Strengthening Mechanisms in Crystal Plasticity

A. S. Argon

Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, Massachusetts

	List	of Symbo	ols	xv
1	Stru	cture of	Crystalline Solids and the "Defect State"	1
	1.1	Overvi	•	1
	1.2	Princip	oal Crystal Structures of Interest	2
	1.3	-	Strain Elasticity in Crystals	4
		1.3.1	Hooke's Law	4
		1.3.2	Orthorhombic Crystals	9
		1.3.3	Hexagonal Crystals	9
		1.3.4	Cubic Crystals	10
		1.3.5	Isotropic Materials	10
		1.3.6	Temperature and Strain Dependence of Elastic	
			• Response	11
	1.4	Inelast	ic Deformation and the Role of Crystal Defects	13
	1.5	Vacano	cies and Interstitials	14
	1.6	Line P	roperties of Dislocations	17
		1.6.1	Topology and Stress Fields of Dislocations	17
		1.6.2	e	20
	1.7	Planar	Faults	22
		Refere		25
		Appen	dix: Dislocation Stress Fields in a Finite Cylinder	26
2	Kinematics and Kinetics of Crystal Plasticity			27
	2.1	Overvi	iew	27
	2.2	Kinem	atics of Inelastic Deformation	27
		2.2.1	Plasticity Resulting from Shear Transformations	27
		2.2.2	Plasticity Resulting from Dislocation Glide	29
		2.2.3	Lattice Rotations Accompanying Slip	31
	2.3	Flexur	e and Motion of Dislocations under Stress	33
		2.3.1	Interaction of a Dislocation Line with an External	
			Stress	33
		2.3.2	Interaction Energies of Dislocations with Stresses	
			External to Them	35
		2.3.3	Interaction of a Dislocation with Free Surfaces and	
			Inhomogeneities	36
		2.3.4	Line Tension of a Dislocation	37

		2.3.5	Uniformly Moving Dislocations and The Dislocation	
			Mass	39
		2.3.6	The Basic Differential Equation for a Moving	
			Dislocation Line	- 40
		2.3.7	The Multiplication of Dislocation Line Length	41
	2.4	The Mee	chanical Threshold of Deformation	44
	2.5	Element	s of Thermally Activated Deformation	45
		2.5.1	General Principles	45
		2.5.2	Principal Activation Parameters for Crystal Plasticity	49
	2.6	Selection	n of Slip Systems in Specific Crystal Structures	52
	2.7	Dislocat	ions in Close-packed Structures	54
		2.7.1	Dissociation of Perfect Dislocations in FCC	54
		2.7.2	The Thompson Tetrahedron and Other Partial	
			Dislocations	57
		2.7.3	The Burgers Vector/Material Displacement Rule	59
		2.7.4	Dislocation Reactions and Sessile Locks	60
	2.8	Plastic I	Deformation by Shear Transformations	62
		2.8.1	Types of Transformation	62
		2.8.2	Deformation Twinning	62
		2.8.3	Stress-induced Martensitic Transformations	64
		2.8.4	Kinking	66
		Referen	ces	68
3	Ove	rview of S	Strengthening Mechanisms	70
	3.1	Introduc	ction	70
	3.2	The Cor	ntinuum Plasticity Approach to Strengthening Com-	
		pared w	ith the Dislocation Mechanics Approach	70
	3.3		tice Resistance	73
	3.4	Solid-so	lution Strengthening	73
	3.5	Precipit	ation Strengthening	74
	3.6	Strength	nening by Strain Hardening	76
	3.7	Phenom	ena Associated with Strengthening mechanisms	77
		Referen	ces	77
4	The	Lattice F	Resistance	78
	4.1	Overvie	W	78
	4.2	Model o	of a Dislocation in a Discrete Lattice	78
		4.2.1	The Peierls–Nabarro Model of an Edge	
			Dislocation—Updated	78
		4.2.2	The Stress to Move the Dislocation	81
	4.3	Inceptio	on of Plastic Deformation	85
		4.3.1	HCP and FCC Metals	85
		4.3.2	BCC Metals	87

. .

		CONTENTS	xi
4.4	Structu	re of the Cores of Screw Dislocations in BCC	
	Metals		89
4.5		rature and Strain Rate Dependence of the Lattice	0,
		ince in BCC Metals	94
	4.5.1	The Nature of Thermal Assistance over a Lattice	
		Energy Barrier	94
	4.5.2		98
	4.5.3	Shapes and Energies of Geometrical Kinks	99
	4.5.4		101
	4.5.5	C7	102
4.6		astic Strain Rate in BCC Metals	104
	4.6.1	The Preexponential Factor and the Net Shear Rate	104
	4.6.2	Temperature and Strain Rate Dependence of the	
		Plastic Resistance	106
	4.6.3	Comparison of Theory with Experiments on BCC	
		Transition Metals	108
4.7	The La	attice Resistance of Silicon	114
	4.7.1	Dislocations in Silicon	114
	4.7.2	 Dislocation Mobility in Silicon 	118
	4.7.3	Models of the Dislocation Core Structure in Silicon	119
	4.7.4	Model of Dislocation Motion	123
	4.7.5	Comparison of Models with Experiments	128
4.8	The Ph	ionon Drag	132
	Refere	nces	133
Soli	d-soluti	on Strengthening	136
5.1	Overvi		136
5.2		of Interaction of Solute Atoms with Dislocations	150
5.2		C Metals	136
		Overview	136
	5.2.2		130
	5.2.2		139
	5.2.4	Combined Size and Modulus Misfit Interactions	141
5.3		of Sampling of the Solute Field by a Dislocation in an	* • •
5.5	FCC N		145
5.4		blid-solution Resistance of FCC Alloys	149
5.1	5.4.1	The Athermal Resistance	149
	5.4.2	Thermally Assisted Advance of a Dislocation in a	
		Field of Solute Atoms in an FCC Metal	151
5.5	Comp	arison of Solid-solution-strengthening Models for FCC	
5.5	Metals with Experiments		
	5.5.1	Overview of Experimental Information	153 153
	5.5.2	-	155

	5.5.3	Dependence of Flow Stress on Solute Concentration	156	
	5.5.4	Comparison of Temperature Dependence of CRSS		
		between Experiments and Theoretical Models	157	
	5.5.5	Summary of Solid-solution Strengthening of FCC	-	
		Alloys	159	
	5.5.6	The "Stress Equivalence" of the Solid-solution		
		Resistance of FCC Alloys	159	
	5.5.7	The Plateau Resistance	163	
5.6	Solid-s	solution Strengthening of BCC Metals by		
	Substit	tutional Solute Atoms	163	
	5.6.1	Overview of Phenomena	163	
	5.6.2	Experimental Manifestations of BCC Solid-solution		
		Alloy Systems	165	
5.7	Interac	ctions of Solute Atoms with Screw Dislocations in BCC		
	Metals	3	166	
	5.7.1	Overview of Model of Interaction of Solute Atoms		
		with Screw Dislocation Cores	166	
	5.7.2	Interaction of Solute Atoms with Screw Dislocation		
		Cores °	168	
	5.7.3	Binding Potential of Solutes to Screw Dislocation		
		Cores	170	
5.8		near Resistance	172	
	5.8.1	The Athermal Resistance at the Plateau	172	
	5.8.2	Resistance Governed by Kink Mobility	173	
	5.8.3	Double-kink-nucleation-controlled Resistance	177	
	5.8.4	Combination of Resistances	180	
	5.8.5	The Strain Rate Dependence of the Flow Stress in the		
		Plateau Range	181	
5.9	-	arison of Model Results with Experiments	184	
	5.9.1	The Athermal Resistance at the Plateau	184	
	5.9.2	Kink-mobility-controlled Plastic Resistance	185	
	5.9.3	Double-kink-nucleation-controlled Resistance	187	
	5.9.4	Strain Rate Dependence of the Flow Stress in the		
		Plateau Region, and Activation Volumes	189	
	Refere	ences	191	
n.	• • •		102	
	-	n Strengthening	193	
6.1	Overv	· · ·	193	
6.2	Formation of Second Phases in the Form of Precipitate			
	Particles, Heterogeneous Domains, or other Lattice Defect			
	Cluste		194	
	6.2.1	Discrete Precipitates	194	

xii

		CONTENTS	xiii
	6.2.2	Spinodal-decomposition Domains	198
	6.2.3	Defect Clusters and Nanovoids	199
6.3		ng of Precipitates by Dislocations	200
	6.3.1	Precipitate Shapes and Sizes	200
	6.3.2	Two Forms of Interaction of Precipitates with	
		Dislocations	201
	6.3.3	Statistics of Sampling Random Point Obstacles in a	
		Plane	202
	6.3.4	Sampling Point Obstacles of Different Kinds	207
	6.3.5	Sampling Obstacles of Finite Width	208
	6.3.6	Precipitate Growth, Peak Aging, and Overaging	212
	6.3.7	Thermally Assisted Motion of Dislocations through a	
		Field of Penetrable Obstacles	213
6.4	Specifi	c Mechanisms of Precipitation Strengthening	219
	6.4.1	Overview	219
	6.4.2	Chemical Strengthening, or Resistance to Interface	
		Step Production in Shearing	220
	6.4.3	Stacking-fault Strengthening	223
	6.4.4 •	Atomic-order Strengthening	235
	6.4.5	Size Misfit Strengthening (Coherency Strengthening)	247
	6.4.6	Modulus Misfit Strengthening	256
	6.4.7	The Orowan Resistance and Dispersion Strengthening	264
	6.4.8	Strengthening by Spinodal-decomposition	
		Microstructures	267
	6.4.9	Precipitate-like Obstacles	271
	Referen	nces	279
Stra	in Hard	ening	283
7.1	Overvi		283
7.2	Feature	es of Deformation	284
	7.2.1	Active Slip Systems in FCC Metals	284
	7.2.2	Stress–Strain Curves	286
	7.2.3	Slip Distributions	292
	7.2.4	Dislocation Microstructures	294
7.3	Strain-l	hardening Models	306
	7.3.1	Overview	306
	7.3.2	Dislocation Intersections	307
	7.3.3	Stage I Strain Hardening	312
	7.3.4	Stage II Strain Hardening	317
	7.3.5	Ingredients of Stage III Hardening	320
	7.3.6	Components of Strain Hardening in Stage III	325

	7.3.7	Recovery Processes in Stage III	330		
	7.3.8	Total Strain-hardening Rate in Stage III	334		
	7.3.9	Strain Hardening in Stage IV	336		
	7.3.10	Stage V Deformation with No Strain Hardening	- 340		
7.4	Strain I	Hardening in Other Crystal Structures	340		
	Referen	nces	340		
	Deformation Instabilities, Polycrystals, Flow in Metals with				
Nan	ostructu	re, Superposition of Strengthening Mechanisms,			
and	Transiti	on to Continuum Plasticity	344		
8.1	Overvi	ew	344		
8.2	Yield P	Phenomena	345		
8.3	Balanc	e between the Interplane and the Intraplane Resistances			
	and the	e Mobile Dislocation Density	349		
8.4	The Po	rtevin–Le Chatelier Effect and Jerky Flow	351		
8.5	Dynam	ic Overshoot at Low Temperatures	355		
8.6		Deformation in Polycrystals	358		
	8.6.1	Plastic Resistance of Polycrystals	358		
	8.6.2	Evolution of Deformation Textures	360		
8.7	Plastic	Deformation in the Presence of Heterogeneities	364		
	8.7.1	Geometrically Necessary Dislocations	364		
	8.7.2	Rise in Flow Stress and Enhanced Strain-hardening-			
		rate Effects of Geometrically Necessary Dislocations	364		
8.8	Grain Boundary Strengthening				
8.9	Plasticity in Metals with Nanoscale Microstructure				
8.10	Superp	osition of Deformation Resistances	382		
8.11	The Ba	auschinger Effect	386		
8.12	12 Phenomenological Continuum Plasticity		388		
	8.12.1	Conditions of Plastic Flow in the Mathematical			
		Theory of Plasticity	388		
	8.12.2	Transition from Dislocation Mechanics to Continuum			
		Mechanics	389		
	Refere	nces	391		
Auth	or Index		394		
Subj	ect Index	x	399		

- -