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ARTICLE

Strength of immune selection in tumors varies with
sex and age
Andrea Castro 1,2,3,13, Rachel Marty Pyke1,2,13, Xinlian Zhang4, Wesley Kurt Thompson4, Chi-Ping Day 5,

Ludmil B. Alexandrov 6,7,8, Maurizio Zanetti8,9,10 & Hannah Carter 1,2,8,11,12✉

Individual MHC genotype constrains the mutational landscape during tumorigenesis. Immune

checkpoint inhibition reactivates immunity against tumors that escaped immune surveillance

in approximately 30% of cases. Recent studies demonstrated poorer response rates in female

and younger patients. Although immune responses differ with sex and age, the role of MHC-

based immune selection in this context is unknown. We find that tumors in younger and

female individuals accumulate more poorly presented driver mutations than those in older

and male patients, despite no differences in MHC genotype. Younger patients show the

strongest effects of MHC-based driver mutation selection, with younger females showing

compounded effects and nearly twice as much MHC-II based selection. This study presents

evidence that strength of immune selection during tumor development varies with sex and

age, and may influence the availability of mutant peptides capable of driving effective

response to immune checkpoint inhibitor therapy.
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The major histocompatibility complex (MHC) exposes
protein content on the cell surface to allow detection of
antigens by the immune system. This applies to nonself

antigens such as viral proteins, and self-proteins that include
tumor antigens. Tumor cells harbor oncogenic alterations that
can be presented to the immune system by the MHC, causing
immune recognition and elimination (immune surveillance)1.
However, in order to grow, invade, and spread, tumors must
evade immune surveillance. Common mechanisms of immune
evasion include loss of the MHC molecules and the upregulation
of immune checkpoint molecules on cell surfaces that normally
regulate the amplitude and duration of a T-cell response2.
Immune checkpoint blockade (ICB) uses antibodies to block
these immune checkpoint molecules, and can invigorate inactive
and/or exhausted T cells to produce antitumor effects that confer
long-term survival benefits in certain types of cancer3. However,
ICB is effective in only 10–40% of patients for reasons that
remain unclear. Meta-analyses of clinical trials in multiple cancer
types treated with ICB suggest that young and female patients are
characterized by low response rates4–8. The reason(s) for the poor
response of these two populations remains elusive.

An accumulating body of literature points to sexual dimorphism
in immune responses9. Moderated by genetic and hormonal factors,
females have twice the antibody response to influenza vaccines10

and higher CD4+ T-cell counts than males11. Moreover, females are
far more susceptible to autoimmune diseases12, demonstrating a
stark imbalance in the way the immune response causes diseases in
the two sexes. Immunosequencing of over 800 individuals revealed
sex associated differences in the extent to which HLA molecules
propagate selection and expansion of CD8+ T cells13. Interestingly,
a stronger immune response in females has been observed across
several species14–16, and sexual dimorphism has been demonstrated
in immune selection and restriction of intratumor genetic hetero-
geneity in a mouse model of B-cell lymphoma17. In addition, a
recent study has found sex-based differences in molecular bio-
markers and immune checkpoint expression in multiple tumor
types treated with ICB8. Altogether, these studies suggest that these
differences are sex-specific and not lifestyle dependent.

Studies have demonstrated age-related changes in immune
response as well. As humans age, there is a decrease of general
immune function including production of IL-2, a pivotal growth
factor for T cells18. Reduced thymic output, lower numbers of naive
T cells, and overall reshaping of the size and specificity of the T-cell
repertoire by microbial pathogens may explain why, for example,
about 90% of excess deaths during flu season occur in patients
greater than 65 years of age19. In addition, elderly people have
reduced phagocytic function and HLA-II expression on antigen
presenting cells20. Collectively, these factors render elderly indivi-
duals less able to mount a T-cell response to new antigens and
respond to vaccination.

Recently, we developed the Patient Harmonic-mean Best Rank
(PHBR) score that quantifies patients’ ability to present somatic
mutations in their tumor by their specific MHC-I and MHC-II
haplotypes21,22. PHBR-I and PHBR-II scores aggregate predicted
peptide-MHC molecule binding affinities from established tools23,24

to produce a mass spectrometry-validated, residue-centric, and
patient-specific presentation score that captures a mutant peptide’s
visibility to the immune system. In previous publications we used
PHBR scores to assess the role of MHC genotype in shaping
mutation accumulation during tumorigenesis21,22. We found that
patients tend to accumulate driver mutations that cannot be
effectively presented by their own MHC molecules, likely a con-
sequence of immune-based elimination of tumor cells harboring
well-presented driver mutations, a selective process referred to as
immunoediting25. This analysis revealed that thyroid carcinoma
and low-grade glioma patients experience the highest MHC-based

selective pressure on driver mutations21,22. Interestingly, these
tumor types also had the youngest average age at diagnosis com-
pared to all studied tumor types. In light of these observations, we
reasoned that younger and female patients may experience stronger
immunoediting early in their tumor history, accumulating muta-
tions that are less favorably presented by their MHC, i.e., mutations
more invisible to their immune system, at the time of diagnosis.
Predictably, a depletion of potentially immunogenic mutant pep-
tides would cause ICB to be ineffective. At first approximation we
ruled out an effect due to sex-specific (MHC-I Pearson R= 0.99,
MHC-II Pearson R= 0.99) or age-specific (MHC-I Pearson R=
0.98, MHC-II Pearson R= 0.99) imbalances in MHC genotype
frequencies. Therefore, we sought to test the hypothesis that sex-
and age-specific differences in driver mutation presentation are the
result of differential immunoediting.

In this study we find that female and younger patients exhibit
stronger immune selection in their tumors, measured by the
affinity of their observed, expressed driver mutations compared to
male and older patients. MHC-II appears to have a stronger effect
compared to MHC-I. Our findings, based on TCGA samples, are
validated in an independent validation cohort.

Results
Fewer presentable drivers in female and younger patients. We
focused on a set of 1018 driver mutations, defined in21, as driver
mutations are more prevalent in the clonal architecture of an
individual’s cancer and confer a selective growth advantage. We
assigned MHC-I and MHC-II types using PolySolver and HLA-
HD, two exome-based calling methods26,27 and considered only
microsatellite-stable TCGA tumors. After excluding 515 patients
from class I and 1064 patients from class II analyses due to HLA
genotype incompatibility with NetMHCpan affinity prediction
software, 9913 patients with MHC-I calls and 7174 patients with
MHC-II calls remained. These patients were diverse in sex, with
more males than females (Supplementary Fig. 1A), and a broad
distribution of age at diagnosis (Supplementary Fig. 1B). PHBR-I
and -II scores were calculated for all patients across the 1018
driver events by taking the harmonic mean of each allele’s best
NetMHCpan percentile rank affinity score, providing an estimate
of each patient’s potential to present each mutation via MHC-I
and MHC-II, respectively. Importantly, the PHBR-I and PHBR-II
scores aggregate percentile rank scores of mutated peptides
relative to large numbers of random peptide provided by
NetMHCpan-4.0 and NetMHCIIpan3.2. For single peptide-HLA
pairs, percentile rank scores of 0.5% and 2% for MHC-I and 2%
and 10% for MHC-II have been used to represent strong and
weak binding cutoffs respectively28,29.

To rule out other covariates, we performed a series of control
analyses. We categorized patients into subgroups according to sex
(male versus female) and age (younger versus older based on pan-
cancer 30th and 70th percentiles at age of diagnosis for categorical
analyses). For sex-specific analyses, we further excluded seven sex-
specific tumor types (breast, cervical, ovarian, uterine, prostate, and
testicular cancer). First, we established that there were similar
average numbers of driver mutations across sex and age patient
groups (Supplementary Fig. 2). We previously found that TCGA
patients with somatic MHC-I mutations had altered mutational
landscapes, with a higher fraction of binding mutant peptides than
patients without MHC-I mutations30. To ensure that somatic
MHC-I mutations would not skew the driver mutation PHBR-I
score distributions, we compared scores for patients with and
without MHC-I mutations grouped by sex and age and found no
significant differences (Supplementary Fig. 3). We then compared
the distributions of patient PHBR-I and PHBR-II scores across the
1018 driver mutations (Supplementary Fig. 4A–D) and found
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significant p values, but very small effect sizes between groups. To
ensure that the potential to present driver mutations was consistent
across sex and age, we compared the fraction of presented drivers at
various score thresholds, and found no significant differences
(Supplementary Fig. 4E, F). The overall similarity of MHC
presentation suggests that patients of both sexes and various ages
at diagnosis present driver mutations with roughly equivalent
efficacy, implying that specificity of MHC presentation resulting
from specific allele combinations is not a mechanism causing
differences in ICB response rate.

We therefore reasoned that the discrepancy might be due to
differences in the strength of immune selection, e.g., tumors with
stronger immunoediting should retain fewer driver mutations
that are presentable to T cells by the patient’s own MHC
molecules. For sex- and age-specific groups in each cohort, we
compared the PHBR-I and PHBR-II score distributions for
observed, RNA-expressed driver mutations observed in patient
tumors, excluding 4782 patients with no drivers from the list of
1018. While the number of observed drivers was not significantly
different between sex and age groups (Supplementary Fig. 2),
younger female patients were overrepresented in the group with
no observed driver mutations (Fisher’s exact test: class I: OR=
1.12, p < 0.12; class II: OR= 1.28, p < 0.015). We note this group
had an overrepresentation of thyroid cancer cases, a disease
associated with low mutational burden and that typically only has
a single driver mutation31. We therefore performed sex-specific
analysis for unique 2900 patients and age-specific analysis for
3928 unique patients.

Across pan-cancer cohorts, females were at a significant
disadvantage (higher PHBR scores) in presenting their driver
mutations by both their MHC-I and MHC-II molecules (Fig. 1a,
b, p < 2.6e−04 and p < 1.2e−07, respectively). Younger patients
also tended to have worse presentation of driver mutations by
both MHC-I and MHC-II molecules (Fig. 1c, d, p < 2.4e−5 and p
< 7.3e−04, respectively). Notably, the shift in PHBR score
distributions between groups occurs near the threshold for weak
binding. Given that a limited number of somatic mutations
generate mutant peptides and not all of these are immunogenic,
this small shift may translate to significantly less opportunity to
generate a host antitumor response upon ICB. Importantly, we
found that these observed between-group differences in PHBR
scores were far greater (falling outside the 99% confidence
interval) than differences when we randomly reassigned muta-
tions across patients and recalculated patient-specific PHBR

scores (Methods; Supplementary Fig. 5), and were an order
of magnitude greater than the effect sizes observed when
comparing score distributions independent of mutation occur-
rence (Supplementary Fig. S4). We also found differences in
affinity independent of the PHBR score, using median NetMHC-
pan affinity scores across all alleles (Supplementary Fig. 6).
Altogether this suggests that score differences do indeed result
from the interaction of inherited MHC genotype with the
observed mutations. Interestingly, the mutation-specific fraction
of RNA reads mapping to these driver mutations was significantly
lower for females and younger patients (Supplementary Fig. 7),
further supporting sex- and age-based differential strength in
immune selection.

We next examined evidence for sex and age differences in
specific tumor types, adjusting age thresholds according to tumor
type. There was a general trend for female and younger patients’
tumors to have higher median PHBR-I and II scores across tumor
types, although the difference was only statistically significant in
melanoma (Supplementary Fig. 8A). We observed more varia-
bility in the trends across tumor types by age. Younger
individuals trended toward higher median PHBR-I and II scores
in tumors where the 30th/70th percentile was associated with a
large age gap and the younger age threshold was under 55, with
some notable exceptions that included rectal cancer, thyroid
cancer, stomach cancer, and liver (Supplementary Fig. 8B).
Overall these trends suggest that stronger pan-cancer immune
selection in younger and female patients results broadly from
effects observed across multiple tumor types.

Next, we explored the effect of age and sex in the context of the
immune system’s ability to eliminate effectively-presented muta-
tions by modeling the relationship between mutation occurrence
and immune visibility as modeled by PHBR-I and II scores. We
constructed sex- and age-specific generalized additive models
with random effects to account for variation in mutation rate
across individuals, and examined the coefficients corresponding
to independent and interaction effects for PHBR-I, PHBR-II, and
sex or age to assess their contribution to immune selection for
expressed mutations observed ≥2 times in the cohort, excluding
patients with no observed, expressed driver mutations. To control
for the fact that some driver mutations occurred in the same
tumor, and thus are not completely independent events, we
included patient ID as a random effect in our linear model. In
both models, we found that PHBR-I and PHBR-II scores alone
had significant effects on the probability of a mutation to be a
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Fig. 1 Sex- and age-specific MHC presentation of observed, RNA-expressed driver mutations. a, b Box plots denoting the distribution of (a) PHBR-I and
(b) PHBR-II scores for expressed driver mutations in female and male pan-cancer patients. c, d Box plots denoting the distribution of (c) PHBR-I and (d)
PHBR-II scores for expressed driver mutations in younger and older pan-cancer patients. P values were calculated using the one-tailed Mann–Whitney U
test. Median values are shown in each boxplot. All box plots include the median line, the box denotes the interquartile range (IQR), whiskers denote the
rest of the data distribution and outliers are denoted by points greater than ±1.5 × IQR. The following effect sizes were calculated using Cliff’s d: (a) r=
−0.0654, (b) −0.104, (c) −0.081, (d) −0.0734.
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target of immune selection (Table 1). Positive coefficients for both
PHBR scores indicate that the higher the PHBR score (i.e., poorer
presentation), the higher the probability of mutation. Further-
more, when we quantified the influence of both scores on
probability of mutation using odds ratios between respective 25th
and 75th percentiles, we found that PHBR-II (OR: 3.4, CI [3.19,
3.6]) has a much larger impact on probability of mutation than
PHBR-I (OR: 1.27, CI [1.26, 1.29]), echoing the larger effect sizes
seen in Fig. 1. As expected, sex and age alone did not influence
the probability of mutation; however, of particular interest are the
interaction terms that indicate the influence of PHBR scores on
probability of mutation within the context of sex and age. Both
the PHBR-I:sex and PHBR-I:age interactions as well as the
PHBR-II:sex and PHBR-II:age interactions were significant. The
negative PHBR:age estimates indicate stronger effects of PHBR-I
as well as PHBR-II contribution to the probability of mutation in
younger patients. On the other hand, positive PHBR:sex estimates
indicate stronger effects of PHBR-I and PHBR-II contributing
to probability of mutation in females according to the model
formulation (Methods). Collectively, these results suggest stron-
ger immune selection in females and younger patients.

As females and younger patients both demonstrated
stronger immune selection compared to males and older
patients, we further partitioned the cohorts simultaneously by
sex and age, and investigated the distribution of PHBR-I and
-II scores for these groups. We found that sex and age effects
are cumulative, with tumors in younger females exhibiting
significantly higher selective pressure by MHC than those in
the other three groups (Fig. 2). We noticed a profound
difference between PHBR score distributions between younger
females and older males. Because younger males had worse
presentation of their driver mutations compared to older
females (Fig. 2), we sought to ensure that sex had an effect on
immune selection independent of age. In two models
incorporating sex, age, and PHBR-I and PHBR-II scores,
respectively, both PHBR:sex and PHBR:age were indepen-
dently significant for both class I and class II (Supplementary
Table 1). These results demonstrate that more aggressive
immune selection in younger females selects for tumors with
driver mutations that are less visible to the immune system.

Mutational signatures do not explain differential selection. We
next explored whether sex- and age-specific effects could be
driven by differences in environmental exposure rather than

the strength of immune selection. Mutational signatures assign
specific mutations to different mutagenic processes, allowing the
exploration of differences in environmental exposure across sex
and age. We compared the sex-specific occurrence of mutational
signatures in each tumor type and found only a minority of
instances where signature strength was weakly but significantly
associated with sex (Fig. 3a). Importantly, only three of the sig-
natures (01, 02, and 05) where we observed significant sex-
specific differences contribute to the set of driver mutations used
for this analysis (Fig. 3b). Since signatures 01 and 05 are endo-
genous rather than exposure associated signatures, this suggests a
very low impact of environmental exposures on sex-specific
effects of immune selection on drivers. Furthermore, when we
excluded the tumor types with significant signature differences
(glioblastoma multiforme, GBM and liver hepatocellular carci-
noma, LIHC), we still observed sex- and age-related differences
(Supplementary Table 2). In addition, only two signatures cor-
related with age, both of which have known association with
aging32. We examined C>T and T>C mutations, which are
hallmarks of signature 01 and 05, respectively, and found that
observed driver mutations in these categories were broadly dis-
tributed across age at diagnosis. To explain weaker immune
selection in older individuals, age-related mutations would have
to be better presented (have lower PHBR scores) than other
mutations. Instead, we found that C>T and T>C mutations
were significantly more poorly presented (had slightly higher
PHBR scores) than other mutations across all possible MHC-I
and MHC-II alleles, suggesting that these mutations, and by
extension, signatures 01 and 05, could not drive the apparent
age-associated difference in immune selection (Fig. 3c). Thus,
we conclude that the sex- and age-specific effects on immune
selection are not likely due to environmental exposure
differences32,33.

Validation in an independent non-TCGA cohort. We sought
validation of our findings in a cohort of 342 patients (309 with
compatible MHC-I type calls and 277 with MHC-II type calls)
compiled from published dbGaP studies and non-TCGA samples
in the International Cancer Genome Consortium (ICGC) data-
base34 and filtered to exclude tumor types not represented in
TCGA. While fewer tumor types were represented relative to the
discovery cohort, these patients were diverse with respect to sex
and age at diagnosis, with slightly more males than females, and
similar average numbers of driver mutations. As in the discovery
cohort, we found some significant differences in patient PHBR
score distributions across the 1018 driver mutations, also with
very small effect sizes between groups. Likewise, there was no
difference in the fraction of presented drivers at various score
thresholds (Supplementary Fig. 9). The majority of our validation
cohort did not have expression data, so we predicted RNA
expression using a logistic regression classifier trained on the
TCGA cohort (Methods).

We found, as in the discovery cohort, that effectively-presented
driver mutations were significantly depleted in younger and
female patients compared to older and male patients (Fig. 4a–d).
These differences were an order of magnitude greater than the
effect sizes observed when comparing score distributions
independent of mutation occurrence (Supplementary Fig. S9E–H).
When we examined the simultaneous effects of sex and age
(Fig. 4e, f), younger females once again had significantly worse
presentation of their driver mutations than older males across
both MHC-I and MHC-II (p < 0.001, p < 0.007). We repeated the
sex- and age-specific analyses using the generalized additive
models and found that, for both sex and age, PHBR-II scores
alone significantly influenced the probability of mutation, with

Table 1 Quantitative estimate of the association between
PHBR score and mutation occurrence in sex- and age-
specific cohorts.

Parametric
coefficients

Estimate Pr(>|z|)

Sex analysis PHBR-I 0.048 0.0035
PHBR-II 0.31 1.66e−56
Sex −0.02 0.59
PHBR-I:sex 0.07 0.02
PHBR-II:sex 0.15 0.00035

Age analysis PHBR-I 0.043 0.0078
PHBR-II 0.31 1.01e−54
Age −0.0025 0.06
PHBR-I:age −0.0029 0.005
PHBR-II:age −0.0035 0.007

Estimates and p values are shown for a generalized additive model with random effects relating
PHBR scores to the set of expressed driver mutations observed ≥2 times in this cohort. P values
were calculated via Wald tests using the Bayesian covariance matrix for the coefficients.
Variables and their respective estimates and p values have been bolded if significant (p < 0.05).
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higher PHBR scores (i.e., worse presentation) leading to higher
probability of mutation (Supplementary Table 3). While PHBR-
II:sex and PHBR-II:age coefficients trended in the same direction,
with stronger effects in females and younger patients, they did not
reach significance, likely due to sample size.

Discussion
Here, we present evidence that both sex and age impact the
driver mutations that arise and persist during tumorigenesis. We
found that younger and female patients accumulate driver
mutations in their tumors that are less readily presented by their
MHC molecules (Fig. 5), suggesting a stronger toll by immune
selection early in tumorigenesis. This finding is consistent with
recent meta-analyses across multiple tumors showing sex- and

age-dependent differences in response to ICB4–7. We also
observed the strongest effects in MHC-II based selection, in
agreement with the fact that females have higher CD4+ T-cell
counts than males35. A prevalent role of MHC-II driven
immune selection can be explained by the fact that CD4+

T cells, besides direct effector function comparable to that of
CD8+ T cells, also play a deep-rooted regulatory role in coop-
erating with CD8+ T cells via associative recognition of
antigen36,37. Their function in orchestrating T-cell immunity, in
general terms, makes them privileged actors, hence targets of
immune selection as revealed herein. In older individuals,
immune selection effects by MHC-II presentation of driver
mutations are mitigated by a reduced CD4+/CD8+ ratio38 and
greater telomere attrition in CD4+ T cells than in CD8+

T cells39 leading to accelerated senescence. Taken together, the
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evidence suggests that tumors developing in younger and female
patients are prone to stronger immunoediting than those in
older and male patients.

Our findings based on the TCGA were reproduced in the
smaller validation cohort where we once again observed poorer
MHC-based presentation of driver mutations in females versus
males and younger versus older patients, with presentation being
worse in younger and female patients. When modeling the
influence of MHC genotype on the probability of observing driver
mutations, the estimated effect sizes are modest, although rela-
tively large compared to effects detected by genome wide asso-
ciation studies where odds ratios are often <1.240. Several sources
of uncertainty, including errors in patient genotyping, prediction
of the peptide-HLA binding affinities used to calculate the PHBR
score, and errors in somatic mutation calling could obscure the
true effects21. More accurate estimates will likely require larger
sample sizes, and ideally availability of expression data as non-
expressed mutations should not reflect the effects of immune
selection.

In this analysis, we focused on a set of recurrent missense and
indel mutations in established driver genes developed in our
previous work. This is motivated by the assumption that these are

more likely to occur early during tumorigenesis, and may thus
provide a view of immune selection before various mechanisms of
immune evasion occur22. However it is unlikely that immune
selection operates differently on different categories of mutation,
and nondriver mutation-derived neoantigens should be equally
capable of triggering a T-cell response. Whether tumor cells can
evade T-cell responses more easily when they are targeted against
nonessential nondriver mutations remains an important question.
It has been suggested that ICB responses are most effective when
a clonal driver neoantigen is present41. While we did not observe
large sex or age bias in the mutational signatures associated with
the 1018 driver mutations, we speculate that it is possible non-
driver mutations could show differences in their potential to serve
as neoantigens if the underlying mutational processes are active at
different times or are biased to generate mutations in expressed
protein coding sequences with characteristics that bias their
presentation.

Notwithstanding some limitations, our analysis provides a
compelling case for the paradigm that immune selection exerts its
toll differently with respect to sex and age, with a greater effect in
younger females. Of note, the younger female cohort had the
poorest driver mutation presentation across both the discovery
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and validation cohorts, suggesting that these effects are strong
and complementary. Although our analysis suggests that younger
age is associated with stronger antitumor immune responses, we
strongly suggest caution in considering whether this trend could
generalize to pediatric tumors. The genomic landscape of pedia-
tric tumors is distinct from that of adulthood tumors, with lower
mutation burdens, different driver events and more germline
factors and the characteristics of the pediatric immune system
differ greatly from those of an adult42. Furthermore, we are
unable to control for other sex- and age-related factors beyond
predicted MHC presentation of driver mutation-derived peptides.
These possibilities may include (a) differences in the antigen
processing machinery preceding surface exposure of MHC-
peptide complexes, and (b) genetic and epigenetic factors caus-
ing preferential mutation accumulation in the cohorts for reasons
other than immunoediting.

In conclusion, this study indicates that immune selection exerts
its toll differently with respect to sex and age, with a greater effect
in younger females. As such, the response rate to ICB may be
dependent on the strength of immune selection occurring early in
tumorigenesis. Methods to accurately predict the impact of
immunoediting on a patient-specific basis may lead to better
predictive algorithms for response to therapy. As a corollary, we
posit that ICB treatment is likely to have a reduced effect in
younger female patients since this treatment will attempt to
reactivate T cells for immunologically invisible neoantigens.
Rather, adaptive T-cell therapy against patient-validated neoan-
tigens or therapeutic vaccination against conserved antigens will
likely be more beneficial in these patients. Notably prior to
treatment with ICB, male sex (and less consistently older age) are
associated with higher risk of recurrence and death in melanoma
and may stand to benefit more from ICB43,44, thus it is also
possible that overall stronger immune surveillance could prove
advantageous in the context of ICB despite differences in the
quality of neoantigens. Finally, these findings shed light on the
role of immune surveillance in cancer progression.

Methods
HLA typing. HLA genotyping was performed for class I genes HLA-A, HLA-B,
HLA-C, and class II genes HLA-DRB1, HLA-DPA1, HLA-DPB1, HLA-DQA1, and
HLA-DQB1, which encode three protein determinants of MHC-I peptide binding
specificity, HLA-DR, HLA-DP, and HLA-DQ. TCGA samples were typed with
Polysolver26, with default parameters, for class I and typed with HLA-HD27, using
default parameters, for class II. Both tools require germline (whole blood or tissue
matched) whole exome sequenced samples. Samples with very low coverage on
specific genes are left untyped by HLA-HD. Patients were assigned an HLA-DR
type if they were successfully typed for HLA-DRB1. Patients were assigned HLA-DP
and -DQ types if they had successful typing for HLA-DPA1/HLA-DPB1 and HLA-
DQA1/HLA-DQB1, respectively. Class I and class II types were validated by
xHLA45, run with default parameters, and only patients where all alleles agreed in
both classes were included in the analysis.

Presentation score assignment. We used patient presentation scores, as defined
in21, to represent a particular patient’s ability to present a residue given their
distinct set of HLA types. For class I, 6 HLA alleles were considered (HLA-A, HLA-
B, and HLA-C). For class II, 12 HLA-encoded MHC-II molecules (4 combinations
of HLA-DPA1/DPB1 and HLA-DQA1/DQB1; 2 alleles of HLA-DRB1 considered
twice each—since HLA-DRA1 is invariant—for consistency between resulting
molecules). NetMHCpan4.028 and NetMHCIIpan3.229 were used to calculate
binding affinities. The PHBR score was assigned as the harmonic mean of the best
residue presentation scores for each group of MHC-I and MHC-II molecules.
A lower patient presentation score indicates that the patient’s MHC molecules are
more likely to present a residue on the cell surface.

Set of driver mutations. Somatic mutations were considered to be recurrent and
oncogenic if they occurred in one of the 100 most highly ranked oncogenes or
tumor suppressors described by Davoli et al.46 and were observed in at least three
TCGA samples. Among these, we retained only mutations that would result in
predictable protein sequence changes that could generate neoantigens, including
missense mutations and inframe indels. A total of 1018 mutations (512 missense
mutations from oncogenes, 488 missense mutations from tumor suppressors, 11
indels from oncogenes and 7 indels from tumor suppressors) were obtained21.

Modeling the effects of PHBR score on mutation probability. We built two
matrices, for PHBR-I scores and PHBR-II scores, from the 1018 mutations and the
1912 patients with both PHBR-I and -II calls. Next, we built a binary mutation
matrix yij ∈ {0,1} indicating whether patient i has a specific mutation j. We eval-
uated the relationship between this binary matrix, the matched 1912 × 1018
matrices with log PHBR-I and -II scores, x1ij and x2ij, respectively, and the variable
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of interest (sex or age) for patient i and mutation j. We fit a generalized additive
model for the centered log PHBR-I, centered log PHBR-II scores, centered sex
(coded 0/1 for males/females) or centered age, and mutation probability with the
GAM function in the MGCV R package47. To estimate the effects of PHBR and sex
or age on probability of mutation, we considered the following random effects
models:

Logit P yij ¼ 1
� �� �

¼ β1x1ij þ β2x2ij þ β3Sexi þ β4 x1ij ´ Sexi
� �

þ β5 x2ij ´ Sexi
� �

þ ηi;
ð1Þ

Logit P yij ¼ 1
� �� �

¼ β1x1ij þ β2x2ij þ β3Agei þ β4 x1ij ´ Agei

� �

þ β5 x2ij ´ Agei

� �
þ ηi:

ð2Þ

And PHBR-I and PHBR-II specific models (results in Supplementary Table 1):

Logit P yij ¼ 1
� �� �

¼ β1x1ij þ β2Agei þ β3Sexi þ β4 x1ij ´ Sexi
� �

þ β5 x1ij ´ Agei

� �
þ ηi;

ð3Þ

Logit P yij ¼ 1
� �� �

¼ β1x2ij þ β2Agei þ β3Sexi þ β4 x2ij ´ Sexi
� �

þ β5 x2ij ´ Agei

� �
þ ηi:

ð4Þ

where ηi ~ N(0, θη) are random effects capturing different mutation propensities
among patients, using patient IDs. In these models βn measures the effect of the
log-PHBR-I, log-PHBR-II, and sex or age. This analysis was repeated for the
validation cohort.

Mutational signature analysis. Mutational signatures analysis was performed
using a previously developed computational framework SigProfiler48. A detailed
description of the workflow of the framework can be found in ref. 48, while the code
can be downloaded freely from: https://www.mathworks.com/matlabcentral/
fileexchange/38724-sigprofiler.

Predicting RNA expression from DNA variant allelic fraction. To predict binary
RNA expression (≥5 reads at the mutant allele), we used the LogisticRegressionCV
function from the Python sklearn v0.20.3 package to train a logistic classifier on the
TCGA discovery cohort, using DNA variant allelic fraction (VAF), VAF percentile
rank within the patient, and mutated gene as features. We conducted 10-fold cross-
validation, achieving a mean 72% area under the receiver operating curve.

Statistical analysis. All box plots were evaluated using the default one-tailed
Mann–Whitney U statistical test, via the scipy.stats Python package. Mutational
signature sex-specific distributions were also compared using the one-tailed
Mann–Whitney U test, and p values were adjusted using the Benjamini–Hochberg
Procedure. All boxplot figures include the median line, the box denotes the
interquartile range (IQR), whiskers denote the rest of the data distribution and
outliers are denoted by points determined by ±1.5 × IQR. Effect sizes were calcu-
lated using Cliff’s d (Cliff 1993).

Data availability
Discovery cohort: data were obtained from publicly available sources including The
Cancer Genome Atlas (TCGA) Research Network [http://cancergenome.nih.gov/].
TCGA normal exome sequences and TCGA clinical data were downloaded from the
GDC on June 23–26th, 2018 and April 25th, 2017, respectively, using the gdc-client
v1.3.0. Furthermore, TCGA somatic mutations were accessed from the NCI Genomic
Data Commons [https://portal.gdc.cancer.gov/] on May 14th, 2017. Validation cohort:
dbGaP studies (accession numbers: phs001493.v1.p1.c2, phs001041.v1.p1.c1, phs001425.
v1.p1.c1, phs001493.v1.p1.c1, phs000980.v1.p1.c1, phs001469.v1.p1.c1, phs000452.v2.p1.
c1, phs001451.v1.p1.c1, phs001519.v1.p1.c1, phs001565.v1.p1.c1) were obtained from the
dbGaP database using the ascp tool from AsperaConnect v3.9.5.172984 and WXS/WGS
data obtained from the Sequence Read Archive (SRA)49 using the SRA toolkit v2.9.2.
Somatic mutation files were obtained from the respective papers associated with each
study. Additional non-TCGA patients’ WXS/WGS data was obtained from the ICGC
using the EGA download client v2.2.2 and icgc-get v0.6.1 and somatic mutation data
from the ICGC DCC Data Release [https://dcc.icgc.org/] on (April 2, 2019 (PCAWG),
March 18, 2019 (THCA-SA)) (Supplementary Dataset 1). The validation cohort’s MHC-I
and -II genotypes were typed using HLA-HD27 and PHBR scores calculated using the
method described in “Presentation score assignment”. All remaining relevant data are
available in the article, Supplementary Information, or from the corresponding author
upon reasonable request.

Code availability
Code to reproduce findings and figures can be freely accessed at https://github.com/
CarterLab/HLA-immunoediting.
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