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a b s t r a c t

Impregnating polymeric matrix with stiff particles may significantly improve structural response of a

composite material. Such improvements have to be weighed against the effects of the stress concentra-

tion at the particle–matrix interface that influence local strength and toughness. In the present paper we

elaborate on the issue of local stresses and strength in particulate polymer matrix composites considering

polyurethane matrix impregnated with alumina particles in numerical examples. The parametric analysis

presented in the paper is concerned with the effects of the particle volume fraction and the particle-to-

matrix stiffness ratio on the local stresses and initial damage. We also discuss the resilience of the

impregnated polyurethane, i.e. the density of energy necessary to produce initial damage. The approach

to the analysis of fracture in the composite with initial damage is discussed accounting for available

experimental observations. Three scales of fracture corresponding to different phases of the development

and propagation of the crack are identified, including microfracture at the particle–matrix interface and

mesofracture limited to the matrix surrounding the particle. While these scales of fracture should be ana-

lyzed by numerical methods, macrofracture that occurs after the crack ‘‘emerged’’ from the representa-

tive unit cell where it originated can be considered using available analytical techniques. The

methodology of the stress analysis of a particulate material consisting of an incompressible hyperelastic

matrix and much stiffer elastic particles is also proposed in the paper.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Polymeric composites incorporating particles or short fibers are

attractive due to their good mechanical properties that are often

achieved at a relatively low cost. Besides particulate and short-fi-

ber composite materials, the properties of polymeric foams may

also be improved if they are impregnated by particles [1].

Numerous studies have been dedicated to the analysis of stiff-

ness of particulate and short-fiber composites. They include vari-

ous analytical, semi-empirical and numerical models. While the

comprehensive analysis of relevant studies is outside the scope

of this paper, we mention a number of reviews, such as [2–5].

The stiffness of particulate hyperelastic elastomers has also been

studied, e.g., [6,7]. The studies considering the strength of particu-

late composites are less prominent, ranging from finite element

analyses [8,9] to semi-empirical investigations attempting to ac-

count for the adhesion of particles to matrix, stress concentration

and interfacial shear strength [10,11]. The attempts to account

for the effects of the size of particles (e.g., [12]) and the presence

of voids [13] on the strength have also been undertaken.

The effect of spherical particles on the crack propagation in the

composite material has been extensively studied in the framework

of linear elastic fracture mechanics resulting in the closed-form

expressions for the stress intensity factors (e.g., review [14]). The

mechanisms include crack deflection and tilting, crack trapping

that results in bowing of the front of the crack, and debonding of

particles from the matrix accompanied with sliding energy dissipa-

tion along the interface [15–18].

In this paper we present a parametric stress analysis of a partic-

ulate composite consisting of a polymeric matrix reinforced with

spherical elastic particles (polyurethane impregnatedwith alumina

powder is considered in examples). The analysis includes the deter-

mination of stresses at the interface and in the matrix, just outside

the particles, where the stress concentration results in elevated

stresses. We consider the entire circumference of the particle to ac-

count for the three-dimensional state of stress and specify the loca-

tion and magnitude of the largest principal and von Mises stresses.

The stress analysis is conducted by the Mori–Tanaka technique

[19,20] that was shown in good agreement with experimental

and numerical data as well as with the self-consistent method for

the range of particle volume fraction below 30% (e.g., [1,21]).

The initial failure observed in experiments on vinylester matrix

composites reinforced by spherical glass or alumina particles was a

1359-8368/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.compositesb.2013.05.009

⇑ Corresponding author. Tel.: +1 314 835 9818; fax: +1 314 835 9815.

E-mail address: vbirman@mst.edu (V. Birman).

Composites: Part B 54 (2013) 278–288

Contents lists available at SciVerse ScienceDirect

Composites: Part B

journal homepage: www.elsevier .com/locate /composi tesb

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compositesb.2013.05.009&domain=pdf
http://dx.doi.org/10.1016/j.compositesb.2013.05.009
mailto:vbirman@mst.edu
http://dx.doi.org/10.1016/j.compositesb.2013.05.009
http://www.sciencedirect.com/science/journal/13598368
http://www.elsevier.com/locate/compositesb


debonding of the particles from the matrix at the apex (‘‘pole’’) of

the particle [12] and the propagation of the interface debond crack,

followed with cracking in the matrix originating from the debond

crack. The distribution of the stresses determined in our analysis

for polyurethane-matrix, alumina-particle composites confirms

the observed location of the initial damage.

As shown in the paper, knowing the initial failure load, the resil-

ience of the particulate material can be compared with that of the

pristine matrix material. The analysis of fracture reflecting the se-

quence reported in [12] involves three phases: microfracture cor-

responding to the origination and propagation of the initial crack

along the particle–matrix interface, mesofracture when the crack

kinks off the interface and propagates in the matrix of the repre-

sentative unit cell (RUC) consisting of a single particle surrounded

with the matrix, and finally, macrofracture concerned with the

propagation of a ‘‘mature’’ crack whose length exceeds the scale

of RUC. The peculiarities of the microfracture andmesofracture for-

mulations including the spherical shape of the particle–matrix

interface and stresses that vary both along the interface and within

the matrix necessitate a numerical analysis. Macrofracture can be

analyzed by one of the available theories developed for particulate

composites. In particular, the solution by Bower and Ortiz accounts

for several known effects of particles on fracture [18].

A separate section of the paper introduces the approach to the

stress analysis of the material consisting of stiff particles embed-

ded within an incompressible hyperelastic matrix. The solution

represents a combination of the Mori–Tanaka stress and stiffness

analysis with the Bergstrom–Boyce model of a hyperelastic mate-

rial with rigid particles [6]. The stiffness of the particulate material

and that of the matrix are represented by tangential tensors depen-

dent on the strain in the material, and ultimately, on the applied

stress. Relaxing the assumption that the particles are infinitely ri-

gid compared to the matrix and accounting for their finite stiffness,

we subsequently apply the Mori–Tanaka approach to specify the

interfacial and matrix stresses.

2. Analysis

2.1. Homogenization and stress analysis of particulate linearly-elastic

composite material

The methods of homogenization of materials with inclusions,

such as particulate and fibrous composites, include the Halpin–Tsai

method, the self-consistent method, the Mori–Tanaka model, the

double-inclusion method, the models of Ponte Castaneda and Wil-

lis, the Kuster–Toksoz model, etc. Besides these methods, bounding

techniques for the tensor of stiffness have been suggested by Ha-

shin and Shtrikman, Beran, Molyneux and McCoy, Gibiansky and

Torquato. Among reviews of the homogenization techniques, men-

tioned are [3,5,2,22].

The Mori–Tanaka method [19,20] adopted in the present study

expands Eshelby’s technique for the dilute equivalent inclusion

[23] accounting for the finite concentration of inclusions (fibers

or particles). This is achieved by assumption that the average strain

in the individual inclusion is related to the average strain in the

matrix by the same strain concentration Eshelby’s tensor that re-

lates the strain in a dilute inclusion to the applied strain. Subse-

quent derivations of the tensor of stiffness are well known and

the results are reproduced here for completeness and because they

should be employed in the stress and fracture analyses. In the case

of spherical inclusions, the stiffness evaluated by this method coin-

cides with Hashin–Shtrikman lower bound.

The relevant approach to the evaluation of local stresses in the

phases of the composite material was developed by Tandon and

Weng [24] concentrating on the stresses at the interface of the

spheroidal inclusion and the stresses in the matrix, just outside

the inclusion. This solution utilized the jump condition across the

interface formulated in [25,23] using the change in the Newtonian

and biharmonic potentials across the surface with the jump in den-

sity. The solution developed in [24] was later found in compliance

with the results generated by the finite element analysis [26] and

applied to the analysis of shape memory alloy inclusions in an elas-

tic matrix [27].

The constitutive relationship for a linearly elastic composite

medium relating the tensors of applied stress and average strain is

�ro ¼ L�eo ð1Þ

where L is the tensor of stiffness of the composite medium obtained

through an appropriate homogenization procedure.

According to Hill [28], the tensor of stiffness of a material with

embedded inclusions can be represented as

L ¼ L1 þ V2ðL2 � L1ÞA ð2Þ

where Li is the stiffness tensor of the ith phase (the subscripts 1 and

2 identify the matrix and inclusions, respectively), V2 the volume

fractions of the inclusions, and A is the strain concentration tensor

representing the relationship between the tensors of average strains

in inclusions �e2 and the tensor of mean remote applied strain �eo:

�e2 ¼ A�eo ð3Þ

The strain concentration tensor evaluated by assumptions of

the Mori–Tanaka theory is expressed in terms of the Eshelby’s

strain concentration tensor for the dilute problem as

A ¼ AEshelbyðV1Iþ V2AEshelbyÞ
�1 ð4Þ

where I is the identity tensor and the Eshelby strain concentration

tensor is

AEshelby ¼ ½Iþ SL�1
1 ðL2 � L1Þ�

�1
ð5Þ

The elements of the Eshelby tensor S depend on the inclusion

aspect ratio and elastic constants of the matrix [24]; they are

reproduced for the case of spherical inclusions in Appendix A.

The combination of Eqs. (2), (4), and (5) yields the tensor of

stiffness:

L ¼ L1 þ V2ðL2 � L1ÞTðV1Iþ V2TÞ
�1; T ¼ AEshelby ð6Þ

The explicit form of the constitutive equations for the case of

spherical particles is [29]:

K ¼ K1 þ
V2ðK2 � K1Þ

1þ V1
K2�K1

K1þ1:333l1

l ¼ l1 þ
V2ðl2 � l1Þ

1þ V1
l2�l1

l1þf1

ð7Þ

where K and l denote the bulk and shear moduli, respectively, and

V1 = 1 � V2 is the volume fraction of the matrix. The coefficient f1,

the modulus of elasticity of the homogeneous isotropic composite

E and its Poisson ratio m are

f1 ¼
l1ð9K1 þ 8l1Þ

6ðK1 þ 2l1Þ

K ¼
E

3ð1� 2mÞ
¼

El
3ð3l� EÞ

ð8Þ

The stress analysis includes finding the stresses at the critical

locations where the initial damage can originate. These locations

are likely to be the interface between the matrix and inclusion

and in the matrix, just outside the inclusion. The concentration

on these stresses is justified by experimental research demonstrat-

ing that the initial damage in composites with spherical particles

subject to uniaxial tension often originates at the apex of a particle
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[12]. The exact location of the damage, i.e. the coordinates of the

largest stresses on the spherical interface and in the adjacent ma-

trix can be predicted using the solution [24].

Consider a particulate material with spherical particles subject

to uniaxial stress r1. The coordinate system and the applied stress

are shown in Fig. 1. The stresses in the matrix, just outside the

spherical particle, are [24]:

r11 ¼ r1 1þ
V1ðb1p1 þ 2b2p2Þ

ð1þ m1Þð1� 2m1Þ
þ
p1 cos

2 hþ p2ðm1 þ sin
2
hÞ

1� m21
cos2 h

" #

r22 ¼ r1

V1ðb3p1 þ ðb4 þ b5Þp2Þ

ð1þ m1Þð1� 2m1Þ
þ
p1 cos

2 hþ p2ðm1 þ sin
2
hÞ

1� m21
sin

2
h

" #

r33 ¼ r1

V1ðb3p1 þ ðb4 þ b5Þp2Þ

ð1þ m1Þð1� 2m1Þ
þ
m1p1 cos

2 hþ p2ð1þ m1 sin
2
hÞ

1� m21

" #

r12 ¼ �r1

p1 cos
2 hþ p2ðm1 þ sin

2
hÞ

1� m21
sinhcosh

ð9Þ

The coefficients bj and pj are specified in [24] in terms of the ele-

ments of Eshelby’s tensor (for completeness, these coefficients are

provided in Appendix A).

The interfacial stresses are

rðinterÞ
11 ¼ r1

p1 cos
2 hþ p2ðm1 þ sin

2
hÞ

1� m21
cos2 h

" #

rðinterÞ
22 ¼ r1

p1 cos
2 hþ p2ðm1 þ sin

2
hÞ

1� m21
sin

2
h

" #

rðinterÞ
33 ¼ r1

m1p1 cos
2 hþ p2ð1þ m1 sin

2
hÞ

1� m21

" #

rðinterÞ
12 ¼ �r1

p1 cos
2 hþ p2ðm1 þ sin

2
hÞ

1� m21
sin h cos h

ð10Þ

The stresses given by (10) can be used to assess the bonding

strength between the particle and matrix. If necessary, this

strength can be increased treating the particles with silane cou-

pling agent (e.g., [30]).

2.2. Observation on resilience and fracture of particulate composite

with spherical particles

The resilience of the material is defined as the amount of energy

absorbed prior to the onset of a physically nonlinear behavior.

While the resilience differs from toughness, it is a useful indicator

of the energy absorption capacity prior to initial failure. In the

problem under consideration the deviation from the linear elastic

response is associated with the material failure in the matrix adja-

cent to particles or at the matrix–particle interface.

An estimate of the resilience change compared to that for the

pristine matrix is possible utilizing the homogeneous model for

the composite material subjected to uniaxial stress r1. The homo-

geneous material is isotropic, its modulus of elasticity given by Eqs.

(7) and (8). Although the micromechanical stresses at the RUC level

are three-dimensional as reflected in Eqs. (9) and (10), the macro-

mechanical state of stress in the homogeneous pseudo-isotropic

material is one-dimensional. Accordingly, we use the ratio repre-

senting the strain energy density of the particle-reinforced com-

posite at the applied stress corresponding to the onset of failure

(U) to the energy density of matrix subjected to the uniaxial stress

equal to the matrix tensile strength (U1):

k ¼
U

U1

¼
E1

E

� �

s

s1

� �2

ð11Þ

In Eq. (11), s1 and E1 are the matrix tensile strength and modulus of

elasticity, respectively, and s ¼ minðrðmatÞ
1 ; rðinterÞ

1 Þ is the smaller of

the applied stress corresponding to the onset of failure in the matrix

and its counterpart resulting in the failure of the interface (the

strength of particles is assumed to exceed s).

As follows from the cited above experiments [12], the failure in

particulate composites often starts with the loss of strength at the

matrix–particle interface at the apex of the particle, followed with

the initial propagation of the debonding crack along a part of the

interface. Subsequently, the crack kinks from the interface and

propagates in the matrix. The kinking angle observed was in the

range from 40� to 45�, so that the analysis should be conducted

by assumption of a mixed mode of fracture. Therefore, while the

solution in the previous section enables us to estimate the applied

stress corresponding to the onset of damage and its location (as

shown in examples, our analysis for the alumina–polyurethane

composite confirms the location of damage predicted for other

materials in [12]), the subsequent problem is that of debonding

and matrix fracture in the particulate composite medium.

We discuss here the approach to the fracture problem distin-

guishing between microfracture that occurs at the particle–matrix

interface, mesofracture concerned with the propagation of the

crack in the matrix of RUC after kinking off the interface and mac-

rofracture, i.e. cracking on the scale exceeding that of RUC. The de-

bond microcrack fracture problem is most challenging since it

requires the analysis of a crack at the spherical interface of dissim-

ilar materials, an estimate of the conditions of its propagation

along the interface, and establishing of the conditions for kinking

off the spherical interface. Such micromechanical fracture analysis

is further complicated due to rapidly changing with coordinates

three-dimensional microstresses at the interface as well as in the

adjacent matrix and in the region of the particle adjacent to the

crack. These microstresses cannot be estimated for the intact

RUC, i.e. it is necessary to recalibrate them reflecting the progres-

sion of the debond microcrack. This implies that the solution

should rely on the numerical analysis, taking into account a contin-

uous redistribution of the local microstresses along and in the

vicinity to the interface associated with the crack propagation.

Once the microcrack kinked off the damaged interface, its prop-

agation within the matrix of RUC occurs at an angle that is
Fig. 1. Problem formulation and coordinate system: a spherical particle surrounded

by matrix and subjected to uniaxial stresses.
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governed by the local stress tensor. The stresses in the matrix sur-

rounding the particle vary with coordinates, even before the dam-

age is inflicted. As the crack propagates in the matrix, the local

stiffness around the crack changes resulting in additional local

stress redistribution. Accordingly, classical methods of the analysis

of mixed-mode fracture are not suitable in the mesofracture prob-

lem, except for a simplified first-approximation analysis relying on

average stresses in the matrix evaluated by the Mori–Tanaka ap-

proach. In such simplified analysis, the average stress tensor in

the matrix is available using the average matrix strains multiplied

by the stiffness tensor of the matrix:

�r1 ¼ L1�e1

�e1 ¼
1� V2A

1� V2

�e0 ð12Þ

where the tensor of average strain in the matrix is obtained using

the rule of mixtures for the strains and Eq. (3). The applicability

of Eq. (12) to a first-order approximation of mesofracture can be

established only upon the comparison of the results generated by

this equation with a numerical analysis that is preferred for this

problem.

Due to variations of local stresses in the matrix, the orientation

of the mesocrack can change one or several times during its prop-

agation within RUC. Accordingly, the numerical procedure moni-

toring mesofracture has to be ‘‘incremental,’’ both the orientation

of the crack and the conditions of its propagation being inspected

at each step. The situation is demonstrated in Fig. 2 where the

pre-existing crack at the angle w in the x1–x2 coordinate system

changes its orientation. The analysis should employ local stresses

evaluated at the previous step of the analysis to specify both the

new angle as well as the conditions of the further crack propaga-

tion. While the problem is three-dimensional, certain simplifica-

tions can be employed enabling us to adopt available criteria for

the mixed-mode fracture as discussed below.

Considering the crack propagating in the x1–x2 plane the effect

of stresses r33 on fracture can be neglected. This enables us to ap-

ply the plane-stress mixed-mode fracture criteria that have been

analyzed in a number of studies [31,32]. The contemporary criteria

usually disregard the effect of so-called T-stresses oriented along

the axis of the crack (for examples of solutions incorporating these

stresses, see [33,34]). With these simplifications, we can adopt the

maximum hoop stress criterion of Erdogan and Sih [35] that was

shown accurate in the analysis of mixed-mode crack growth and

orientation [32].

Let us assume that we know the state of stresses and the orien-

tation of the crack from the previous step of the numerical analysis

accounting for effects of both the debond crack as well as the crack

in the matrix. Then at the current step we can start with known an-

gle of the crack w and the local tensor of stress in the �x1 � �x2 coor-

dinate system (Fig. 2)

r1ð�XÞ ¼

r�x1�x1 ðXÞ

r�x2�x2 ðXÞ

r�x1�x2 ðXÞ

8

>

<

>

:

9

>

=

>

;

ð13Þ

where X is a position vector of the tip of the crack.

The solution presented in [35,36] defines both the angle of the

further crack propagation counted from the �x1 axis (a) as well as

the condition of propagation in terms of the Mode I fracture tough-

ness of matrix (KI1) and the Modes I and II stress intensity factors in

the �x1 � �x2 coordinates:

sin aþ ð3 cos a� 1Þ cot w ¼ 0

cos
a
2

� �

K I cos
2 a
2
�
3

2
K II sin a

� �

¼ K I1

ð14Þ

Macrofracture, i.e. the propagation of a ‘‘mature’’ crack whose

length exceeds the size of RUC within the particulate material is af-

fected by particles encountered by the crack. The phenomena

occurring as a result of the presence of the particles include crack

shielding, crack deflection, trapping and crack face bridging; the

review of these effects can be found in [18,17,37].

Although a comprehensive analysis of macrofracture in particu-

late composites is outside the scope of this paper, the recommen-

dations for two particular cases suggested in [18] are useful in

numerous situations. In particular, if the particles are much tough-

er than the matrix, i.e. Kp/Km > 7 (Kp is the toughness of particles,

Km is the toughness of matrix), the toughness of the particular

composite is approximated by

K ¼ 3:09
R

L
Kp ð15Þ

where R and L are the radius of the particle and the spacing between

the centers of particles, respectively (note that R=L ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

V2=p
p

and

the equation above applies only if R/L < 0.25). The mechanism of

fracture in this case involves pinning of the crack by intact particles

in its wake. On the other hand, if the toughnesses of particles and

matrix are comparable, i.e. Kp/Km < 3, the particles are penetrated

by the expanding crack. In such situation, for the entire spectrum

of the ratio R/L,

K ¼ Km 1þ
2R

L

Kp

Km

� �2

� 1

" #( )1
2

ð16Þ

In the materials considered in numerical examples, alumina

powder (nanoparticles) are embedded in the polyurethane matrix.

The toughness of alumina was estimated at Kp = 4.0 MPa �m1/2

[38]. A typical toughness of polyurethane is in the range from

Km = 1.0 MPa �m1/2 to Km = 2.0 MPa �m1/2 [39]. Therefore, Eq.

(16) may be to predict macrofracture in the alumina-reinforced

particulate composites. For example, if Kp/Km = 3, toughness of

the particulate material increases from that of the pristine matrix

(V2 = 0) to 2.44 times the pristine matrix toughness for V2 = 0.3.

2.3. Stress analysis of particulate composite consisting of

incompressible hyperelastic matrix and stiff particles

Consider the case where deformations are sufficiently large to

justify the analysis modeling the matrix as a hyperelastic material.
Fig. 2. Crack propagating in the matrix after kinking off the particle–matrix

interface (coordinate systems and orientation).
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The approach utilizes an expansion of the Mori–Tanaka analysis

with the matrix being represented by a quasi-linear elastic model

whose ‘‘tangential’’ properties depend on the strain. The steps of

the proposed analytical approach are outlined below:

a. Employing the theory of incompressible hyperelastic elasto-

mers with rigid particles [6] we derive the tangential stiff-

ness tensor of the composite material.

b. We determine the tangential stiffness tensor of the incom-

pressible hyperelastic matrix from the tangential stiffness

tensor of the composite material.

c. Abandoning the assumption that the particles are ‘‘rigid,’’ we

employ the Mori–Tanaka theory to trace the process of accu-

mulation of stresses in the elements of the particulate com-

posite as a function of the increasing axial strain (and

accordingly, as a function of the applied stress).

The solution utilizes the Mori–Tanaka theory in parts ‘‘b’’ and

‘‘c.’’ The following assumptions are added to those of the Mori–Ta-

naka theory:

a. The matrix material is incompressible (this is acceptable for

numerous elastomers). The implication for the particulate

composite with rigid particles is that such material is also

incompressible.

b. The effect of finite stiffness of particles on the overall stiff-

ness of the particulate material can be discounted treating

them as ‘‘rigid’’ compared to the matrix.

Consider an incompressible hyperelastic material. Contrary to

compressible materials possessing two independent engineering

constants, the Poisson ratio of incompressible materials is defined

being equal to 0.5. Accordingly, only one of the engineering con-

stants of an incompressible material is independent and can be

specified from the single test, such as uniaxial tension.

According to numerous theories of hyperelastic materials, the

strain energy density is expressed in terms of the invariants of

the deformation tensor that is defined in terms of deformation gra-

dients, i.e.

B ¼ F � FT ; Bij ¼ F inF jn; F in ¼ din þ ui;n ð17Þ

where din is the Kroneker’s delta and ui,n is a derivative of the dis-

placement in the ith direction with respect to the nth coordinate.

The invariants of the deformation tensor in terms of the princi-

pal stretches ki are

I1 ¼ trðBÞ ¼ Bii ¼ k21 þ k22 þ k23;

I2 ¼
1

2
½I21 � trðB2Þ� ¼

1

2
½I21 � BinBni� ¼ k21k

2
2 þ k22k

2
3 þ k21k

2
3;

I3 ¼ detðBÞ ¼ k21k
2
2k

2
3

ð18Þ

In an incompressible material I3 = 1 and given the principal

stretch k1 found in a uniaxial tension test k2 ¼ k3 ¼ k�2
1 .

The tensor of true (Cauchy) stress is obtained as [40]:

r ¼ 2
dU

dI1
B� pI ð19Þ

where, as above, U is the strain energy density and p is the addi-

tional pressure that should be applied to satisfy the boundary

conditions.

In the case of a neo-Hookean material subject to a uniaxial ten-

sion, the true stress is the following function of the maximum prin-

cipal stretch in the loading direction (e.g., [6]):

�r1 ¼ l1ðk
2
1 � k�1

1 Þ ð20Þ

where l1 is the shear modulus of the material (shear modulus of

matrix at small strains). The overbar in Eq. (20) distinguishes the

Cauchy stress from the nominal (engineering) stress.

Accounting for the amplification of the first invariant of the

deformation tensor associated with the Mullins effect at large

strains, Bergstrom and Boyce [6] suggested the following relation-

ship for an elastomer with rigid inclusions:

�r1 ¼ l1ð1� V2Þ½1þ 3:5V2 þ 30V2
2�ðk

2
1 � k�1

1 Þ ð21Þ

Using the relationship between the uniaxial true and nominal

stresses

�r1 ¼ k1r1 ð22Þ

the tangent stiffness of the elastomer with ‘‘rigid’’ inclusions is

available from (21). The principal stretch is related to the axial com-

posite strain and its increment by e1 ¼ k1 � 1; de1 ¼ dk1. Accord-

ingly, the tangent modulus of elasticity of the incompressible

material can be found calculating the stresses from the nominal

stress–stretch relationship obtained from Eqs. (21) and (22):

Eðê1Þ ¼
dr1

de1

� �

ê1

¼ l1ð1� V2Þ½1þ 3:5V2 þ 30V2
2�ð1þ 2k̂�3

1 Þ ð23Þ

where k̂1 ¼ ê1 þ 1 and ê1 are the stretch and strain corresponding to

the current value of the tangent modulus.

Knowing the value of the tangent modulus of elasticity and

using the Poisson ratio of the incompressible material that is inde-

pendent of the strain and equals to m = 0.5, the shear modulus of

the particulate composite is available as lðê1Þ ¼ 1
3
Eðê1Þ.

The previous analysis demonstrates the evaluation of the tan-

gent stiffness tensor of the incompressible hyperelastic matrix with

‘‘rigid’’ inclusions. Following the approach outlined above, the finite

stiffness of the inclusions can now be accounted for and the micro-

mechanical equations employed to evaluate the tangent stiffness

tensor of the matrix from the tangent stiffness tensor of the com-

posite and the stiffness tensor of the inclusions. According to such

approach, the tensor of stiffness of a composite material becomes

Lðê1Þ ¼ L1ðê1Þ þ V2½L2 � L1ðê1Þ�Tðê1Þ½V1Iþ V2Tðê1Þ�
�1

ð24Þ

where the tensor of stiffness in the left side is already determined

and the tensor of stiffness of the particles L2 is known and indepen-

dent of the applied strain. Accordingly, the tangent tensor of stiff-

ness of the matrix, i.e. L1ðê1Þ, can be derived from Eq. (24). The

Eshelby strain concentration tensor in Eq. (24) is

Tðê1Þ ¼ ½Iþ SL�1
1 ðê1ÞðL2 � L1ðê1ÞÞ�

�1
ð25Þ

The elements of the Eshelby tensor are dependent on the parti-

cle aspect ratio and the Poisson ratio of the matrix that is equal to

0.5 since the matrix material is incompressible.

Finding tensor L1ðê1Þ from Eqs. (24) and (25) is a challenging

problem. Accordingly, we retain the assumption that the particles

are rigid at the phase of the analysis. Then if the matrix is incom-

pressible, Eqs. (7) and (8) yield the tangent shear modulus of the

matrix:

l1ðê1Þ ¼
lðê1Þ

1þ 5
2

V2

V1

ð26Þ

Subsequently, the tangent elastic modulus of the matrix is

found from E1ðê1Þ ¼ 3l1ðê1Þ.
The analysis of stresses as functions of the applied strain can

now be conducted using the tangential properties of the matrix

and elastic properties of particles by Eqs. (9) and (10) for the

matrix, just outside the particles, and at the interface, respectively.

The analysis should start with small values of the strain ê1, gradu-
ally increasing it and finding the corresponding increments of
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stresses. In general, the tensor of stress r at the applied strain

ðê1 þ dê1Þ is evaluated from:

rðê1 þ dê1Þ ¼ rðê1Þ þ drðdê1Þ ð27Þ

where dê1 is an increment of the axial strain in the composite mate-

rial. The expressions for the increments of the stresses in the matrix,

just outside the particles, and at the interface are shown in Appen-

dix B. Using the formulas for the stresses requires us to specify the

applied axial stress, rather than the axial strain in the composite

material. In the case of a uniaxial loading, this stress is

r1ðê1Þ ¼ Eðê1Þê1.

3. Numerical examples

Numerical examples are concerned with the effect of alumina

particles on the stresses and strength of polyurethane matrix.

The properties of polyurethane are E = 2.50 GPa, G = 0.938 GPa,

while those of the particles are E = 68.9 GPa, G = 25.9 GPa. The crit-

ical locations where failure can originate are the interface and the

matrix adjacent to the particle that experiences stress concentra-

tion. The following results concentrate on the stresses at both these

locations.

The distributions of axial stresses in the matrix, just outside the

particle, normalized with respect to the applied stress are demon-

strated in Figs. 3–5. The shear stresses in the matrix adjacent to the

particle are presented in Fig. 6. The shear stresses in the particle

being absent at the uniaxial loading considered in the examples,

the stresses shown in Fig. 6 coincide with the shear stresses at

the interface. In agreement with the observations of Tandon and

Weng [24], the largest axial stress r11 reaches the maximum value

at the angular location about 30� from the apex, the coordinate of

the latter being h = 90� (Fig. 3). However, this stress experiences

relatively small variations in the interval 60� 6 h 6 90� This may

justify the use of the approximate stress concentration factor eval-

uated using the stress at the apex in the case where the stiffness of

the particles is at least one order of magnitude higher than that of

the matrix [41]:

rmax
11 ¼

2

1þ m1
þ

1

4� 5m1

� �

r1

The formula presented above is limited to the dilute case, i.e. it

cannot be used if the particle volume fraction exceeds several

percent.

The stress distributions in Figs. 3–6 and in the subsequent

figures cover the range from the single (dilute) particle (‘‘0%

inclusions’’) to the particle volume fraction equal to 30%. As follows

from the figures, a higher particle concentration results in a reduc-

tion of stresses in the matrix. This is anticipated since increasing

the particle content reduces the stiffness mismatch between the

Fig. 3. Stress in the axial (x1) direction in the matrix, just outside the particle,

normalized with respect to the applied stress as the function of particle volume

fraction and angular coordinate.

Fig. 4. Stress in the x2-direction in the matrix, just outside the particle, normalized

with respect to the applied stress as the function of particle volume fraction and

angular coordinate.

Fig. 5. Stress in the x3-direction in the matrix, just outside the particle, normalized

with respect to the applied stress as the function of particle volume fraction and

angular coordinate.

Fig. 6. Shear stress in the matrix, just outside the particle, normalized with respect

to the applied stress as the function of particle volume fraction and angular

coordinate.
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individual particle and the surrounding homogeneous material

consisting of the pristine matrix and particles resulting in a reduc-

tion of the stress concentration. The stress distribution around the

particle circumference remains consistent at all particle volume

fractions.

The strength of the matrix being analyzed by one of the

strength criteria, the principal and von Mises stresses represent a

particular interest. These normalized stresses are shown in Figs. 7

and 8, respectively. The maximum by absolute value principal

stress occurs at about the same location as the maximum axial

stress r11. However, the von Mises stress being a little smaller than

the maximum principal stress reaches the maximum value at the

angular coordinate close to h = 40�.

The distribution of the axial stresses at the interface is shown in

Figs. 9–11 (as indicated above, the shear stress is given in Fig. 6).

Qualitatively, these distributions are in agreement with the results

presented for different materials in [24,26]. Similar to the observa-

tion made above for the matrix, the stresses decrease at a higher

particle volume fraction. However, the most vulnerable locations

around the interface are the apex h = 90� and the point h = 0�. This

observation is confirmed by the results both for the maximum

principal stress (Fig. 12) as well as for the von Mises stress

(Fig. 13). The values of the maximum principal stress and the max-

imum von Mises stress in the matrix outside the particle and at the

interface are close, although the locations of these stresses differ. It

may be concluded that a rational design can be achieved if the

strength of the interface is close to that of the matrix.

The effect of the stiffness of the matrix on the maximum prin-

cipal stress and on the von Moses stress in the matrix, just outside

the particle, and at the interface is shown in Figs. 14–21. The first

four figures (Figs. 14–17) demonstrate this effect for the dilute

problem, while the second set (Figs. 18–21) present the case of

the particle volume fraction equal to 30%. As follows from these

figures, the locations of the maximum principal and the von Mises

stresses both in the matrix and at the interface remain consistent

for a broad range of matrix stiffness. The beneficial effect of a stiffer

matrix on the stresses that has already been mentioned is clearly

demonstrated in Figs. 14–21.

An estimate of the resilience of the material is presented here

for the case where the matrix fails prior to the interface (this

may be the case if the strength of the interface is enhanced by spe-

cial treatments [30]). The ratio of the modulus of elasticity of the

particulate composite to that of the matrix varies from 1.0 to

approximately 1.8 as the particle volume fraction increases from

0% to 30% [1]. The stress ratio in Eq. (11) reflecting the strength

of the matrix and utilizing the maximum principal stress criterion

varies from 1.8 (dilute model) to 1.4 (30% particle volume fraction).

Accordingly, we observe that the resilience ratio k in Eq. (11) de-

creases from the value close to 2.0 in the dilute case approaching

unity at the particle volume fraction close to 30%. Therefore, while

the absorption of energy prior to initial failure is significantly

Fig. 7. Maximum principal stress in the matrix, just outside the particle, normal-

ized with respect to the applied stress as the function of particle volume fraction

and angular coordinate.

Fig. 8. The von Mises stress in the matrix, just outside the particle, normalized with

respect to the applied stress as the function of particle volume fraction and angular

coordinate.

Fig. 9. Stress in the axial (x1) direction at the interface normalized with respect to

the applied stress as the function of particle volume fraction and angular

coordinate.

Fig. 10. Stress in the x2-direction at the interface normalized with respect to the

applied stress as the function of particle volume fraction and angular coordinate.
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larger than that in the pristine matrix at a low particle concentra-

tion, it decreases and approaches unity as the density of particles

increases. This is similar to a well-known negative effect of an in-

creased stiffness on toughness of both engineering and biological

materials referred to as a ‘‘banana’’ and ‘‘inverted banana’’ curves

on the stiffness–toughness plane, respectively [42]. Although resil-

ience differs from toughness for all but brittle linear elastic mate-

rials, the analogy is logical.

4. Discussion and conclusions

The paper utilizes the stress analysis based on the Mori–Tanaka

theory to elucidate the stresses in a particulate composite consist-

ing of an elastic matrix reinforced by spherical particles and sub-

ject to uniaxial tension. The materials used in the numerical

Fig. 11. Stress in the x3-direction at the interface normalized with respect to the

applied stress as the function of particle volume fraction and angular coordinate.

Fig. 12. Maximum principal stress at the interface normalized with respect to the

applied stress as the function of particle volume fraction and angular coordinate.

Fig. 13. The von Mises stress at the interface normalized with respect to the applied

stress as the function of particle volume fraction and angular coordinate.

Fig. 14. Maximum principal stress in the matrix, just outside the particle,

normalized with respect to the applied stress as the function of the stiffness of

matrix and angular coordinate. Dilute problem: negligible particle volume fraction.

Fig. 15. The von Mises stress in the matrix, just outside the particle, normalized

with respect to the applied stress as the function of the stiffness of matrix and

angular coordinate. Dilute problem: negligible particle volume fraction.

Fig. 16. Maximum principal stress at the interface normalized with respect to the

applied stress as the function of the stiffness of matrix and angular coordinate.

Dilute problem: negligible particle volume fraction.
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analysis are polyurethane matrix and alumina particles. In addition

to the stress analysis, the approach to the study of fracture follow-

ing the initial failure in the matrix, just outside the particle, or at

the particle–matrix interface is discussed.

The largest maximum principal stresses in the matrix just out-

side the particle occur at the angle close to h = 60� and slowly de-

crease toward the apex (h = 90�). In the contrary, the largest von

Mises stress occurs at h � 45�. The situation is different at the

interface where both the maximum absolute principal stresses as

well as the largest von Mises stress occur at h = 0�, the second max-

imum being at the apex. The order of magnitude of the highest

stresses in the matrix, just outside the particle, and at the interface

is the same, i.e. achieving the strength of the interface comparable

to that of the matrix is highly desirable, ideally creating a system

failing both in the matrix and interface at the same load (i.e. avoid-

ing unnecessary and underutilized strength of either matrix or

interface).

Increasing the volume fraction of particles results in and lower

stresses both in the matrix, just outside the particles, and at the

interface. Predictable, a higher stiffness of the matrix material pro-

duces the same results both in the dilute case as well as at higher

particle volume fractions.

Adding particles to the matrix results in an increase in the resil-

ience, particularly at a low particle volume fraction. However, if the

volume fraction increases, the energy absorbed prior to the initial

damage decreases to that for pure matrix.

Once the material fails either in the matrix adjacent to the par-

ticle or at the interface, cracks develop and fracture should be ana-

lyzed. We suggest three phases of fracture for the future research.

Fig. 17. The von Mises stress at the interface normalized with respect to the applied

stress as the function of the stiffness of matrix and angular coordinate. Dilute

problem: negligible particle volume fraction.

Fig. 18. Maximum principal stress in the matrix, just outside the particle,

normalized with respect to the applied stress as the function of the stiffness of

matrix and angular coordinate. Particle volume fraction is equal to 30%.

Fig. 19. The von Mises stress in the matrix, just outside the particle, normalized

with respect to the applied stress as the function of the stiffness of matrix and

angular coordinate. Particle volume fraction is equal to 30%.

Fig. 20. Maximum principal stress at the interface normalized with respect to the

applied stress as the function of the stiffness of matrix and angular coordinate.

Particle volume fraction is equal to 30%.

Fig. 21. The von Mises stress at the interface normalized with respect to the applied

stress as the function of the stiffness of matrix and angular coordinate. Particle

volume fraction is equal to 30%.
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Microfracture involves the analysis of the crack propagating along

the interface causing the initial partial or complete debonding of

the particle from the matrix. The analysis of microfracture is very

complicated due to the spherical shape of the interface and rapid

changes of the stresses with the coordinates (i.e. an assumption

of ‘‘constant’’ applied stresses becomes invalid at the microscale).

Mesofracture at RUC level occurs in the matrix as the crack kinks

off the interface and propagates in the adjacent matrix. In this case,

the analysis can be conducted by a number of methods; in partic-

ular, we refer to the maximum tangential stress criterion of Erdo-

gan and Sih. However, the stresses necessary to apply such

criterion can only be accurately estimated by a numerical analysis.

While microfracture and mesofracture occurring at the RUC scale

require a numerical analysis, macrofracture can be studied using

available analytical techniques. In particular, the effect of particles

on toughness of the composite material can be evaluated by expli-

cit formulae applicable in prescribed ranges of the particle-to-ma-

trix toughness ratio.

The final part of the paper presents a methodology of the stress

analysis of the material consisting of stiff particles embedded with-

in an incompressible hyperelastic matrix. The stiffness analysis is

conducted by modeling the particle as being ‘‘rigid’’ compared to

the matrix, yielding the tangent stiffness tensors of the composite

and the matrix. Subsequently, the finite stiffness of the particles is

accounted for; this enables us to apply an incremental Mori–Tana-

ka technique to monitor the stresses in the material.
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Appendix A. Coefficients employed to evaluate the stresses

according to the Mori–Tanaka theory

In the case of a uniaxial loading, the coefficients in Eqs. (9) and

(10) are [24]:

b1 ¼ 2m1S2211 þ ð1� m1ÞðS1111 � 1Þ

b2 ¼ m1ðS2233 þ S2222 � 1Þ þ ð1� m1ÞS1122
b3 ¼ m1ðS1111 � 1Þ þ S2211

b4 ¼ m1ðS1122 þ S2233Þ þ ð1� m1ÞðS2211 � 1Þ

b5 ¼ m1ðS1122 þ S2222 � 1Þ þ ð1� m1ÞS2233

ðA1Þ

where the elements of the Eshelby tensor, in the case of spherical

inclusions, are

S1111 ¼ S2222 ¼ S3333 ¼
7� 5m1

15ð1� m1Þ

S1122 ¼ S2233 ¼ S3311 ¼
5m1 � 1

15ð1� m1Þ

S1212 ¼ S2323 ¼ S3131 ¼
4� 5m1

15ð1� m1Þ

ðA2Þ

The coefficients

p1 ¼
a1 þ 2m1a2

a

p2 ¼
a3 � m1a4

a

ðA3Þ

depend on the shear and bulk moduli of the matrix and particles

and on the elements of the Eshelby tensor as follows:

a1 ¼V1ðS2222þS2233�1Þþ
l2

l2�l1

þ
2ðl2K1�l1K2Þ

3ðl2�l1ÞðK2�K1Þ

a2 ¼V1S1122þ
l2K1�l1K2

3ðl2�l1ÞðK2�K1Þ

a3 ¼�V1S2211�
l2K1�l1K2

3ðl2�m1ÞðK2�K1Þ

a4 ¼V1ðS1111�1Þþ
l2

l2�l1

þ
l2K1�l1K2

3ðl2�l1ÞðK2�K1Þ

a5 ¼ V1ðS2233�S2222þ1Þ�
l2

l2�l1

� ��1

a¼� V2
1þ2V1

l1

l2�l1

þ
l1K1

ðl2�l1ÞðK2�K1Þ

� �

�V1ðS1111þS2222þS2233Þ V1þ
l1

l2�l1

� �

�V2
1 S1111ðS2222þS2233Þ�2S1122S2211½ �

�
l2K1�l1K2

3ðl2�l1ÞðK2�K1Þ
3þV1

2ðS1111�1ÞþðS2222þS2233�1Þ�
2ðS1122þS2211Þ

� �� �

ðA4Þ

Appendix B. Stress increments in a composite consisting of stiff

elastic spherical particles embedded within an incompressible

hyperelastic matrix

The stresses in the matrix, just outside the particle, and the

stresses at the particle–matrix interface can be determined using

the modified solution [24]. If the composite is subject to a uniaxial

loading, the increments of the stresses in the matrix, just outside

the particle, at the (k + 1)th applied stress increment

drðkþ1Þ
1 ¼ dr1ðdêðkþ1Þ

1 Þ can be obtained as

drðkþ1Þ
11 ¼ 1þ V1ðb1p1þ2b2p2Þ

ð1þm1Þð1�2m1Þ
þ p1 cos

2 hþp2ðm1þsin2
hÞ

1�m2
1

cos2 h
h i

drðkþ1Þ
1

drðkþ1Þ
22 ¼ V1ðb3p1þðb4þb5Þp2Þ

ð1þm1Þð1�2m1Þ
þ p1 cos

2 hþp2ðm1þsin2 hÞ

1�m2
1

sin
2
h

h i

drðkþ1Þ
1

drðkþ1Þ
33 ¼ V1ðb3p1þðb4þb5Þp2Þ

ð1þm1Þð1�2m1Þ
þ m1p1 cos

2 hþp2ð1þm1 sin
2
hÞ

1�m2
1

h i

drðkþ1Þ
1

drðkþ1Þ
12 ¼�p1 cos

2 hþp2ðm1þsin2 hÞ

1�m2
1

sinhcoshdrðkþ1Þ
1 drðkþ1Þ

13 ¼ drðkþ1Þ
23 ¼0

bi ¼ biðrðkÞ
1 þdrðkþ1Þ

1 Þ; pj ¼ pjðr
ðkÞ
1 þdrðkþ1Þ

1 Þ

ðA5Þ

The matrix being incompressible, the Poisson ratio m1 = 0.5. The

moduli of elasticity and shear of the matrix should be evaluated at

the value of the axial composite strain corresponding to the stress

ðrðkÞ
1 þ drðkþ1Þ

1 Þ.

The increments of the interfacial stresses at the (k + 1)th step of

uniaxial loading are (contrary to notation in Eqs. (10), the super-

script ‘‘inter’’ is omitted):

drðkþ1Þ
11 ¼

p1 cos
2 hþ p2ðm1 þ sin

2
hÞ

1� m21
cos2 h

" #

drðkþ1Þ
1

drðkþ1Þ
22 ¼

p1 cos
2 hþ p2ðm1 þ sin

2
hÞ

1� m21
sin

2
h

" #

drðkþ1Þ
1

drðkþ1Þ
33 ¼

m1p1 cos
2 hþ p2ð1þ m1 sin

2
hÞ

1� m21

" #

drðkþ1Þ
1

drðkþ1Þ
12 ¼ �

p1 cos
2 hþ p2ðm1 þ sin

2
hÞ

1� m21
sin h cos h

" #

drðkþ1Þ
1

ðA6Þ
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