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Abstract. The automata-theoretic approach for model checking of linear-
time temporal properties involves the emptiness check of a large Büchi
automaton. Specialized emptiness-check algorithms have been proposed
for the cases where the property is represented by a weak or terminal
automaton.

When the property automaton does not fall into these categories, a gen-
eral emptiness check is required. This paper focuses on this class of prop-
erties. We refine previous approaches by classifying strongly-connected
components rather than automata, and suggest a decomposition of the
property automaton into three smaller automata capturing the terminal,
weak, and the remaining strong behaviors of the property. The three cor-
responding emptiness checks can be performed independently, using the
most appropriate algorithm.

Such a decomposition approach can be used with any automata-based
model checker. We illustrate the interest of this new approach using
explicit and symbolic LTL model checkers.

1 Introduction

The automata-theoretic approach to linear-time model checking consists in check-
ing the emptiness of the product between two Büchi automata: one automaton
that represents the system, and the other that represents the negation of the
property to check on this system.

There are many ways to apply this approach. Explicit model checking uses a
graph-based representation of the automata. Usually the product is constructed
on-the-fly as needed by the emptiness-check algorithm, and may be stopped as
soon as a counterexample is found [7]. Additionally, partial-order reduction tech-
niques can be used to reduce the state space [15]. Symbolic model checking uses a
symbolic representation of automata, usually by means of decision diagrams [5].
In this approach the emptiness check is achieved using fixed points.

The run-time of these approaches can be improved by different means. One
way is to optimize the property automaton by reducing its number of states or
making it more deterministic, hoping for a smaller product with the system. Be-
cause the property automaton is small, the time spent optimizing it is negligible



compared to the time spent performing the emptiness check of the product. An-
other possible improvement is to use an emptiness check algorithm tailored to
the property automaton used. For instance generalized emptiness checks [19, 9]
can be used when the property requires generalized acceptance conditions. Also,
simplified procedures can be performed when the strength of the property au-
tomaton is weak or terminal [2, 6], improving the worst-case complexity by a
constant factor.

For strong property automata (that are neither weak nor terminal), a gen-
eral Büchi emptiness check algorithms has to be used, even though they could
also contain some weak and terminal components. In this paper we focus such
properties whose automata mix strong, weak, or terminal components. We show
that such automaton can be decomposed into three automata, each of a dif-
ferent strength. These automata can then be emptiness checked independently
(and concurrently) using the most appropriate algorithm. Each of these three au-
tomata is smaller than the original automaton, moreover, because it is simpler it
can usually be even more simplified. This decomposition works regardless of the
type model-checking approach and options used (explicit, symbolic, parallel,...).

This paper is organized as follows. In Section 2, we define the type of (gen-
eralized) Büchi automata we use, discuss their emptiness checks, and the hierar-
chy of automaton strengths. Section 3 studies different ways to characterize the
strength of a strongly connected component. These strengths are the basis for
our decomposition described in Section 4. Finally we present our experimental
results in Section 5.

2 Büchi Automata and their Strengths

Let AP be a finite set of (atomic) propositions, and let B = {⊥,>} represent
Boolean values. We denote B(AP) the set of all Boolean formulas over AP , i.e.,
formulas built inductively from the propositions AP , B, and the connectives ∧,
∨, and ¬. An assignment is a function ρ : AP → B that assigns a truth value to
each proposition. We denote BAP the set of all assignments of AP .

The automata-theoretic approach is usually performed using Büchi automata.
In this work, we use a slightly more general form of automata called Transition-
based Generalized Büchi Automaton (TGBA) which allows a more compact rep-
resentation of properties. Any Büchi automaton can be seen as a TGBA by push-
ing acceptance sets to outgoing transitions, so the reader working with Büchi
automata will have no problem adapting our techniques.

Definition 1. A TGBA is a 5-tuple A = 〈AP , Q, q0, δ, F 〉 where:
– AP is a finite set of atomic propositions,
– Q is a finite set of states,
– q0 ∈ Q is the initial state,
– δ ⊆ Q × BAP × Q is the transition relation, labeling each transition by an

assignment of the atomic propositions,
– F ⊆ 2δ is a set of acceptance sets of transitions.



A run ofA is an infinite sequence of transitions π = (s1, `1, d1) . . . (si, `i, di) . . .
with s1 = q0 and ∀i ≥ 1, di = si+1. Such a run is accepting iff it visits all accep-
tance sets infinitly often, i.e, ∀f ∈ F, ∀i ≥ 1, ∃j ≥ i, (sj , `j , dj) ∈ f .

An infinite word w = ρ1ρ2 · · · over BAP (i.e., ρi ∈ BAP ), is accepted by
A iff there exists an accepting run π = (s1, `1, d1) . . . (si, `i, di) . . . such that
∀i, ρi = `i. The language L (A) is the set of infinite words accepted by A.

The automata-theoretic approach to model checking amounts to check the
emptiness of the language of a TGBA that represents the product of a system
(a TGBA where F = ∅) with the negation of the property to verify (another
TGBA).

A path of length n ≥ 1 between two states q, q′ ∈ Q is a finite sequence
of transitions ρ = (s1, `1, d1) . . . (sn, `n, dn) with s1 = q, di = q′, and ∀i ∈
{1, . . . , n − 1}, di = si+1. Let S ⊆ Q such that {s1, s2, . . . , sn, dn} ⊆ S, we

denote the existence of such a path by q
S
 q′. If q = q′ we say that such a path

is a cycle. A cycle is accepting iff it visits all acceptance sets, i.e., ∀f ∈ F, ∃i ∈
{1, . . . , n}, (si, `i, di) ∈ f . A cycle is elementary iff it does not visit any state
twice (i.e., ∀1 ≤ i < j ≤ n, si 6= sj).

If a TGBA has an (infinite) accepting run, then the run necessarily visits
one of the states infinitely often, which means that the automaton has an ac-
cepting cycle that is reachable from q0. One way to perform the emptiness check
of a TGBA explicitly is therefore to search for such cycles using nested DFS
(Depth First Search). Although there exists a nested DFS algorithm that works
on TGBA [25], most of the usual nested DFS algorithms [23] require a degen-
eralized Büchi automaton with a single acceptance set (the degeneralization of
a TGBA with n acceptance sets may multiply its number of states by n). In
these algorithms, a first DFS is used to detect the start of potential cycles, and
another (or several in the generalized case) DFS is started to detect an accepting
cycle.

A second emptiness-check approach is to compute the accepting strongly-
connected components of the TGBA.

Definition 2. A Strongly-Connected Component (SCC) of a TGBA is a
maximal set of states C such that there is a path between any two distinct states

of C (i.e., ∀s, s′ ∈ C, (s 6= s′)⇒ (s
C
 s′)).

C is accepting iff it contains an accepting cycle.

C is complete iff ∀s ∈ C, ∀f ∈ BAP , ∃(q, `, q′) ∈ δ such that s = q, f = `,
and q′ ∈ C.

While SCC-based emptiness checks [8, 16] are still based on a DFS explo-
ration of the automaton, they do not require another nested DFS, and their
complexity does not depend on the number of acceptance sets.

Symbolic emptiness checks [19, 14] are also based on the computation of SCCs
in the symbolic representation of the automaton. This is done using fixed points
on symbolic set of states, and amounts to performing a BFS-based emptiness
check.
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āc̄

ac̄

abc̄

b

ac̄āc̄
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Fig. 1. TGBA for (G a → G b)W c.

Whether based on nested DFS or SCC, explicit or symbolic, these emptiness-
check procedures can be simplified according to the strength of the automaton
representing the property to check [2, 13, 6, 23, 1].

Before defining the strength of the property automaton, let us first charac-
terize the strength of an SCC.

Definition 3. The strength of an SCC is:
non accepting if it does not contain any accepting cycle,
inherently terminal if it contains only accepting cycles and is complete,
inherently weak if it contains only accepting cycles and it is not inherently

terminal,
strong if it is accepting and contains some non-accepting cycle.
These four strengths define a partition of the SCCs of an automaton.

There are two kinds of non accepting SCCs. If an SCC can only reach other
non-accepting SCCs, it is useless and may be removed from the automaton
without changing its language. This simplification is traditionally performed
right after the translation of the property into an automaton. If the non accepting
SCC can reach an accepting one, it is transient. In the rest this paper we assume
that useless SCCs have been removed, i.e., all non-accepting SCCs are transient.

Figure 1 shows an example TGBA with a single acceptance set represented
with white dots on transitions. Transitions are labeled by Boolean formulas
instead of assignments (for instance a transition labeled by a is shorthand for
two transitions labeled by ab and ab̄). The dashed boxes highlight the five SCCs
of the automaton. C1 is a strong SCC (the cycle between s0 and s1 is accepting,
while the self-loop on s1 is a non-accepting cycle), C2 is an inherently weak SCC,
C3 is transient, and C4 is inherently terminal.

Definition 4. An automaton is inherently terminal iff all its accepting SCCs
are inherently terminal. An automaton is inherently weak iff all its accepting
SCCs are inherently terminal or inherently weak. Any automaton is general.
These three classes form a hierarchy where inherently terminal automata are
inherently weak, which in turn are general.
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Fig. 2. An inherently weak automaton which is not weak.

Note that the above constrains concern only accepting SCCs, but these au-
tomata may also contain non-accepting (transient) SCC.

The notion of inherently weak automaton [3] generalizes the more common
notion of weak automaton [2, 6]. If we define a weak SCC to be an accepting
SCC whose transitions belong to all acceptance sets, then a weak automaton
is an automaton that contains only weak, terminal, or non-accepting SCCs. A
weak automaton is inherently weak, and an inherently weak automaton can be
easily converted into a weak automaton [3]. For example the automaton from
Fig. 2 can be easily converted into a weak automaton, by adding the transition
from q1 to q0 into the acceptance set.

Similarly, our definition of inherently terminal is a generalization of the
notion of terminal automaton [2, 6]. If we define a terminal SCC to be weak
and complete, then a terminal automaton should have only terminal, or non-
accepting SCCs. A terminal automaton is inherently terminal, and an inherently
terminal automaton can be obviously converted into a terminal automaton.

The emptiness-check algorithms previously discussed will obviously work
with general automata. More efficient algorithms can be used for inferior strengths.
For inherently weak automata, the explicit emptiness check reduces to the de-
tection of a cycle in a inherently weak or terminal SCC. This can be performed
using a single DFS [6]. Symbolic emptiness checks of inherently weak automata
can be simplified similarly [2]. Furthermore, when the system to verify does
not have any deadlock (each state has at least one successor) and the prop-
erty automaton is terminal, then the emptiness check of the product becomes a
reachability problem. Here again, both explicit and symbolic emptiness checks
can take advantage of this simplification [2, 6].

Considering this strength hierarchy can also help when implementing tech-
niques such as partial order reduction [6] or distributed model checking [1]. In
most of the approaches suggested so far the improvements have only concerned
(inherently) weak or terminal automata: if an automaton contains at least one
strong SCC, a general emptiness check is required, even if it also contains SCCs
of inferior strengths. However Edelkamp et al. [13] have suggested to consider
the strengths of the SCCs to limit the scope of the nested DFS to the strong
SCCs.

The technique we present in section 4 improves the emptiness check of prop-
erties that mix accepting SCCs of different strengths. A necessary step towards
this goal is to be able to determine the strength of SCCs.



3 Determining SCC Strength

The SCCs of an automaton, and their acceptance, can be obtained by applying
the algorithms of Couvreur [8] or Geldenhuys and Valmari [16].

We now consider three approaches to classify accepting SCCs. The inherent
approach, that sticks to definition 3. A structural heuristic, based on the
graph’s structure. And a syntactic heuristic, which can only be applied when
translation algorithm labels a state s of the automaton A by the LTL formula
recognized from this state (this is the case in our implementation). The latter
two heuristics may misclassify an SCC in a higher class, requiring a more general
emptiness check algorithm.

We evaluate these three approaches on a benchmark of 10 000 random LTL
formulas, translated into TGBA using Couvreur’s algorithm [8] and where use-
less SCCs have been pruned. Couvreur’s translation naturally outputs an inher-
ently weak (resp. terminal) TGBA for any syntactic-persistence (resp. syntactic-
guarantee) formula, in the syntactic classification of Černá and Pelánek [6]. For
example, when translating the LTL formula (G a→ G b)W c, this translation pro-
duces the automaton from Fig. 1 in which states s0, s1, s2, s3, and s4 respectively
correspond to the LTL formulas (G a→ G b)W c, F ā ∧ ((G a→ G b)W c), G b (a
syntactic-persistence formula), F ā and > (two syntactic-guarantee formulas).

We now describe how we characterize weak and terminal SCCs in the afore-
mentioned three approaches.

If an accepting SCC contains any non-accepting cycle, then it necessarily
contains a non-accepting elementary cycle. Therefore whether an accepting SCC
is inherently weak can be determined by enumerating all its elementary cycles.
As soon as one non-accepting cycle is found, the algorithm can claim the SCC
to be non-inherently weak. This cycle enumeration can be costly since it may
theoretically have to explore an exponential number of elementary cycles [20].
As an alternative, a structural heuristic, is to check whether all transitions in
the accepting SCC belong to all acceptance sets (the SCC is weak), this informa-
tion can be collected while we determine the accepting SCCs of the automaton.
On our benchmark this approach correctly classifies 99, 85% of the weak SCCs.
Another heuristic is to consider the LTL formulas labeling the states of the ac-
cepting SCC: if one of them is a syntactic-persistence then the SCC is either
inherently weak or terminal. On our benchmark this test catches only 87, 77%
of the weak SCCs.

Terminal SCCs can be similarly detected in three ways. The inherent ap-
proach is to check that (1) the disjunction of the labels of the outgoing transitions
(that remain in the SCC) of each state is >, and (2) there is no non-accepting
elementary cycles. A structural heuristic would be to replace (2) by a check
that all transitions belong to all acceptance sets. Finally, a syntactic heuristic
would be to check that one state in the accepting SCC is labeled by a syntactic-
guarantee formula. On our benchmarks these three approaches all catch 100%
of the terminal SCCs.

The structural heuristics presented above correspond to the definition of the
weak and terminal used by Bloem et al. [2] to characterize the strength of the



entire automaton. Looking into the 0, 15% of SCCs that this structural heuristic
fails to detect as inherently weak reveals that these SCCs are the results from the
translation of pathological formulas: formulas whose syntactic class is above their
actual strength. For instance ϕ = G(c ∨ (X c ∧ (c̄U b))) is a syntactic-recurrence
formula equivalent to the safety formula G(c∨ (c̄∧X(c∧ b))∨ (b∧X c)), yet our
translation of ϕ will produce an inherently weak automaton that is not weak.

In our experiments the structural approach was 3 times slower than the syn-
tactic one, and 10 times faster than the inherent one. Since it caught 99, 85% of
the weak SCCs, we adopted the structural approach in our upcoming experimen-
tation. Regardless of these comparisons, all these approaches are instantaneous
in practice.

Additional post-processing, as suggested by Somenzi and Bloem [24], would
likely improve the “weakness” of the property automata.

4 Decomposing the Property Automaton According to
its SCCs Strengths

In this section, we focus on general property automata that cannot be handled
by a specialized emptiness check (e.g. for inherently weak automata) because the
property automaton contains SCCs of different strengths. The automaton from
Fig. 1 is such an automaton. We show how they can be decomposed into three
property automata representing their strong, weak, and terminal behaviors, that
can be used concurrently.

We denote T , W , and S, the set of all transitions belonging respectively
to some terminal, weak, or strong SCC. For a set of transitions X, we denote
Pre(X) the set of states that can reach some transition in X. We assume that
q0 ∈ Pre(X) even if X is empty or unreachable.

Definition 5. Let A = 〈AP , Q, q0, δ, {f1, . . . , fn}〉 be a TGBA. We define three
derived automata AT = 〈AP , QT , q

0, δT , FT 〉, AW = 〈AP , QW , q
0, δT , FW 〉, AS =

〈AP , QS , q
0, δT , FS〉 that represent respectively the terminal, weak and strong be-

haviors of A, with:

QT = Pre(T ) FT = {T} δT = {(q, l, q′) ∈ δ | q, q′ ∈ QT }
QW = Pre(W ) FW = {W} δW = {(q, l, q′) ∈ δ | q, q′ ∈ QW }
QS = Pre(S) FS = {f1 ∩ S, . . . , fn ∩ S} δS = {(q, l, q′) ∈ δ | q, q′ ∈ QS}

Fig. 3 shows the result of the decomposition of the TGBA of Fig. 1. The SCCs
that are highlighted with boxes represent the terminal, weak, and strong SCCs
that have been preserved. The rest of these automata is made of the prefixes
leading to these accepting SCCs.

Property 1. The strengths of AT , AW , AS are respectively terminal, weak, and
strong (unless they have no transition).
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Fig. 3. Decomposition of the automaton from Fig. 1 into three automata (labels have
been ommited for clarity).

Theorem 1. L (A) = L (AT ) ∪L (AW ) ∪L (AS).

Intuition of the proof : (⊆) A word accepted by A is recognized by a run that
will eventually be captured by an accepting SCC of A. Since every accepting
SCC belongs to one of the three automata, this SCC is necessarily reproduced
in an accepting form in one of the three derived automata, and it is necessarily
reachable from the initial state. (⊇) Because the three automata are restrictions
of A, a word accepted by any of these is straightforwardly accepted by A.

Using this decomposition, we can perform three model-checking procedures
in parallel, choosing the emptiness algorithm most suited to the strength of each
derived automaton. This way, the more complex algorithm will have to deal with
a smaller automaton (by construction), and the three procedures may abort as
soon as one of them finds a counterexample.

The weak and terminal automata AW and AT , require very simple empti-
ness check algorithms [6, 2] because the acceptance conditions are easier to check.
They also make it easier to apply other reduction such as partial order reduc-
tions [18], and they tend to produce smaller counterexamples [13].

For the strong derived automaton AS , a general emptiness check is required.
Implementations using an emptiness-check that can only deal with a single ac-
ceptance set (i.e., Büchi-style) need to degeneralize only this derived automaton.

This decomposition scheme can be further improved by minimizing each de-
rived automaton. For instance, weak and terminal automata can be reduced very
efficiently with techniques such as WDBA minimization [10]. Also simulations
reductions [24] will be more efficient on automata with less acceptance condi-
tions. As these techniques will not augment the strength of an automaton, they
can be used without restriction.

In addition to reducing the number of states and acceptance sets in the
automaton, the decomposition might also produce automata that observe fewer
atomic propositions. Emptiness check techniques that are sensitive to the number
of observed propositions [e.g., 22] will therefore benefit from the decomposition.



As a final note, this decomposition approach is suitable for any type of model
checker (explicit, symbolic, parallel, ...) as long as it uses an automaton to rep-
resent the property.

5 Assessment

We compare the new decomposition approach against the classical one in four
setups:

SE This explicit setup uses Schwoon and Esparza’s improved NDFS algorithm [23],
to our knowledge, the best NDFS to date. This emptiness checks requires a
degeneralization.

ELL A refinement of the previous setup restricting the nested DFS to the strong
components, as suggested by Edelkamp et al. [13].

Cou This explicit setup uses Couvreur’s SCC-based algorithm [8] and supports
TGBA directly.

OWCTY This symbolic setup uses an implementation of the classical OWCTY
algorithm with multiple acceptance sets [19].

When the decomposition approach is used, the above emptiness checks are
applied only on the strong automaton K ⊗AS . For the products with weak and
terminal automata, we use explicit or symbolic dedicated algorithms as described
by Černá and Pelánek [6].

In all approaches, LTL formulas representing properties are first simplified,
translated into TGBA, and these automata are postprocessed (using aforemen-
tioned techniques) in Spot [11]. In the decomposition scheme, the three resulting
automata are postprocessed again.

The models we use come from the BEEM benchmark [21]. In explicit setup,
we generate the system automaton K using a version of DiVinE 2.4 patched by
the LTSmin team4. For the symbolic setup, we use a symbolic representation
provided by its-ltl5 [12].

Because the LTL formulas supplied by the BEEM benchmark are few and are
usually safety automata (their negation translates into a terminal automaton),
we opted to generate random LTL formulas for each model.

We ran our different approaches on 13 models, for which we selected formulas
such (1) the property automaton contains different SCC strengths, (2) the prod-
uct with the system has more than 2000 states, (3) for each model 100 formulas
yield an empty product, and 100 formulas yield a non-empty one.6 The second
point is to avoid cases where the formula is trivial to verify.

4 http://fmt.cs.utwente.nl/tools/ltsmin/#divine
5 http://ddd.lip6.fr/
6 This has been done by generating random formulas and running an

emptiness check over the product automaton until 100 empty prod-
ucts and 100 non empty products were found. For a more detailed
description of our setup, including selected models and formulas, see
http://move.lip6.fr/~Etienne.Renault/benchs/TACAS-2013/benchs.html



These tool chains were executed on a cluster of Intel Xeon E5645@2.40GHz,
running Linux. The memory was confined to 4GB, and the run time to 1 hour.

Table 1 shows the reduction effect of the decomposition and additional post-
processing on the sizes of the property automata. It can be noted that it is the
strong automaton that obtains the greatest reduction, a good news, since this is
the hardest to check.

no postproc. postproc.
states trans. states trans.

AS 50.66% 37.87% 46.57% 34.85%
AW 68.71% 51.47% 62.95% 44.77%
AT 75.27% 63.68% 64.70% 49.28%

Table 1. Sizes of the automata AS , AW , AT relative to A, with or without the post-
processing applied after decomposition, averaged on all our formulas.

Table 2 shows how many pairs of (model,formula) were successfully processed
by each setup within the run-time and memory confinement. We separated empty
products (verified formulas) from non-empty products (violated formulas) be-
cause the emptiness check may abort as soon as a counter example is found in
the latter. It can be observed that using the decomposition always helps.

empty non-empty total
class. dec. class. dec. class. dec.

SE 1258 1297 1300 1300 2558 2597
ELL 1250 1297 1300 1300 2550 2597
Cou 1257 1299 1300 1300 2557 2599

OWCTY 1293 1299 1285 1299 2578 2598

Table 2. Number of formulas processed by the classical (class.) and decomposition
(dec.) approach, using different emptiness checks, out of a total of 2600 formulas.

Table 3 is an excerpt of our complete benchmark showing only a selection of
the models whose verification required a significant run time (still, the observed
trends are similar in other models). In order to compare the different algorithms,
we restricted these measurements to formulas that could be processed by all
setups.

For the “classical” explicit approaches, we measure the average number of
visited states (counted once) and explored transitions (counted at most twice
depending on the algorithm) during the emptiness check of K ⊗A (the product
of the system with A).

For the “decomposition-based” explicit approaches, three algorithms have
been launched in parallel (on three different hosts) to check the emptiness of
K ⊗AT , K ⊗AW , and K ⊗AS . When L (K ⊗A) = ∅, we have to wait for the
three emptiness checks, and we report the performances of the last to terminate.



classical decomposition

model algorithm states transitions time mem states transitions time mem

L
(K
⊗
A
)
=
∅

at.4 SE 11778840 55765492 112.21 3034 7620732 30150665 63.35 2691

84 cases ELL 11778840 55748407 117.22 3050 7620732 30150665 63.07 2688

Cou 11692421 54326243 95.95 2913 7542343 28859760 58.88 2657

OWCTY 149.91 3227 75.68 2841

bopdp.3 SE 2672100 14245549 20.59 1790 1430033 5249648 9.65 1460

99 cases ELL 2672100 13637796 21.27 1811 1440798 5250679 9.51 1443

Cou 2515568 10389823 17.93 1717 1414104 4037319 7.96 1362

OWCTY 241.26 3313 166.98 3151

elevator2.3 SE 17583328 208607370 273.95 3622 12709300 106105555 161.48 3418

64 cases ELL 17583328 200251800 287.67 3639 12709300 106105555 161.02 3419

Cou 17144611 171043227 186.22 3464 12479194 99666774 141.25 3348

OWCTY 14.59 1607 6.48 1534

elevator.4 SE 2928295 15794777 26.73 1969 1543723 4728263 10.58 1505

94 cases ELL 2928295 14908666 26.65 1984 1543723 4728263 10.54 1498

Cou 2849219 12734156 20.14 1831 1547016 4430731 9.70 1463

OWCTY 638.29 3812 245.55 3718

prodcell.3 SE 3488725 25182172 34.28 1952 1358518 5065228 9.64 1400

100 cases ELL 3488725 23975933 35.11 1954 1358849 5065967 9.58 1397

Cou 3194579 19584772 26.40 1797 1323029 4391328 8.38 1357

OWCTY 145.60 3003 50.04 2731

L
(K
⊗
A
)
6=
∅

at.4 SE 362202 2384803 4.61 842 138 181 0.00 795

93 cases ELL 362202 2100874 4.38 861 146 186 0.00 798

Cou 362196 2095924 3.63 837 172 217 0.00 799

OWCTY 343.86 3501 80.95 2623

bopdp.3 SE 32131 90859 0.19 765 1145 2333 0.01 803

99 cases ELL 31989 90668 0.20 762 1134 2310 0.01 802

Cou 32120 80027 0.17 780 1152 2331 0.01 800

OWCTY 292.19 3275 69.46 2594

elevator2.3 SE 998871 14729965 15.29 1023 7967 50455 0.07 721

100 cases ELL 998725 13980443 16.54 1031 7978 50466 0.07 720

Cou 984226 9916942 10.29 986 7975 50464 0.07 720

OWCTY 30.53 2079 6.68 1172

elevator.4 SE 37389 141012 0.28 745 54 58 0.00 719

87 cases ELL 37336 137843 0.29 751 44 47 0.00 718

Cou 37386 118119 0.21 732 41 43 0.00 723

OWCTY 491.27 3747 174.15 3087

prodcell.3 SE 52458 313946 0.46 753 497 876 0.00 758

97 cases ELL 52375 271454 0.44 779 495 862 0.00 759

Cou 48589 199349 0.32 744 491 857 0.00 757

OWCTY 196.47 3209 57.83 2469

Table 3. Evaluation of the decomposition technique when model-checking different
models in four possible setups. All values are averaged over all cases considered for one
model. Time is in seconds, memory is in MB.



When L (K ⊗ A) 6= ∅, we report the performance of the first emptiness check
that finds a counterexample.

For all approaches (explicit and symbolic), we report peak memory usage
and run time following the same rules as above.

A first observation is that while the run time is always improved by the
decomposition, the memory gain is no always so obvious.

For non-empty products, the table shows that counterexamples are found
much more rapidly. However when comparing the results of explicit approaches
for non-empty products, we should keep in mind that there is a part of luck
involved: depending on the order in which transitions of the property automaton
are ordered, an emptiness check may find a counterexample faster. The results
for empty products are easier to appreciate: since the entire product has to be
explored transition order has no importance.

Table 3 can also be used as yet another comparison of emptiness check algo-
rithms. We can notice that our benchmark favors explicit approaches over sym-
bolic ones. This is a consequence of our selection of models and may certainly
not be used to denigrate symbolic approaches. Still, if we order the emptiness
check algorithm in the classical approach according to their average run time, we
can observe that adding the decomposition does not change the order of these
algorithms.

The ELL algorithm explores less transitions than SE because it restricts its
nested DFS to the strong SCCs of the property, however this smaller exploration
does not always reflect on the run-time because of the small overhead required
to apply this restriction.

6 Conclusion

In the automata-theoretic approach to model checking for linear-time properties,
specialized emptiness checks algorithms have been proposed for the cases where
the property automaton is represented by a weak or terminal automaton. For
strong automata, a general emptiness check is required.

In this paper we focused on properties whose automata (strong or weak) mix
SCCs of different strengths, and for which we propose a decomposition approach
based on these strengths.

Our experimentation of various ways to implement the characterization of
SCC strengths has shown that trying to detect inherently weak SCCs (by enu-
merating all its elementary cycles) was not worth it: detecting weak SCCs is
faster and easier to implement, and will miss very few inherently weak SCCs.
However this study was performed on automata produced by Spot whose transla-
tion algorithm produce automata in the form preferred by the structural heuris-
tic.

In the decomposition approach, instead of translating the property into one
Büchi automaton A, we build three automata AS , AW , AT of different strengths.
These three automata are smaller than the original one, so checking them in par-
allel is necessarily faster. They also have a simpler structure, with less transitions



in the acceptance sets of AS and only one acceptance set for AW and AT , so
they can be simplified more easily than A, improving the run time even more.
Last but not least, more efficient algorithms are used for the emptiness check of
K ⊗AW and K ⊗AT .

Although we have experimented this approach with LTL formula, it will ob-
viously work with any logic that can be translated into Büchi automata: for
instance our implementation actually supports PSL. Similarly, we have experi-
mented with some custom explicit and symbolic model checkers, but the same
approach would be easily applied to any model checker based on the automata-
theoretic approach. For instance we can decompose a property into three never
claims to feed to the Spin model checker [17] and benefit from its partial-order
reduction; or this approach could be integrated in VIS [4] and benefit from its
SAT-based emptiness checks.
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ceedings of the 4th International Conference on Application of Concurrency to
System Design (ACSD’04). pp. 165–174. IEEE Computer Society (Jun 2004)


