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Abstract. First-order weak-fluctuation Rytov theory predicts that the
longitudinal �on-axis� component of the scintillation index of an uplink
collimated beam will become significantly smaller as the size of the
transmitter aperture increases up to around 100 cm. However, the re-
sults of recent computer simulations are at odds with this behavior, and
we believe that this discrepancy is due to the fact that the conventional
Rytov theory does not correctly account for the effects of beam wander
on the scintillation index. We present a theoretical structure that accu-
rately describes far-field irradiance fluctuations caused by uncorrected
beam wander. This new theory is validated by demonstrating excellent
agreement between the predicted scintillation index and computer code
results for both tracked and untracked beams. For many applications of
practical interest, such as free-space optical communications, a good
understanding of the time-average Strehl ratio is also essential simula-
tion results for this parameter are presented and shown to be in good
agreement with the theory. © 2006 Society of Photo-Optical Instrumentation
Engineers. �DOI: 10.1117/1.2219470�

Subject terms: scintillation; Rytov theory; beam wander; Strehl ratio.
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1 Introduction

Over the years, the scientific community has devoted con-
siderable effort to the development of analytic models for
predicting irradiance fluctuations associated with a lowest-
order Gaussian-beam wave.1–12 Irradiance fluctuations,
commonly called scintillation, are generally considered to
be a fundamental limiting factor in the performance of free-
space optical �FSO� communication links and laser radar
systems, among other applications. However, in spite of the
progress that has been made in developing these scintilla-
tion models, there are still some aspects of beam-wave
propagation that are not well understood, particularly in
regards to convergent beams and uplink collimated beams.
For example, first-order weak-fluctuation Rytov theory pre-
dicts that the longitudinal component �or on-axis scintilla-
tion� of a focused beam along a horizontal path continually
decreases as the size of the laser-transmitter aperture
increases.2–6 Similar on-axis behavior has been predicted
for a collimated beam on an uplink path through weak op-
tical turbulence to a satellite.3,7–10 In particular, the implied
uplink scintillation index deduced from the conventional
Rytov theory leads to greatly reduced values of scintillation
�orders of magnitude reduction� on the boresight or optical
axis of a ground-to-space collimated beam, in which the
beam diameter is on the order of 20 to 100 cm. At the same
time, the conventional Rytov theory predicts that the radial
component of scintillation for a focused beam or an uplink
collimated beam increases without bound as the transmitter
aperture increases. Because such behavior for any beam is

physically unrealistic, we reach the conclusion that the con-
ventional Rytov theory is incomplete with regards to these
particular cases.

In an early experimental study, Kerr and Dunphy13 con-
cluded that the predicted on-axis scintillation reduction for
a beam focused on a near-field receiver may not be realized
in the presence of significant beam wander. Early theoreti-
cal studies addressing power reduction caused by beam
wander include those of Esposito,14 Fried,15 and Titterton.16

These particular studies were concerned primarily with de-
veloping a probability density function �pdf� model to de-
scribe the statistics of transmitter platform pointing jitter in
the absence of atmospheric turbulence, similar to the effect
of beam wander in turbulence. More recently, Kiasaleh17

and Steinvall18 examined the impact of platform pointing
jitter combined with beam scintillation, employing several
commonly used pdf models for beam scintillation. Concern
with the first-order Rytov theory for focused beams has also
been expressed by others such as Banakh and Smalikho.19

Although Banakh and Smalikho provided a curve fit to the
on-axis scintillation of an uplink beam, none of the previ-
ous studies produced a consistent, tractable model of on-
axis and off-axis scintillation that combines beam wander
effects with the Rytov scintillation theory.

In a recent uplink numerical wave optics simulation
study, Dios et al.20 showed that the on-axis log-amplitude
variance of a collimated beam from ground to space can be
much greater than that predicted by the conventional Rytov
theory when beam wander is present. Dios et al. argue that
beam-wander-induced scintillation must be added to the
Rytov approximation in such cases. Baker and Benson21

also showed similar discrepancies in the on-axis scintilla-
tion between that predicted by the conventional Rytov0091-3286/2006/$22.00 © 2006 SPIE
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theory and their numerical wave optics simulation results in
an uplink path to an altitude of 300 km. Again, the conclu-
sion reached by Baker and Benson is that a large reduction
in the on-axis scintillation index of an intermediate-size
collimated beam as predicted by the conventional Rytov
theory cannot be achieved in the presence of beam wander.
By adding tracking wander to the wave optics simulation,
the on-axis simulation results and Rytov theory were in
better agreement. However, the radial �or off-axis� irradi-
ance fluctuations predicted by the numerical simulation re-
sults with tracking wander included21 were generally below
the results predicted by the conventional Rytov theory.

In this work, we use weak and strong irradiance fluctua-
tion theory to present a further analysis of the behavior of a
collimated beam along an uplink path to space, taking into
account whether the movement of the short-term wandering
beam is being tracked or not. In particular, we develop new
expressions for the longitudinal and radial scintillation in-
dex components of an uplink propagating beam that are
modifications of models based on the conventional Rytov
theory. To do this, we develop a new expression for the
beam wander displacement associated with an uplink beam
that manifests itself as an apparent or “effective pointing
error” that must be accounted for in the measured value of
the scintillation index when the beam is not perfectly
tracked.

2 Review of the Rytov Theory

In the context of the conventional Rytov theory, most early
investigations into the statistical characteristics of an opti-
cal wave propagating through weak atmospheric turbulence
were concerned with the log-amplitude variance ��

2 of an
infinite plane wave or spherical wave, both of which are
limiting cases of the more general lowest-order Gaussian-
beam wave. The governing integrals for beam-wave propa-
gation were formulated first by Schmeltzer,1 who used the
Rytov method. Fried and Seidman2 solved these integrals
for the longitudinal component of the log-amplitude vari-
ance using a Kolmogorov power-law spectrum model for
refractive-index fluctuations. Their analysis discussed the
transition of a collimated beam from spherical wave to
plane-wave propagation for increasing transmitter aperture
size. They also predicted a substantial reduction in scintil-
lation for a large-aperture transmitted beam focused on a
receiver. Ishimaru4 used spectral analysis techniques to ob-
tain expressions for several statistical quantities, including
the log-amplitude variance. His general results include
points at some radial distance from the boresight and, for a
focused beam, predict the same scintillation reduction for
the longitudinal component as that of Fried and Seidman.
More recent studies of scintillation have also led to the
same results.5,6,8,22

2.1 Beam Parameters

Let us first consider the free-space analysis of a unit-
amplitude Gaussian-beam wave that in the plane of the
transmitter at z=0 is described by

U0�r,L� = exp�−
r2

W0
2 − i

kr2

2F0
� , �1�

where r is a vector in the transverse direction, W0 is the 1/e
field radius of the beam, and F0 is the phase front radius of
curvature. Also, k=2� /� is the optical wave number and �
is wavelength. We use the convention that F0�0 for a con-
vergent beam and F0�0 for a divergent beam. For a propa-
gation path of length L along the positive z axis, it is con-
venient to describe free-space propagation by use of two
sets of nondimensional beam parameters10

�0 = 1 −
L

F0
, �0 =

2L

kW0
2 , �2�

� = 1 +
L

F
=

�0

�0
2 + �0

2 , � =
2L

kW2 =
�0

�0
2 + �0

2 . �3�

The first set of beam parameters in Eq. �2� characterizes the
beam at the transmitter, and the second set in Eq. �3� char-
acterizes the beam at the receiver, where W and F represent
the spot size radius and phase front radius of curvature of
the beam as viewed in the receiver plane. In some expres-
sions used later, it is also useful to introduce the notations

�̄0=1−�0 and �̄=1−�.

2.2 Mean Irradiance and Strehl Ratio

Under the conventional Rytov approximation, the on-axis
mean irradiance is10

�I�0,L�� =
W0

2

WLT
2 =

W0
2

W2�1 + T�
, �4�

where WLT is the long-term spot radius under weak irradi-
ance fluctuations, � � denotes an ensemble average, and

T = 4�2k2�
0

L �
0

	


�n�
,z�

��1 − exp�−
�L
2�1 − z/L�2

k
�	d
dz , �5�

where �n�
 ,z� is the atmospheric spatial power spectrum.
From Eq. �4� we obtain the corresponding weak fluctuation
Strehl ratio

�S� =
1

1 + T
. �6�

2.3 Scintillation Index

Under the conventional Rytov theory, the scintillation index
of a Gaussian-beam wave is related to the log-amplitude
variance by4,7,10
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�I
2�r,L� = 4��

2�r,L�

= 8�2k2L�
0

1 �
0

	


�n�
�exp�−
�L
22

k
�

�
I0�2�r
� − cos�L
2

k
�1 − �̄�	�d
d , �7�

where I0�x� is a modified Bessel function of the first kind
and =1−z /L is a normalized distance variable. The dis-
tinguishing feature of this expression for the scintillation
index compared with that for an infinite plane wave or
spherical wave is the dependency of Eq. �7� on the radial
position in the beam. Because of this dependency, it is
sometimes useful to separate the scintillation index into the
sum of a radial and a longitudinal component in the form
�I

2�r ,L�=�I,r
2 �r ,L�+�I,l

2 �L�, where we simply rearrange the
integrals in Eq. �7� to identify

�I,r
2 �r,L� = 8�2k2L�

0

1 �
0

	


�n�
�exp�−
�L
22

k
�

��I0�2�r
� − 1d
d , �8�

�I,l
2 �L� = 8�2k2L�

0

1 �
0

	


�n�
�exp�−
�L
22

k
�

�
1 − cos�L
2

k
�1 − �̄�	�d
d . �9�

If we use the Kolmogorov spectrum

�n�
,z� = 0.033Cn
2�z�
−11/3, �10�

where we assume Cn
2�z� varies as a function of propagation

distance z, Eqs. �8� and �9� can be reduced, respectively, to

�I,r
2 �r,L� = 14.50k7/6L5/6�5/6 r2

W2�
0

L

Cn
2�z��1 − z/L�5/3dz ,

�11�

�I,l
2 �L� = 8.70k7/6L5/6 Re �

0

L

Cn
2�z��i5/6�1 − z/L�5/6

��1 − ��̄ + i���1 − z/L�5/6 − �5/6�1 − z/L�5/3�dz ,

�12�

where i=�−1 and Re denotes the real part. Next, we intro-
duce suitable modifications of these standard scintillation
models to account for the effects of beam wander.

3 Beam Wander Model
A finite optical beam will randomly wander �snake-like� as
it propagates through the atmosphere. Over short time pe-
riods the beam profile at the receiver can become highly
skewed from a Gaussian profile and, in addition, the entire
spot may move off the boresight �see Fig. 1�. We refer to
the instantaneous point of maximum irradiance as the “hot
spot” �Fig. 1�a�. This combined phenomenon, which is a
refinement of what is commonly called beam wander, can

be characterized statistically by the variance of the magni-
tude of the wander displacement. It has been shown experi-
mentally that beam wander has a time constant on the order
of the beam diameter over the transverse wind speed, and
thus its effect can be mitigated with the use of a fast-
tracking transmitter.23

In addition to references already given, beam wander
has been extensively studied by a number of other
researchers.24–30 It is known that beam wander is caused
mostly by large-scale turbulence, and for that reason the
analysis is often based on the geometrical optics method
�GOM� where diffraction effects are neglected. Chernov25

and Beckmann26 both used the GOM in their analyses, but
did not consider the finite size of the beam. Chiba27 in-
cluded the finite size of the beam in his analysis for the case
of a collimated beam, and Churnside and Lataitis23 used the
GOM to develop an expression for the variance of the beam
wander displacement that included both collimated and fo-
cused beams. By use of the Markov approximation, a more
comprehensive analysis of beam wander that includes the
effects of diffraction has also been developed.28,29 In this
latter approach, the analysis for the displacement variance
led to the introduction of a spatial filter that suppresses the
influence of turbulent cell sizes smaller than the beam.
Fante30 developed a relation between the long-term beam
spot size, the short-term beam spot size, and the variance of
displacement of the short-term beam using fourth-order sta-
tistics. Tavis and Yura31 developed a short-term beam pro-
file based entirely on the small-scale effect of turbulence.

3.1 General Model
Beam wander at the receiver plane can be modeled as if it
arises from a random tilt angle at the transmitter plane,
similar to angle-of-arrival fluctuations of a reciprocal
propagating wave with the receiver diameter replaced by
the transmitter beam diameter. The combined movement of
the hot spot and short-term beam centroid as depicted by
the illustrations in Fig. 1 paints out the large outer circle

Fig. 1 �a� Beam wander as described by movement of the “hot
spot” �instantaneous center� within the beam. �b� The long-term spot
size is the result of beam wander, beam breathing, and diffraction.
The shaded circles depict random motion of the short-term beam in
the receiver plane.
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over a long time period that we call the long-term spot size
WLT. Based on this model, we write the long-term spot size
in Eq. �4� as an averaged statistical measure that can be
written in the form

�13�

where we have partitioned the quantity T from Eq. �5� into
a sum of small-scale �SS� contributions TSS and large-scale
�LS� contributions TLS. The first term in the middle expres-
sion in Eq. �13� is that due to free-space diffraction spread-
ing, the center term of this expression is additional spread-
ing caused by turbulent scale sizes smaller than the beam,
and the last term describes the beam wander displacement
variance of the beam in the receiver plane caused by turbu-
lent scale sizes larger than the beam. The first two terms
together in the middle expression define the short-term
beam radius WST. It must be noted that as a result of using
W to define the 1/e2 radius of the irradiance profile, our
beam wander term W2TLS= �rc

2� in Eq. �13� is a factor of
2 larger than the parameter that other investigators20,21,23,30

have used to characterize beam centroid wander.
To emphasize the effect of large-scale turbulence on

beam wander, we model the last term on the right in Eq.
�13� under weak irradiance fluctuations by the expression

�rc
2� = W2TLS = 4�2k2W2�

0

L �
0

	


�n�
,z�HLS�
,z�

�
1 − exp�−
�L
2�1 − z/L�2

k
	�d
dz , �14�

where we have introduced the large-scale filter function28,29

HLS�
,z� = exp�− 
2W2�z� = exp�− 
2W0
2��1 − z/F0�2

+ �2z/kW0
2�2� . �15�

The Gaussian filter function in Eq. �15� only permits ran-
dom inhomogeneities equal to the beam size and larger to
contribute to beam wander, thereby eliminating small-scale
effects that lead to the short-term spot size in Eq. �13�. In
Eq. �15�, W�z� is the free-space beam radius at variable
distance z�0�z�L� from the transmitter.

It can be shown that the last term in the argument of the
exponential function in Eq. �15� can be neglected in our
analysis, because it describes free-space diffraction effects.
That is, we use a geometrical optics approximation to
evaluate the integral in Eq. �14�, and, owing to the filter
function in Eq. �14� that eliminates the effects of large spa-
tial wave numbers �i.e., small-scale turbulence�, we can fur-
ther invoke the approximation

1 − exp�−
�L
2�1 − z/L�2

k
	 �

�L
2�1 − z/L�2

k
,

�16�

�L
2�1 − z/L�2

k
� 1.

Consequently, with these simplifications we find that Eq.
�14� becomes

�rc
2� = 7.25L2W0

−1/3�
0

L

Cn
2�z��1 − z/L�2�1 − z/F0�−1/3dz . �17�

We note that the scaling constant in Eq. �17� is roughly 3.5
times the constant in Eq. �10� of Churnside and Lataitis23

for a single-axis displacement variance when rewritten in
terms of W0.

4 Irradiance Statistics for an Uplink Path

For applications involving propagation along a slant path
near the ground, it is standard practice to assume the struc-
ture parameter Cn

2�z� is a function of propagation distance z.
Moreover, in propagation along an uplink path to space, it
is customary to use a Cn

2�h� profile model to describe varia-
tions in the structure parameter as a function of altitude h.
Several Cn

2�h� profile models, including both day and night
models, are used by the technical community for ground-
to-space or space-to-ground applications.32 One of the most
widely used models is the Hufnagel-Valley �H-V� model
described by

Cn
2�h� = 0.00594� V

27
�2

�10−5h�10 exp�−
h

1000
� + 2.7

� 10−16 exp�−
h

1500
� + A exp�−

h

100
� , �18�

where V is a pseudo-wind and A is a parameter commonly
set to A=1.7�10−14m−2/3. By also selecting V=21m/s, the
model is then referred to as the HV5/7 model or HV-21
model. Although there also exist some models for outer
scale as a function of altitude, such as that based on scin-
tillation and ranging �SCIDAR� observations at the Euro-
pean Southern Observatory in Chile,33 such models are still
generally viewed as controversial by many in the commu-
nity. Moreover, the authors are not aware of any acceptable
inner scale models as a function of altitude. As a result, for
the geometry associated with an uplink path, it is customary
to assume a Kolmogorov spectrum of the form in Eq. �8�,
where the effects from inner scale and outer scale are not
taken into account.

It was shown many years ago that the principle of reci-
procity applies to the performance of a telescope as mea-
sured by its effective coherence size in atmospheric turbu-
lence, whether it is functioning as part of a transmitter or as
part of a receiver.34 Thus, by invoking the principle of reci-
procity, we argue that beam wander at the receiver plane
can be modeled as if it arises from a random tilt at the
transmitter plane. In this sense, the random tilt is similar to
angle-of-arrival fluctuations of a reciprocal propagating
wave with the receiver diameter replaced by the transmitter
beam diameter.

In the case of a collimated beam, Eq. �17� reduces to
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�rc
2� = 7.25L2W0

−1/3�
0

L

Cn
2�z��1 − z/L�2dz . �19�

Adapted specifically for an uplink path at zenith angle �,
we can rewrite the beam wander displacement variance in
Eq. �19� in the form

�rc
2� = 7.25�H − h0�2 sec3���W0

−1/3

��
h0

H

Cn
2�h��1 −

h − h0

H − h0
�2

dh

� 0.54�H − h0�2 sec2���� �

2W0
�2�2W0

r0
�5/3

, �20�

where H is the altitude of the receiver and h0 is the altitude
of the transmitter �which we generally assume is zero�. In
arriving at our result, we have used the approximation

�
h0

H

Cn
2�h��1 −

h − h0

H − h0
�2

dh � �
h0

H

Cn
2�h�dh = �0, �21�

in the second line of Eq. �20� and introduced the atmo-
spheric coherence diameter r0 �i.e., Fried’s parameter� de-
fined by

r0 = �0.423�0k2 sec ��−3/5. �22�

Here, we see that the beam wander variance involves the
free-space diffraction angle � /2W0 and the tilt phase fluc-
tuations averaged over the transmitter aperture, the latter of
which are on the order of �2W0 /r0�5/3. Except for the scal-
ing constant, Eq. �20� is the same result as Eq. �40� in
Fante30 and Eq. �16� in Baker and Benson.21

In Fig. 2 we illustrate the effect of the root-mean-square
�rms� angular beam wander ��rc

2� /L in microradians for
various size collimated beams from ground to space at ze-
nith angles �=0 and 60 deg. Note that the angular displace-
ment is greatest for smaller beams and steadily decreases
with increasing beam radius.

4.1 Strehl Ratio
Within the laser beam-control community, the standard
measure of system performance is the Strehl ratio, which is

the ratio of the measured on-axis irradiance and the
diffraction-limited irradiance. Most of the published theo-
ries relating to Strehl estimates assume a uniformly illumi-
nated aperture of diameter D, and if turbulence-induced
phase distortions are close to the plane of the transmitter, it
has been shown that the Maréchal approximation is reason-
ably accurate for weak-turbulence conditions

�S� � exp�− �D/r0�5/3 . �23�

Improved estimates have been derived by Andrews and
Phillips.10 Under weak fluctuation conditions, they show
�see also Eq. �6�

�S� = �1 + �D/r0�5/3−1, D/r0 � 1, �24�

whereas under a broad range of phase distortions their re-
sult is

�S� = �1 + �D/r0�5/3−6/5, 0 � D/r0 � 	 . �25�

Both Eqs. �24� and �25� can be rewritten for a Gaussian
beam of radius W0 using the reciprocity property.34 The
relationship D=23/2W0 has also been incorporated, which
derives from an optimal match between the far-field irradi-
ance profiles associated with a circular aperture and an in-
finite Gaussian. Thus, the far-field Strehl ratio deduced
from Eq. �25� for uncorrected turbulence effects can be
written as

�S�uncorrected = �1 + 25/2�W0/r0�5/3−6/5. �26�

Most applications of optical beam propagation involve
some form of active target tracking, so Strehl and scintilla-
tion estimates for tilt correction are of great practical im-
portance. Closed-loop beam tilt control is essential for any
device application that is highly sensitive to far-field irra-
diance fluctuations. Free-space optical communication sys-
tems are generally power limited and severely impacted by
turbulence-induced fading, so jitter mitigation is often a
primary consideration in the design of the beam-control
hardware. Because many communication links are bidirec-
tional, beam-pointing information is usually derived from
the apparent direction of the incoming light from the com-
panion transceiver. Tracking errors tend to be dominated
by servo-loop bandwidth limitations, and point-ahead
anisoplanatism may be important if the platform velocity is
high. However, an assessment of performance with imper-
fect beam control is outside the scope of this work.

Fried35 was one of the first investigators to examine the
behavior of a tracked beam, and his results show that the
normalized irradiance is significantly larger than that for an
untracked beam when the D /r0 ratio is close to unity. An
analysis of the simulation results provided by Lincoln
Laboratory shows that the tilt-corrected Strehl is closely
approximated by the following expression

�S�till corrected � 
1 + �5.56 −
4.84

1 + 0.04�W0/r0�5/3	
��W0/r0�5/3�−6/5

. �27�

We note here that Eqs. �25� and �27� are consistent with

Fig. 2 The rms angular beam wander in microradians plotted as a
function of beam radius at the receiver for a transmitter on the
ground and a satellite in space.
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Noll’s observation36 that the uncorrected phase variance at
the transmitter plane is 1.03�D /r0�5/3 and the magnitude of
the tilt component is 0.896�D /r0�5/3. Because the tilt com-
ponent leads to an expression for the Strehl that is valid
only when D /r0�1, Eq. �27� was developed as an accurate
modification of the tilt-corrected Strehl for both small and
large values of the ratio D /r0. The numerical constants that
appear in Eq. �27� were chosen on the basis of a parametric
optimization process applied to both uplink and horizontal-
path simulation data.

4.2 Wander-Induced Pointing Error Variance

As defined before, beam wander describes movement of the
short-term beam centroid, but also includes movement of
the hot spot around the beam centroid that can produce a
skewed short-term Gaussian-beam profile. The combined
effects of short-term beam centroid and hot spot move-
ments are caused by turbulent atmospheric scale sizes on
the order of the beam and larger. However, long-term
beam-wander-induced scintillation is caused by a subset of
the large scale sizes that are bounded above by the atmo-
spheric coherence width r0. This leads to an effective
“pointing error displacement” �pe of the beam that is dis-
tinct from the centroid displacement, and results in an in-
crease of the detected on-axis scintillation index over that
deduced from the conventional Rytov theory.

More specifically, for beams satisfying W0�r0, the de-
tected scintillation at the receiver due to a wander-induced
pointing displacement error is the result of turbulent cells
near the transmitter on the order of the beam size and
larger, up to the atmospheric coherence width r0. Hence, to
determine the variance of the wander-induced pointing er-
ror, we now introduce a modified version of the spatial
frequency filter function in Eq. �15� that eliminates the ef-
fects of scale sizes that are larger than the atmospheric
coherence width. This filter function is described by

H�
,�point error = exp�− 
2W0
2��0 − �̄0�2

��1 − exp�−

2


r
2�	 , �28�

where =1−z /L is a normalized distance variable and 
r is
the spatial frequency cutoff associated with the atmospheric
coherence width, i.e.,


r =
Cr

r0
. �29�

The parameter Cr is a scaling constant that is typically in
the range of 1 to 2�, which depends on the definition of r0
�e.g., along horizontal paths the atmospheric coherence
width may be associated with a spherical wave�. When
W0�r0, the same filter function in Eq. �28� is used, but in
this case the amplitude of the filter tends to zero as the ratio
W0 /r0 increases; consequently, we expect the wander-
induced pointing error to diminish.

To calculate the pointing error variance �pe
2 in the case

of a collimated beam, we substitute the filter function in Eq.
�28� into the integral in Eq. �5�, multiplied by W2, to find

�pe
2 = 4�2Lk2W2�

0

1 �
0

	


�n�
,�H�
,�jitter

��1 − exp�−
�L
22

k
�	d
d

= 0.54�H − h0�2 sec2���� �

2W0
�2�2W0

r0
�5/3

��1 − � Cr
2W0

2/r0
2

1 + Cr
2W0

2/r0
2�1/6	

= �rc
2��1 − � Cr

2W0
2/r0

2

1 + Cr
2W0

2/r0
2�1/6	 , �30�

where we have employed the geometrical optics approxi-
mation in Eq. �16� once again. From Eq. �30� we see that
the pointing error �pe is proportional to rms beam wander
displacement ��rc

2�. Also, depending on the value of the
ratio 2W0 /r0, we can easily deduce from Eq. �30� the fol-
lowing asymptotic behavior:

�pe
2 ���

�

2W0
�2�2W0

r0
�5/3

�H − h0�2 sec2��� , 2W0/r0 � 1

� �

2W0
�2� r0

2W0
�1/3

�H − h0�2 sec2��� , 2W0/r0 � 1� . �31�

In particular, when 2W0�r0, we recognize that �pe
2 ��rc

2�.
And although the beam wander variance can be quite large
in this case, the ratio �pe

2 /W2 will be small because of the
large beam radius W in the receiver plane �e.g., see Eq.
�32�. In the other asymptotic case 2W0�r0, the pointing
error variance �pe

2 will tend to zero. That is, when 2W0
�r0, the short-term beam no longer wanders in the same
sense but breaks up into smaller pieces due to the loss of
spatial coherence across the beam. As a consequence, we
expect beam wander to have little influence on the on-axis
scintillation index in either asymptotic regime in Eq. �31�.

5 Uplink Scintillation Index

Beam wander effects are contained in the on-axis behavior
of the irradiance through the long-term spot size WLT de-
fined by Eq. �4�, but this is not the case for the on-axis
scintillation index. Thus, for an untracked beam, the longi-
tudinal component of the detected scintillation will neces-
sarily increase over that predicted by the Rytov theory due
to the impact of the random wandering of the short-term
beam spot on and off boresight.

5.1 Untracked Beam

In view of the previous comments, we need to redefine the
components of the detected scintillation index, depending
on whether the beam is tracked or not. Because �pe repre-
sents an effective pointing error displacement of a Gaussian
beam at the receiver, we define the longitudinal component
for an untracked beam by the expression
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�I,l
2 �L�untracked = 5.95�H − h0�2 sec2����2W0

r0
�5/3��pe

W
�2

+ 8.70�u1k7/6�H − h0�5/6 sec11/6��� . �32�

In arriving at this result, we have introduced the notation

�u1 = Re �
h0

H

Cn
2�h��5/6�� + i�1 − �̄�5/6 − �5/65/3�dh ,

�33�

and incorporated the relation �L��kW0
2�

14.53�5/6k7/6�H − h0�5/6 sec11/6���

��
h0

H

Cn
2�h��1 −

h − h0

H − h0
�5/3

dh � 5.95�2W0

r0
�5/3

. �34�

In addition, we set �pe=�pe/L.
The first term on the right-hand side of Eq. �32� is sim-

ply the conventional radial term in Eq. �11� for the scintil-
lation index evaluated at the displacement r=�pe. We note
that this on-axis scintillation model is consistent with that
described by Dios et al.20 concerning beam-wander-induced
scintillation. At radial distances r��pe, we define the de-
tected scintillation index throughout the beam profile by

�I
2�r,L�untracked = 5.95�H − h0�2 sec2���

��2W0

r0
�5/3��r − �pe

W
�2

U��r − �pe�

+ �I,l
2 �L�untracked, �r � W/L , �35�

where �r=r /L and U�x� is the unit step function

U�x� = 
1, x � 0

0, x � 0
� . �36�

Thus, in this model it is assumed that the detected scintil-
lation index in Eq. �35� is equal to the longitudinal compo-
nent throughout the circular �pointing error� domain 0�r
��pe.

5.2 Tracked Beam—Part 1
The notion of “tracking a beam” can vary from system to
system, depending on a chosen technique. In particular, it
might mean tracking the hot spot in the beam or removing
tilt from the wandering beam as discussed in Sec. 4.1,
among others. In practice, the technique of hot-spot track-
ing is challenging when the fluctuations become strong,
because the beam tends to break up into multiple beams,
thereby creating more than one hot spot. For the theoretical
model developed in this section, we define a tracked beam
as one based on the removal of rms beam wander effects. In
this case, the longitudinal component is described by

�I,l
2 �L�tracked � �B

2 = 8.70�u1k7/6�H − h0�5/6 sec11/6��� . �37�

We recognize this expression as that based on the conven-
tional Rytov theory.10 By removing the rms beam wander
displacement from the radial component, the scintillation

index at off-axis points throughout the beam profile be-
comes

�I
2�r,L�tracked = 8.70�u1k7/6�H − h0�5/6 sec11/6���

+ 5.95�H − h0�2 sec2����2W0

r0
�5/3

� ��r − ���c
2�

W
�2

U��r − ���c
2��,

0 � �r � W/L , �38�

where ���c
2�=��rc

2� /L. Note that the final result in Eq. �38�
is not the same as that derived by the conventional Rytov
theory. In particular, Eq. �38� predicts somewhat lower off-
axis scintillation values than that from the conventional
Rytov theory.

5.3 Tracked Beam—Part 2
The tilt-corrected numerical simulations developed at Lin-
coln Laboratory and used in this study impose “perfect
tracking” in the sense that sensor noise and bandwidth limi-
tations are neglected. The Lincoln Laboratory code infers
the beam position from the instantaneous far-field beam
profile and measures the irradiance centroid. Results pub-
lished by other researchers may be based on different track-
ing schemes.

Here we develop a model for the tracked beam case to
compare with simulation results derived from the Lincoln
Laboratory code. To do so, we remove the rms “tilt” from
the far-field beam, using the two-axis Zernike tilt variance
defined by7

TZ
2 = 0.32� �

2W0
�2�2W0

r0
�5/3

. �39�

By removing the rms Zernike tilt displacement from the
rms beam wander displacement, we obtain the tilt-corrected
pointing error variance, given by

�pe,TC
2 = ���rc

2� − LTz�2�1 − � Cr
2W0

2/r0
2

1 + Cr
2W0

2/r0
2�1/6	 . �40�

In terms of Eq. �40�, the longitudinal component for a tilt-
corrected beam is given by the expression

�I,l
2 �L�tracked = 5.95�H − h0�2 sec2����2W0

r0
�5/3��pe,TC

W
�2

+ 8.70�u1k7/6�H − h0�5/6 sec11/6��� , �41�

where �pe,TC=�pe,TC/L. Note that Eq. �41� has the same
form as Eq. �32� for an untracked beam, but with the tilt-
corrected wander-induced pointing angle �pe,TC taking the
place of �pe. That is, the tilt-corrected beam still has a
residual pointing error term in the detected scintillation in-
dex.

5.4 Strong Irradiance Fluctuations
Under strong irradiance fluctuations such as those caused
by large-diameter beams �W0�r0� and/or large zenith
angles, the weak fluctuation results presented before are not
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adequate. Building off the uplink scintillation model for an
uplink spherical wave under strong irradiance
fluctuations,12 the corresponding scintillation model for the
longitudinal component of an uplink, collimated beam with
removal of the rms beam wander effects is given by

�I,l
2 �L�tracked = exp
 0.49�B

2

�1 + 0.56�1 + ���B
12/57/6

+
0.51�B

2

�1 + 0.69�B
12/5�5/6� − 1, �42�

where �B
2 is the longitudinal component defined by Eq.

�37�. Under these conditions, Eq. �42� is valid for all beam
diameters and zenith angles. The scintillation index
throughout the beam profile with the removal of rms beam
wander effects becomes

�I
2�r,L�tracked = 5.95�H − h0�2 sec2����2W0

r0
�5/3

� ��r − ���c
2�

W
�2

U��r − ���c
2��

+ �I,l
2 �L�tracked, �43�

where the longitudinal component is defined by Eq. �42�. In
the case of an untracked beam, the extension of Eq. �32�
takes the form

�I,l
2 �L�untracked = 5.95�H − h0�2 sec2����2W0

r0
�5/3��pe

W
�2

+ exp
 0.49�B
2

�1 + 0.56�1 + ���B
12/57/6

+
0.51�B

2

�1 + 0.69�B
12/5�� − 1. �44�

Similarly, the general expression for the untracked beam at
any radial position within the profile of the free-space beam
is

�I
2�r,L�untracked = 5.95�H − h0�2 sec2���

��2W0

r0
�5/3��r − �pe

W
�2

U��r − �pe�

+ �I,l
2 �L�untracked, �r � W/L , �45�

where the longitudinal component is defined by Eq. �44�. In
the case of a tracked beam using tilt-correction methods,
we simply replace �pe in Eqs. �44� and �45� with �pe,TC.

The validity of models in Eqs. �43�–�45� generally re-
stricts the wander-induced pointing error scintillation term
�e.g., the first term on the right in Eqs. �43�–�45� to values
on the order of unity or less. Thus, at low Earth orbit
�LEO�, we find that Eqs. �43�–�45� may be valid for all
beam sizes at the transmitter within zenith angles �
�60 deg, but at geostationary orbit �GEO�, this limitation
may restrict their validity to beams for which W0 /r0�1,
even at zero zenith. However, because the removal of beam
wander effects or tilt correction tends to reduce scintilla-

tion, the validity of the resulting tracked scintillation mod-
els may extend to beams larger than those in the untracked
case.

6 Numerical Wave Optics Simulation Study
The primary validation tool for the analytical expressions
developed in this investigation is the wave propagation
code, POPS, developed at Lincoln Laboratory. This 3-D
time-dependent program derives from MOLLY, which was
written at Lincoln in the late 1980’s to study turbulence and
thermal blooming effects. Both programs incorporate sub-
routines to generate random Kolmogorov phase screens,37

and provide a means to propagate from one screen to the
next using a 2-D Fresnel transformation.38 As the beam
propagates from screen to screen, the Talanov scale
transformation39 is imposed to maintain a constant ratio
between the beam size and the dimensions of the field dis-
cretization grid. An arbitrary number of phase screens can
be created to simulate the desired Cn

2 profile, and each
screen can be moved perpendicular to the beam in accor-
dance with the wind velocity profile for time-dependent
simulations. Statistical behavior is typically characterized
by running 100,000 independent realizations of the propa-
gation channel. POPS is a state of the art C-based code with
a web-browser interface, which currently functions on a
16-node Xeon processor cluster.

For statistical investigations, the output of the POPS
code is generally configured to record the irradiance at a
small number of grid points within the receiver plane. To
obtain a better understanding of the physical processes that
drive beam scintillation, it is often useful to study selected
images of the entire profile. As illustrated in Fig. 3, one can
clearly distinguish three regimes of behavior based on the
W0 /r0 ratio. Log-normal statistics are only observed when
W0 /r0�1, where the conventional Rytov approximation is
applicable. Tilt effects dominate for untracked beams when
W0 /r0�1, and saturation due to beam breakup occurs
when W0 /r0�1. In the latter case, the statistics can be
characterized as a negative exponential function. Figure 3
demonstrates that beam-wave scintillation is not a simple
process, but rather the result of a complex set of phenom-
ena that are strongly dependent on the propagation geom-
etry and the turbulence profile.

Fig. 3 The beam profile within the receiver plane undergoes a se-
ries of dramatic changes as the W0 / r0 ratio increases. When this
parameter is small, the beam is nearly diffraction limited and the
irradiance fluctuations are log normal with unity mean. Tilt effects
dominate when the W0 / r0 is close to one, and as this ratio becomes
large, beam breakup occurs and saturation is achieved. Distinct dif-
ferences are found in the statistical behavior of the irradiance in
each of these three regimes.
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Lastly, it must be noted that in all of our investigations
the target is placed at the geometrical focus of the beam, so
that it is always situated in the Fourier transform plane of
the transmitter. When this constraint is applied, the ob-
served scintillation effects are insensitive to the value of the
uplink propagation range as long as the target is well out-
side of the atmosphere. Our use of the term “collimated
beam” in the included illustrations is in the context of
ground-to-space propagation geometries, where the re-
ceiver range is large compared to the Rayleigh range. For
these scenarios, there is no practical distinction between
collimated and focused beams.

7 Comparison of Theory with Simulation
Results

Comparisons of uplink-path simulation output and mean
Strehl predictions based on Eqs. �26� and �27� are shown in
Fig. 4 as a function of W0 /r0. Simulation results are based
on the HV5/7 model using a Kolmogorov spectrum. In this
simulation, a 1.55-�m Gaussian beam is propagated verti-
cally to a satellite in geostationary orbit at a range of
40,000 km. The atmospheric coherence width in this case is
r0=19 cm.

In Fig. 5 we show simulation results40 as a function of
beam radius for the uplink longitudinal component of an
untracked collimated beam in geosynchronous orbit �GEO�
with zenith angles 0 and 60 deg. Simulation results are
based on the HV5/7 model using a Kolmogorov spectrum
and wavelength �=0.84 �m. Theoretical curves �solid and
dashed lines� obtained from Eq. �32� are also shown for
comparison. However, so as to provide a good fit with these
particular simulation results, we selected Cr=3.86 �i.e., 
r
=3.86/r0�. The dotted curve corresponds to Eq. �37� based
on the conventional Rytov theory. Here we see close agree-
ment of the beam wander theoretical model with simulation
results at both zenith angles.

In Figs. 6 and 7 we show the simulation results of Baker
and Benson21 for an uplink, untracked, collimated beam
with wavelength �=1.6 �m to a target at 300 km, zero
zenith angle, and r0=20 cm. In both figures, the H-V5/7
model was combined with a Kolmogorov spectrum to pro-
duce the results. In Fig. 6, we plot the longitudinal compo-
nent of the scintillation index as a function of beam radius
at the transmitter, whereas in Fig. 7 we show the scintilla-
tion index as a function of off-axis distance for a collimated
beam with W0=5 cm. Also shown in both figures are theo-
retical results deduced from Eqs. �44� and �45�, respec-
tively. In this case, we found a good fit between theory and
simulation results by selecting 
r=� /r0. Because �pe
�30 cm, the theoretical curve in Fig. 7 does not increase

Fig. 4 Comparison of theory and simulation results for uncorrected
and tilt-corrected mean Strehl ratio. The solid circles �uncorrected�
and solid triangles �tilt-corrected� represent simulation results, and
the dashed curves are theoretical results.

Fig. 5 The longitudinal component of scintillation as a function of
beam radius. The filled triangles and open circles represent simula-
tion results for an untracked beam �courtesy of Dios�. Theoretical
results for untracked beams are also shown, as is that based on the
conventional Rytov theory �dotted curve�.

Fig. 6 On-axis scintillation index for an untracked collimated beam
as a function of beam radius at the transmitter. The dashed curve
represents the conventional Rytov theory. �Simulation results cour-
tesy of Baker.�

Fig. 7 Scintillation index for an untracked collimated beam of radius
5 cm as a function of off-axis distance. The dashed curve repre-
sents the conventional Rytov theory. �Simulation results courtesy of
Baker.�
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with values of r until r��pe. For comparison, we also
show in both figures the scintillation index predicted by the
conventional Rytov theory �dashed curves�.

Similar simulation results and theoretical curves are il-
lustrated in Figs. 8 and 9, but this time for the case of a
tracked beam. In the simulation results, the “tracking” was
accomplished by moving the center of the beam to the
boresight in each realization before averaging. Therefore,
the simulation procedure should produce somewhat differ-
ent scintillation values after averaging than those obtained
in the theoretical results by first averaging and then remov-
ing the rms beam wander displacement, as indicated by
Eqs. �42� and �43�. In Fig. 8, we plot the on-axis simulation
results of Baker and Benson21 for a tracked collimated
beam as a function of beam radius, and in Fig. 9 we plot the
simulation results as a function of off-axis distance for an
initial 5-cm radius beam. Note that because ��rc

2��2 m,
there is no appreciable increase in the simulation results or
the theoretical scintillation index until the radial distance
exceeds 2 m. The dashed curve is based on the conven-
tional Rytov theory for off-axis fluctuations.

Lastly, in Fig. 10 we plot simulation results generated at
Lincoln Laboratory for uncorrected �untracked� and tilt-
corrected �tracked� uplink collimated beams to a receiver at
zenith and at a range of 40�106 m. Also shown are theo-
retical results from the beam wander theory given by Eq.
�44� with �pe replaced by �pe,TC �solid and dotted curves�
and the conventional Rytov theory �dashed curve�. As in

Figs. 6–9, we found a good fit between theory and simula-
tion results with 
r=� /r0. To avoid numerical difficulties
associated with the theoretical model for large beams and
GEO ranges, the theoretical results shown in Fig. 10 were
generated using a 300-km range �LEO� rather than the
40-Mm range of the simulation data. Actual scintillation
results at the two ranges should be the same. That is, the
untracked simulation results developed at Lincoln Labora-
tory for vertical propagation to a range of 40 Mm are
nearly identical to those generated by Baker and Benson21

in Fig. 6 for a target at zenith and a range of 300 km.

8 Discussion
It has long been recognized that the conventional Rytov
theory for a Gaussian-beam wave is somewhat incomplete
with respect to predicting the on-axis scintillation index of
a propagating focused beam along a horizontal path or that
of an uplink collimated �or focused� beam to space. More-
over, early publications suggested that the reason the Rytov
theory was deficient was that it did not include the effects
of beam wander, which will generally increase the on-axis
scintillation index over that predicted by the Rytov theory.
More recent publications based on simulation studies have
led to renewed interest in this topic and its impact on free-
space optical communication links. In this work, we have
developed a theoretical model for the scintillation index of
an untracked, uplink collimated beam to space that ac-
counts for the observed increase in scintillation through an
induced pointing error caused by beam wander. Theoretical
results from these models are compared with our own
simulation results as well as those of other researchers.

Unlike previous researchers, we define beam wander as
a combination of hot spot movement within the beam as
well as that which involves movement of the whole short-
term beam centroid in the receiver plane. We attribute the
combined movements to refractive-index scale sizes that
are on the order of the beam and larger. The variance �rc

2� of
beam wander displacement derived here can be related to
earlier results by noting �rc

2�=2��2�, where ��2� denotes the
beam centroid variance associated with the largest scale
sizes. Although both centroid and hot spot movements con-
tribute to the long-term spot size WLT in the receiver plane,
only those scale sizes roughly on the order of the atmo-
spheric coherence width r0 can contribute to the wander-

Fig. 8 On-axis scintillation index for a tracked �beam wander re-
moved� collimated beam as a function of beam radius at the trans-
mitter. �Simulation results courtesy of Baker.�

Fig. 9 Scintillation index for a tracked �beam wander removed� col-
limated beam of radius 5 cm as a function of off-axis distance. The
dashed curve represents the conventional Rytov theory. �Simulation
results courtesy of Baker.�

Fig. 10 On-axis scintillation index for untracked and tilt-corrected
collimated beams as a function of beam radius at the transmitter.
The theoretical curves were calculated for a LEO satellite.
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induced increase in the on-axis scintillation index. As a
result, we find the effective wander-induced pointing error
�pe at the receiver to be much smaller than the rms beam
wander displacement ��rc

2�, except in the case of very
small beams at the transmitter.

Next, we wish to comment on our choice of scaling
constant Cr that appears in Eq. �29�, namely 
r=Cr /r0. As
stated before, we expect this scaling constant to lie within
the range of 1 to 2�, although we have not established its
exact value. To compare our theory with simulation results
obtained by somewhat different techniques employed by
various researchers, we changed the value of the scaling
constant by a small amount, depending on the simulation
results used for comparison. For example, when comparing
our theory with the uplink simulation results of Dios,40 we
set Cr=3.86, whereas in comparing our theory with Baker
and Benson21 and with our own uplink results, we set Cr
=�. Hence, the proper choice of scaling constant is still an
open question.

Comparisons of the theoretical models for the scintilla-
tion index of untracked beams shown in Figs. 6 and 7 show
good agreements with the simulation results, both on and
off the optical axis of the beam. The agreement between
simulation results and the theoretical models for the tracked
beam case �based on removing beam wander effects�
shown in Figs. 8 and 9 were also reasonably good, but not
as good as for the untracked beam case. We attribute the
difference in the tracked beam case primarily to a differ-
ence in technique between the theoretical model and the
simulation results of removing beam wander effects. The
theoretical model for the tilt-corrected scintillation index
shown in Fig. 10 also provides good agreement with the
simulation results. In an earlier study, we made a similar
comparison between theoretical models and simulation re-
sults for an untracked focused beam on a horizontal path.41

We show these simulation results, and more recent simula-
tion results for the tilt-corrected case, along with theoretical
curves for both the untracked and tilt-corrected beams in
Fig. 11.

Theoretical models for the mean Strehl ratio for an un-
tracked beam and a tilt-corrected beam are also presented
here. Comparison of these Strehl ratio models with the
simulation results shows excellent agreement for the far-
field Strehl ratio in both cases considered.
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