nature of the camera motion. For
example, one may model low-order deviations from the rel-
ative pose prior as a way of both constraining the number of
free pose variables and regularizing the bundled pose.

We use calibrated camera rigs with an IMU rigidly at-
tached, mounted on a vehicle. From a separate pose opti-
mization step, which is outside the scope of this paper but
locally dominated by the IMU, we have accurate relative
pose on the timescale of the rosette exposure. We there-
fore “bake in” to the camera model the relative pose that
spans the rosette exposure so that bundling does not adjust
the known high frequencies of pose.

To that end, we factor r⊤w(t(x̂im)) in Equation 7 by intro-
ducing a time-dependent nominal rosette frame “n” and a
nominal rosette exposure time tn:

xf = f⊤c · c⊤r ·

r⊤w(t(x̂im))
︷������������������������︸︸������������������������︷

r⊤n(t(x̂im) − tn) · n⊤w(tn) ·xw (10)

The quantity t(x̂im) − tn represents the rolling shutter delay
from the nominal rosette exposure time tn for pixel x̂im. Be-
cause we are using a feature camera, t(x̂im) is constant and
the lens model is linear. Thus, all transform components in
Equation 10 are linear. Combining the quantities that are
contant during bundling yields:

xf =

Feature Camera
︷������������︸︸������������︷

f⊤n(t(x̂im) − tn) ·

Rosette Pose
︷�︸︸�︷

n⊤w(tn) ·xw (11)
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and during bundling we solve for the nominal rosette poses
n⊤w(tn) rather than for the full camera trajectory r⊤w(t):

argmin
{xw, n⊤w(tn)}

∑

points

∑

views

‖xf‖
2 s.t. Equation 11 (12)

This now has the form of traditional bundle adjustment with
linear cameras:

• The first term f⊤n(t(x̂im) − tn) represents the linear fea-
ture camera model for pixel x̂im in the nominal rosette
frame. The relative pose of the feature camera from
tn to t(x̂im) due to motion during the rolling shutter is
baked into this term.

• The second term represents the 6 DOF pose of the
rosette in the world frame at the constant nominal
rosette exposure time tn; this pose is a free variable.

• The third term xw is the world point, also a free vari-
able.

The result xf is the projection of the world point into the
feature camera for pixel x̂im; because the feature camera is
centered on pixel x̂im, xf is literally the reprojection residual.

With this approach, all the feature cameras within each
panorama form a rigid assembly (porcupine) given by the
relative pose prior. This assembly may move rigidly dur-
ing bundling by changing the nominal rosette pose. Thus,
the highest frequencies of pose are baked into the cam-
era model; the medium frequency errors are reduced by
bundling; the lowest frequency errors remain and must be
addressed via loop closing. Figure 8 shows an example
point cloud before and after bundle adjustment. Section 6
discusses loop closing.

5. SfM at scale with feature cameras

The previous section assembles many of the pieces re-
quired for SfM with generalized cameras, in particular the
use of feature cameras and a relative pose prior for bundle
adjustment. In this section, we leverage the relative pose
prior for the other half of SfM, track generation.

5.1. Managing scale with vehicle paths

The scale of SfM is limited by the complexity of match-
ing features between images to establish tracks. For n un-
posed proximal images, O(n2) image pairs generally must
be compared to identify matches. As the density of imagery
increases, this superlinear factor dominates computation, so
we must sidestep it to achieve planet scale.

We capture images using vehicles outfitted with sensors
in addition to cameras: accelerometers, gyroscopes, wheel
speed sensors and GPS receivers. We fuse this sensor data
to establish an initial trajectory for the vehicle uninformed
by the imagery. This initial pose has two interesting prop-
erties:

Unbundled

Bundled

Figure 8. A comparison of an unbundled (top) to bundled (bottom)
SfM point cloud, including top-down, block-level details of the
clouds and inset histograms of reprojection error for all tracked
feature points.

• The absolute pose of the vehicle path is accurate to
about 10 meters in the worst case, due to multipath
GPS issues in dense urban cores.

• The relative pose along the vehicle path is extremely
accurate (sub-centimeter) because it is dominated by
calibrated IMU integration over short time scales.

We leverage this second strength of our pose prior to scale
our SfM reconstruction. Similar to SfM with video, the nat-
ural linear path of the vehicle trajectory establishes potential
connectivity between images: only images within a fixed
window of each other along the path are considered for joint
participation in image tracks. This puts a constant bound on
matching and tracking effort per image.

5.2. Tracking

A strong relative pose prior lets us avoid visual odometry
via RANSAC-based relative pose estimation, which is often
the first step in an SfM system. Instead, we get odometry
from independent sensors. The relative pose is good enough
for triangulation along this trajectory, so we can bootstrap
the system by tracking features rather than by matching im-
ages.

First, we extract invariant local features similar to
SIFT [19], SURF [6], and HOG [8] from each image and
construct feature cameras for each feature. We link features
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into tracks—a track represents a 3D world point—along the
trajectory incrementally. Given incoming tracks from pre-
vious panoramas in a trailing window, and given the set of
features in the current panorama, a track is extended only if
we have both visual and geometric confirmation:

• Visual confirmation: The feature visually matches a
feature in the track better than any other track. Match-
ing is strict: the two features must be mutual 1-NN
matches between the two images, and they must also
pass a Lowe threshold test [19] of 0.7.2

• Geometric confirmation: The track triangulates with
a 3D triangulation error below 1 meter and a reprojec-
tion error below 1 degree. Triangulation is done using
standard methods with the track’s set of feature cam-
eras. The pose prior permits geometric verification of
matches without RANSAC-based model estimation or
heuristic outlier rejection.

Further, all 2-view tracks are dropped because they are too
likely subject to aliasing due to epipolar geometry. This
leaves a few hundred high precision, 3+ view tracked fea-
tures per panorama. We downsample images to mitigate
scale; we can generate 10x as many tracked features in ex-
change for increased computation.

It is interesting to add that, apart from the Lowe thresh-
olding and discarding tracks closer than 2 meters from the
camera, we employ no additional thresholds to suppress
false positives. There are no ad hoc heuristics employed to
suppress matches on the vehicle, below the ground, on mov-
ing objects, or in the sky. The combination of visual match-
ing with geometric confirmation to the pose prior eliminates
virtually all noise because all features in a track must be
similar in appearance and conform to the geometric dictates
of the camera model and vehicle trajectory.

5.3. Augmented 3D Points

For each track we retain the image features with the tri-
angulated 3D world point. Thus, each of our trianguled 3D
world points has appearance information (in the form of
scale/orientation/lighting invariant feature descriptors) for
3+ views. This is not relevant for bundle adjustment, but
it is immensely useful for image-based loop closing as dis-
cussed in Section 6. We name these 3D points that retain
multiview appearance information “augmented 3D points.”

6. Results

Using the camera model and pose prior described in Sec-
tions 3-5, we have created an appearance-augmented, 3D
SfM point cloud for a substantial subset of all Street View
imagery, comprising over 404 billion tracked feature points

2We call this highly stable matching method BFF matching.

from 1.5 trillion unique viewpoints in 9.2 billion panoramic
images. The cloud, shown in Figure 1, covers a substantial
portion of the world. The points are dense enough to cap-
ture street-level details such as road markings, traffic signs
and business facades, as shown in Figure 11. Noise is low;
the distribution of reprojection error for our tracked points
is illustrated in Figure 12.

In practice, we spend about 10 seconds per 4-megapixel
panorama to extract, track, and bundle adjust features on
a single modern CPU core. The majority of this time is
spent on pixel I/O from disk. The largest concurrent bun-
dle adjustment problem solved is about 1500 cameras (a
100-panorama window of a 15-camera rosette). We use
the open-source Ceres nonlinear least-squares solver [1] to
compute our BA solution. Each window of input data is in-
dependent and many can be processed in parallel. All told,
about 2000 core-years were required to compute the world-
wide SfM cloud.

6.1. Loop closing with SfM constraints

The primary application of our SfM model is the correc-
tion of global pose error in our vehicle trajectory and hence
our image collection. As mentioned in Section 5, GPS noise
can result in global pose error of many meters, especially in
dense urban areas. Figures 9a and 10a depict such error.

We can correct this error by establishing relative pose
constraints between pairs of panoramas that capture over-
lapping views of the street-level world. First, we identify
candidate panorama pairs by the proximity of their initial
poses, culling pairs to limit the linear density along trajec-
tories. Each panorama in the pair is associated with a set of
augmented 3D points from our SfM model, namely, all the
points that the panorama views. These points form a local
“constellation” around the panorama. Using the descriptors
associated with each 3D point, we build up correspondences

a b

Figure 9. A comparison of vehicle paths in downtown San Fran-
cisco before (a) and after (b) SfM-based correction.
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between the two panoramas’ constellations using the same
“BFF” matching scheme described in Section 5.2. We then
use Umeyama’s method [26] in a RANSAC loop to find the
least-squares-best rigid transform that aligns the most cor-
responding points in the two constellations. This aligning
transform yields a compact constraint describing the rela-
tive position and orientation of the two panoramas.

We repeat this process for all candidate panorama pairs,
generating billions of relative pose constraints linking ge-
ographically proximal panoramas that may have been cap-
tured minutes, days, or years apart in time. We add these
constraints to our sensor data and constraints derived from
other sources, and repeat our optimization of the vehicle tra-
jectories until convergence (about 8 iterations). The result,
shown in Figures 9b and 10b, is a dramatic reduction in the
global error of our vehicle trajectories.

How much does the error improve quantitatively? It’s
difficult to answer this question conclusively, as we lack
ground truth pose for our vehicle trajectories. One way to
get an idea, however, is to compare the residual error of
the SfM constraints before and after their inclusion in the
iterative optimization of vehicle trajectories. Because the
SfM constraints are jointly optimized with data from over a
dozen independent sources, it is unlikely that they will dom-
inate the solution. Table 1 compares the 10th, 50th, and 90th
percentile residuals for SfM constraints before and after op-
timization in some of the world’s most challenging urban
environments.

6.2. Limitations

As described in Section 3, we rely heavily on a good lo-
cal pose estimate to make our complex, rolling-shutter cam-
era systems useable for SfM. When local pose degrades—
usually due to failure of inertial sensors—tracking collapses
and we cannot construct our SfM model. Further, our SfM
points are quite sparse (hundreds per panorama) because of
downsampling and our strict checks on visual and geomet-
ric coherence. A denser model could be constructed at the
cost of more computation or more noise, or both.

6.3. Conclusions

We have overcome the challenges of rolling-shutter cam-
eras and global scale to construct an appearance-augmented
SfM model of the street-level world. We have demonstrated
the practical use of this model for correcting the pose of the

10th percentile 50th percentile 90th percentile
before after before after before after

Position 0.30 m 0.03 m 1.5 m 0.2 m 5.0 m 0.8 m
Orientation 0.05◦ 0.03◦ 0.3◦ 0.2◦ 2.0◦ 1.2◦

Table 1. SfM constraint residual error before and after inclusion in
pose optimization for the subset of trajectories in San Francisco,
New York, Hong Kong, Singapore, and Seoul.

a

b

Figure 10. A comparison of vehicle paths in downtown Hong Kong
before (a) and after (b) SfM-based correction.

Street View image collection. The model may be used for
other applications, such as: global camera localization (by
matching a query image against our point cloud), creation
of appearance-enhanced 3D models of street-level scenes
for navigation and annotation, and alignment of aerial and
street-level imagery.
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