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Abstract. We propose a simple yet effective approach to the problem
of pedestrian detection which outperforms the current state-of-the-art.
Our new features are built on the basis of low-level visual features and
spatial pooling. Incorporating spatial pooling improves the translational
invariance and thus the robustness of the detection process. We then di-
rectly optimise the partial area under the ROC curve (pAUC) measure,
which concentrates detection performance in the range of most practical
importance. The combination of these factors leads to a pedestrian detec-
tor which outperforms all competitors on all of the standard benchmark
datasets. We advance state-of-the-art results by lowering the average
miss rate from 13% to 11% on the INRIA benchmark, 41% to 37% on
the ETH benchmark, 51% to 42% on the TUD-Brussels benchmark and
36% to 29% on the Caltech-USA benchmark.

1 Introduction

Pedestrian detection is a challenging but an important problem due to its practi-
cal use in many computer vision applications such as video surveillance, robotics
and human computer interaction. The problem is made difficult by the inevitable
variation in target appearance, lighting and pose, and by occlusion. In a recent
literature survey on pedestrian detection [1] the authors evaluated several pedes-
trian detectors and concluded that combining multiple features can significantly
boost the performance of pedestrian detection.

Hand-crafted low-level visual features have been applied to several computer
vision applications and shown promising results [2, 3, 4, 5, 6, 7]. Inspired by the
recent success of spatial pooling on object recognition and pedestrian detection
problems [8, 9, 10, 11], we propose to perform the spatial pooling operation
to create the new feature type. Our new detector yields competitive results
to the state-of-the-art on major benchmark data sets. A further improvement
is achieved when we combine the new feature type and channel features from
[12]. We confirm the observation made in [1]: carefully combining multiple fea-
tures often improves detection performance. The new multiple channel detector
outperforms the state-of-the-art by a large margin. Despite its simplicity, our
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new approach outperforms all reported pedestrian detectors, including several
complex detectors such as LatSVM [13] (a part-based approach which models
unknown parts as latent variables), ConvNet [9] (deep hierarchical models) and
DBN-Mut [14] (discriminative deep model with mutual visibility relationship).

Dollar et al. propose to compare different detectors using the miss rate per-
formance at 1 false positive per image (FPPI) as a reference point [15]. This
performance metric was later revised to the log-average miss rate in the range
0.01 to 1 FPPI as this better summarizes practical detection performance [1].
This performance metric is also similar to the average precision reported in text
retrieval and PASCAL VOC challenge. As the performance is assessed over the
partial range of false positives, the performance of the classifier outside this range
is ignored as it is not of practical interest. Many proposed pedestrian detectors
optimize the miss rate over the complete range of false positive rates, however,
and can thus produce suboptimal results both in practice, and in terms of the
log-average miss rate. In this paper, we address this problem by optimizing the
log-average miss rate performance measure directly, and in a more principled
manner. This is significant because it ensures that the detector achieves its best
performance within the range of practical significance, rather than over the whole
range of false positive rates, much of which would be of no practical value. The
approach proposed ensures that the performance is optimized not under the full
ROC curve but only within the range of practical interest, thus concentrating
performance where it counts, and achieving significantly better results in prac-
tice.

Main Contributions. (1) We propose a novel approach to extract low-level
visual features based on spatial pooling for the problem of pedestrian detection.
Spatial pooling has been successfully applied in sparse coding for generic image
classification problems. The new feature is simple yet outperforms the original
covariance descriptor of [5] and LBP descriptor of [7]. (2) We discuss several
factors that affect the performance of boosted decision tree classifiers for pedes-
trian detection. Our new design leads to a further improvement in log-average
miss rate. (3) Empirical results show that the new approach, which combines
our proposed features with existing features [12, 7] and optimizes the log-average
miss rate measure, outperforms all previously reported pedestrian detection re-
sults and achieves state-of-the-art performance on INRIA, ETH, TUD-Brussels
and Caltech-USA pedestrian detection benchmarks.

Related Work. Numerous pedestrian detectors have been proposed over the
past decade along with newly created pedestrian detection benchmarks such as
INRIA, ETH, TUD-Brussels, Caltech and Daimler Pedestrian data sets. We refer
the reader to [1] for an excellent review on pedestrian detection frameworks and
benchmark data sets. In this section, we briefly discuss several recent state-of-
the-art pedestrian detectors that are not covered in [1].

Sermanet et al. train a pedestrian detector using a convolutional network
model [9]. Instead of using hand designed features, they propose to use unsuper-
vised sparse auto encoders to automatically learn features in a hierarchy. Exper-
imental results show that their detector achieves competitive results on major
benchmark data sets. Benenson et al. investigate different low-level aspects of
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pedestrian detection [16]. The authors show that by properly tuning low-level
features, such as feature selection, pre-processing the raw image and classifier
training, it is possible to reach state-of-the-art results on major benchmarks.
From their paper, one key observation that significantly improves the detection
performance is to apply image normalization to the test image before extracting
features.

Lim et al. propose novel mid-level features, known as sketch tokens [17]. The
feature is obtained from hand drawn sketches in natural images and captures
local edge structure such as straight lines, corners, curves, parallel lines, etc.
They combine their proposed features with channel features of [18] and train a
boosted detector. By capturing both simple and complex edge structures, their
detector achieves the state-of-the-art result on the INRIA test set. Park et al.
propose new motion features for detecting pedestrians in a video sequence [8].
By factoring out camera motion and combining their proposed motion features
with channel features [18], the new detector achieves a five-fold reduction in false
positives over previous best results on the Caltech pedestrian benchmark.

2  Owur Approach

Despite several important work on object detection, the most practical and suc-
cessful pedestrian detector is still the sliding-window based method of Viola and
Jones [6]. Their method consists of two main components: feature extraction and
the AdaBoost classifier. For pedestrian detection, the most commonly used fea-
tures are HOG [2] and HOG+LBP [7]. Dollér et al. propose Aggregated Channel
Features (ACF) which combine gradient histogram (a variant of HOG), gradients
and LUV [12]. ACF uses the same channel features as ChnFtrs [18], which is
shown to outperform HOG [16, 18].

To train the classifier, the procedure known as bootstrapping is often applied,
which harvests hard negative examples and re-trains the classifier. Bootstrapping
can be repeated several times. It is shown in [19] that at least two bootstrapping
iterations are required for the classifier to achieve good performance. In this
paper, we build our detection framework based on [12]. We first propose the new
feature type based on a modified low-level descriptor and spatial pooling. We
then discuss how the miss rate performance measure can be further improved
using structural SVM. Finally, we discuss our improvements to [12] in order to
achieve state-of-the-art detection results on most benchmark data sets.

2.1 Spatially Pooled Features

Spatial pooling has been proven to be invariant to various image transforma-
tions and demonstrate better robustness to noise [20, 21, 22]. Several empirical
results have indicated that a pooling operation can greatly improve the recogni-
tion performance. Pooling combines several visual descriptors obtained at nearby
locations into some statistics that better summarize the features over some re-
gion of interest (pooling region). The new feature representation preserves vi-
sual information over a local neighbourhood while discarding irrelevant details
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and noises. Combining max-pooling with unsupervised feature learning methods
have led to state-of-the-art image recognition performance on object recogni-
tion. Although these feature learning methods have shown promising results
over hand-crafted features, computing these features from learned dictionaries
is still a time-consuming process for many real-time applications. In this section,
we further improve the performance of low-level features by adopting the pool-
ing operator commonly applied in unsupervised feature learning and supervised
convolutional neural networks. This simple operation can enhance the feature
robustness to noise and image transformation. In the following section, we investi-
gate two visual descriptors which have shown to complement HOG in pedestrian
detection, namely covariance descriptors and LBP. It is important to point out
here that our approach is not limited to these two features, but can be applied
to any low-level visual features.

Covariance Matrix. A covariance matrix is positive semi-definite. It pro-
vides a measure of the relationship between two or more sets of variates. The
diagonal entries of covariance matrices represent the variance of each feature and
the non-diagonal entries represent the correlation between features. The variance
measures the deviation of low-level features from the mean and provides informa-
tion related to the distribution of low-level features. The correlation provides the
relationship between multiple low-level features within the region. In this paper,
we follow the feature representation as proposed in [5]. However, we introduce
an additional edge orientation which considers the sign of intensity derivatives.
Low-level features used in this paper are:

[l'a Y, |IZL"3 |Iy|a ‘Izm|a ‘Iyy|a M, Ola 02}

where x and y represent the pixel location, and I, and I, are first and second
intensity derivatives along the z-axis. The last three terms are the gradient

magnitude (M = ,/I2 + I2), edge orientation as in [5] (O; = arctan(|L.|/[,]))

and an additional edge orientation Os in which,

0, — atan2(1,, I;) if atan2(I,, I;) > 0,
~ \atan2(l,,I,) + 7 otherwise.

The orientation O3 is mapped over the interval [0, 7]. Although some O; features
might be redundant after introducing O, these features would not deteriorate
the performance as they are unlikely to be selected by the boosting learner.
Our preliminary experiments show that using O; alone yields slightly worse
performance than combining O; and Os. With the defined mapping, the input
image is mapped to a 9-dimensional feature image. The covariance descriptor of
a region is a 9 x 9 matrix, and due to symmetry, only the upper triangular part
is stored, which has only 45 different values.

LBP. Local Binary Pattern (LBP) is a texture descriptor that represents
the binary code of each image patch into a feature histogram [23]. The standard
version of LBP is formed by thresholding the 3 x 3-neighbourhood of each pixel
with the centre pixel’s value. All binary results are combined to form an 8-bit
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binary value (28 different labels). The histogram of these 256 different labels can
be used as texture descriptor. The LBP descriptor has shown to achieve good
performance in many texture classification [23]. In this work, we transform the
input image from the RGB color space to LUV space and apply LBP to the
luminance (L) channel. We adopt an extension of LBP, known as the uniform
LBP, which can better filter out noises [7]. The uniform LBP is defined as the
binary pattern that contains at most two bitwise transitions from 0 to 1 or vice
versa.

Spatially Pooled Covariance. In this section, we improve the spatial in-
variance and robustness of the original covariance descriptor by applying the
operator known as spatial pooling. There exist two common pooling strategies
in the literature: average pooling and max-pooling. We use max-pooling as it
has been shown to outperform average pooling in image classification [22, 20].
We divide the image window into dense patches (refer to Fig. 1). For each patch,
covariance features are calculated over pixels within the patch. For better invari-
ance to translation and deformation, we perform spatial pooling over a fixed-size
spatial region (pooling region) and use the obtained results to represent covari-
ance features in the pooling region. The pooling operator thus summarizes mul-
tiple covariance matrices within each pooling region into a single matrix which
represents covariance information. We refer to the feature extracted from each
pooling region as spatially pooled covariance (sp-Cov) feature. Note that ex-
tracting covariance features in each patch can be computed efficiently using the
integral image trick [24]. Our sp-Cov differs from covariance features in [5] in
the following aspects:

1. We apply spatial pooling to a set of covariance descriptors in the pooling
region. To achieve this, we ignore the geometry of covariance matrix and stack the
upper triangular part of the covariance matrix into a vector such that pooling is
carried out on the vector space. For simplicity, we carry out pooling over a square
image region of fixed resolution. Considering pooling over a set of arbitrary
rectangular regions as in [25] is likely to further improve the performance of our
features.

2. Instead of normalizing the covariance descriptor of each patch based on the
whole detection window [5], we calculate the correlation coefficient within each
patch. The correlation coefficient returns the value in the range [—1,1]. As each
patch is now independent, the feature extraction can be done in parallel on the
GPU.

Implementation. We extract sp-Cov using multi-scale patches with the fol-
lowing sizes: 8 x 8, 16 x 16 and 32 x 32 pixels. Each scale will generate a different
set of visual descriptors. Multi-scale patches have also been used in [26]. In this
paper, the use of multi-scale patches is important as it expands the richness of
our feature representations and enables us to capture human body parts at dif-
ferent scales. In our experiments, we set the patch spacing stride (step-size) to
be 1 pixel. The pooling region is set to be 4 x 4 pixels and the pooling spacing
stride is set to 4 pixels in our experiments.

Spatially Pooled LBP. Similar to sp-Cov, we divide the image window
into small patches and extract LBP over pixels within the patch. The histogram,
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Fig. 1. Architecture of our pooled features. In this example, sp-Cov are extracted from
each fixed sized pooling region.

which represents the frequency of each pattern occurring, is computed over the
patch. For better invariance to translation, we perform spatial pooling over a
pooling region and use the obtained results to represent the LBP histogram in
the pooling region. We refer to the new feature as spatially pooled LBP (sp-LBP)
feature.

Implementation. We apply the LBP operator on the 3 x 3-neighbourhood
at each pixel. The LBP histogram is extracted from a patch size of 4 x 4 pixels.
We extract the 58-dimension LBP histogram using a C-MEX implementation of
[27]. For sp-LBP, the patch spacing stride, the pooling region and the pooling
spacing stride are set to 1 pixel, 8 x 8 pixels and 4 pixels, respectively. We
also experiment with combining the LPB histogram extracted from multi-scale
patches but only observe a slight improvement in detection performance at a
much higher feature extraction time. Instead of extracting LBP histograms from
multi-scale patches, we combine sp-LBP and LBP as channel features.

Discussion. Although we make use of spatial pooling, our approach differs
significantly from the unsupervised feature learning pipeline, which has been
successfully applied to image classification problem [26, 11]. Instead of pooling
encoded features over a pre-trained dictionary, we compute sp-Cov and sp-LBP
by performing pooling directly on covariance and LBP features extracted from
local patches. In other words, our proposed approach removes the dictionary
learning and feature encoding from the conventional unsupervised feature learn-
ing [26, 11]. The advantage of our approach over conventional feature learning
is that our features have much less dimensions than the size of visual words
often used in generic image classification [11]. Using too few visual words can
significantly degrade the recognition performance as reported in [21] and using
too many visual words would lead to very high-dimensional features and thus
make the classifier training become computationally infeasible.

2.2 Optimizing the Partial Area under ROC Curve

As the performance of the detector is usually measured using the log-average
miss rate, we optimize the pAUC (the partial AUC) between any two given
false positive rates [o, 8], similar to the work of [28]. Unlike [28], in which weak
learners are selected based on the pAUC criterion, we use AdaBoost to select
weak learners as it is more efficient. In order to achieve the best performance,
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we build a feature vector from the weak learners’ output and learn the pAUC
classifier in the final stage. For each predicted positive patch, the confidence
score is re-calibrated based on this pAUC classifier. This post-learning step is
similar to the work of [29], in which the authors learn the asymmetric classifier
from the output of AdaBoost’s weak learners to handle the node learning goal
in the cascade framework.

The pAUC risk for a scoring function f(-) between two pre-specified FPR
[a, B] can be defined [30] as :

Re(f) = S X 1(f@h) < fg, ) (1)

Here z;" denotes the i-th positive training instance and z;,  denotes the j-th
i (s

negative training instance sorted by f in the set ( € Z. Both z;” and :1:(_],)f‘C rep-

FAlLS

resent the output vector of weak classifiers learned from AdaBoost. Clearly (1)

is minimal when all positive samples, {z;"}7 ,, are ranked above {.'1:(_],)“C };”:j”l,
which represent negative samples in our prescribed false positive range [«, 8] (in
this case, the log-average miss rate would be zero). The structural SVM frame-
work can be adopted to optimize the pAUC risk by considering a classification
problem of all m X js pairs of positive and negative samples. In our experiments,
the pAUC classifier is trained once at the final bootstrapping iteration and most
of the computation time is spent in extracting features and bootstrapping hard
negative samples. See the supplementary material for more details on the struc-
tural SVM problem.

2.3 Design Space

In this section, we further investigate the experimental design of the ACF detector
[12]. For experiments on shrinkage and spatial pooling, we use the proposed sp-
Cov as channel features. For experiments on the depth of decision trees, we use
channel features of [12]. All experiments are carried out using AdaBoost with the
shrinkage parameter of 0.1 as a strong classifier and level-3 decision trees as weak
classifiers (if not specified otherwise). We use three bootstrapping stages and the
final model consists of 2048 weak classifiers with soft cascade. We heuristically
set the soft cascade’s reject threshold to be —10 at every node. We trained all
detectors using the INRIA training set and evaluated the detector on INRIA,
ETH and TUD-Brussels benchmark data sets.

Shrinkage. Hastie et al. show that the accuracy of boosting can be further
improved by applying a weighting coefficient known as shrinkage [31]. The ex-
planation given in [32] is that a shrinkage version of boosting simply converges
to the ¢ regularized solution. It can also be viewed as another form of regular-
ization for boosting. At each iteration, the weak learner’s coefficient is updated
by

Ft(.'l:) :thl(.'l:) +V'wtht($) (2)

Here h:(z) is AdaBoost’s weak learner at the ¢-th iteration and w; is the weak
learner’s coefficient at the ¢-th iteration. v € (0, 1] can be viewed as a learning
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Table 1. Log-average miss rate when varying shrinkage parameters. Shrinkage can
further improve the final detection performance.  The model consists of 4096 weak
classifiers while other models consist of 2048 weak classifiers.

Shrinkage INRIA ETH TUD-Br. Avg.
None 14.4% 40.8% 48.7% 34.6%
v=05 12.5% 43.7% 50.3% 35.5%
v=02 11.6% 41.4% 50.4% 34.4%
v=01 12.8% 42.0% 47.8% 34.2%
v=0.05 14.0% 43.1% 51.4% 36.2%
v=0.05" 12.8% 42.6% 48.6% 34.7%

Table 2. Log-average miss rate of our features with and without applying spatial
pooling

Covariance LBP
INRIA ETH TUD-Brussels INRIA ETH TUD-Brussels

without pooling 14.2% 42.7% 48.6% 25.8% 47.8% 55.5%
with pooling 12.8% 42.0% 47.8% 23.7% 46.2% 55.8%

rate parameter. The smaller the value of v, the higher is the overall accuracy as
long as the number of iterations is large enough. The authors of [32] report that
shrinkage often produces better generalization performance compared to linear
search algorithms.

We compare four different shrinkage parameters from {0.05, 0.1, 0.2, 0.5}
with the conventional AdaBoost. When applying shrinkage, we lower the soft
cascade’s reject threshold by a factor of v as weak learners’ coefficients have
been diminished by a factor of v. The log-average miss rate of different detectors
is shown in Table 1. We observe that applying a small amount of shrinkage
(v < 0.2) often improves the detection performance. From Table 1, setting the
shrinkage value to be too small (v = 0.05) without increasing the number of
weak classifiers can hurt the performance as the number of boosting iterations is
not large enough for the boosting to converge. For the rest of our experiments,
we set the shrinkage parameter to be 0.1 as it gives a better trade-off between
the performance and the number of weak classifiers.

Spatial Pooling. In this section, we compare the performance of the pro-
posed feature with and without spatial pooling. For sp-Cov and sp-LBP without
pooling, we extract both low-level visual features with the patch spacing stride
of 4 pixels and no pooling is performed. Using these low-level features and LUV
colour features, we trained four detectors using the INRIA training set. Log-
average miss rates of both features are shown in Table 2. We observe that it is
beneficial to apply spatial pooling as it increases the robustness of the features
against small deformations and translations. We observe a reduction in miss
rate by more than one percent on the INRIA test set. Since we did not combine
sp-LBP with HOG as in [7], sp-LBP performs slightly worse than sp-Cov.
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Fig. 2. Log-average miss rates of different tree depths on INRIA (left) and ETH (right)
benchmark data sets

Depth of Decision Trees. The authors of [18] and [16] report that the depth-
2 decision tree produces the best performance in their experiments. However, we
observe that the depth-3 decision tree offers better generalization performance. To
conduct our experiments, we trained 4 different pedestrian detectors with decision
trees of depth 1 (decision stump) to 4 (containing 15 stumps). Our experiments
are based on the ACF detector of [12] which combines gradient histogram (O), gra-
dient (M) and LUV features. The ACF detector linearly quantizes feature values
into 256 bins to speed up the conventional decision tree training [33]. We trained
the pedestrian detector using the INRIA training set and evaluated the detector
on both INRIA and ETH benchmark data sets. Fig. 2 plots the log-average miss
rate on the vertical axis and the number of weak classifiers on the horizontal
axis. We observe that the pedestrian detection performance improves as we in-
crease the depth of decision trees. Similar to [16], we observe that using decision
stumps as weak learners can lead to significant underfitting, i.e., the weak learner
can not separate pedestrian patches from non-pedestrian patches. On the other
hands, setting the tree depth to be larger than two can lead to a performance
improvement, especially on the ETH data set. For the rest of our experiments,
we set the depth of decision trees to be three as it achieves good generalization
performance and is faster to train than the depth-4 decision tree.

3 Experiments

We train two detectors: one using the INRIA training set and one using the
Caltech-USA training set. For INRIA, each pedestrian training sample is scaled
to a resolution of 64 x 128 pixels. Negative patches are collected from INRIA
background images. We follow the work of [12] to train the boosted pedestrian
detector. Each detector is trained using three bootstrapping stages and consists
of 2048 weak classifiers. The detector trained on the INRIA training set is eval-
uated on all benchmark data sets except the Caltech-USA test set'. On both

! Park et al. [8] report a performance improvement on the Caltech-USA when they re-
train the detector using the Caltech-USA training set. We follow the setup discussed
in [8].
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ETH and TUD-Brussels data sets, we apply the automatic colour equalization
algorithms (ACE) [34] before we extract channel features [16]. We upscale both
ETH and TUD-Brussels test images to 1280 x 960 pixels. For Caltech-USA, the
resolution of the pedestrian model is set to 32 x 64 pixels. We exclude occluded
pedestrians from the Caltech training set [8]. Negative patches are collected
from the Caltech-USA training set with pedestrians cropped out. To obtain fi-
nal detection results, greedy non-maxima suppression is applied with the default
parameter as in Addendum of [18]. We use the log-average miss rate to summa-
rize the detection performance. For the rest of our experiments, we evaluate our
pedestrian detectors on the reasonable subset (pedestrians are at least 50 pixels
in height and at least 65% visible).

3.1 Improved Covariance Descriptor

In this experiment, we evaluate the performance of the proposed sp-Cov. sp-Cov
consists of 9 low-level image statistics. We exclude the mean and variance of
two image statistics (pixel locations at x and y co-ordinates) since they do not
capture discriminative information. We also exclude the correlation coefficient
between pixel locations at x and y co-ordinates. Hence there is a total of 136
channels (7 low-level image statistics + 3 - 7 variances + 3 - 35 correlation coeffi-
cients + 3 LUV color channels)?. Tt is important to note here that our features
and weak classifiers are different from those in [5]. There the authors calculate
the covariance distance in the Riemannian manifold. As eigen-decomposition is
performed, the approach of [5] is computationally expensive. We speed up the
weak learner training by proposing our modified covariance features and train
the weak learner using the decision tree. The new weak learner is not only simpler
than [5] but also highly effective.

We compare our detector with the original covariance descriptor [5] in Fig. 3.
We plot HOG [2] and HOG+LBP [7] as the baseline. Similar to the result re-
ported in [16], where the authors show that HOG+BOOSTING reduces the average
miss-rate over HOG+SVM by more than 30%, we observe that applying our sp-Cov
features as the channel features significantly improves the detection performance
over the original covariance detector (a reduction of more than 5% miss rate at
10~* false positives per window). More experiments on sp-Cov with different
subset of low-level features, multi-scale patches and spatial pooling parameters
can be found in the supplementary.

Next we compare the proposed sp-Cov with ACF features (M+O-+LUV) [12].
Since ACF uses fewer channels than sp-Cov, for a fair comparison, we increase ACF’s
discriminative power by combining ACF features with LBP? (M+O+LUV+LBP).
The results are reported in Table 3. We observe that sp-Cov yields competitive
results to M+O+LUV+LBP. From the table, sp-Cov performs better on the IN-
RIA test set, worse on the ETH test set and on par with M+O+LUV+LBP on

2 Note here that we extract covariance features at 3 different scales.
3 In our implementation, we use an extension of LBP, known as the uniform LBP, which
can better filter out noises [7]. Each LBP bin corresponds to each channel.
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Fig. 3. ROC curves of our sp-Cov features and the conventional covariance detector
[5] on the INRIA test image

Table 3. Log-average miss rates of various feature combinations

# channels INRTA ETH TUD-Br.

M+O+LUV+LBP 68 14.5% 39.9% 47.0%
sp-Cov+LUV 136 12.8% 42.0% 47.8%
sp-Cov+M+O0+LUV 143 11.2% 39.4% 46.7%

sp-Cov+sp-LBP+M+O+LUV 259 11.2% 38.0% 42.5%

the TUD-Brussels test set. We observe that the best performance is achieved by
combining sp-Cov and sp-LBP with M+O+LUV.

3.2 Improving Average Miss Rate with pAUCstruct

In this experiment, we evaluate the effect of re-calibrating the final confidence
score with pAUCS""¢t_ Instead of using the weighted responses from AdaBoost,
we re-rank the confidence score of predicted pedestrian patches using a scoring
function of pAUCS™u¢t, The performance is calculated by varying the threshold
value in the false positive range of [0.01, 1] FPPI. Since the partial area under the
ROC curve is determine on a logarithmic scale [1], it is non-trivial to determine
the best pAUCS™U¢t parameters o and 8 which maximize the detection rate
between 0.01 and 1 false positive per image. In our experiment, we heuristically
set « to be 0 and perform a cross-validation to find the best pAUCS™ ¢t regular-
ization parameter C' (see Supplementary) and the false positive rate 8. In this
section, we first train the baseline pedestrian detector as discussed in Section 2.3.
The baseline detector achieves the log-average miss rate of 21.3%. Next we per-
form the post-learning step by re-ranking the confidence score of positive and
negative samples based on the pAUC criterion. Using cross-validation on the
INRIA training set, the post-learning step improves the log-average miss rate
by 0.6%. Fig. 4 plots the log average miss rate with respect to the pAUCstruct
regularization parameter C' and the false positive rate 5. From the figure, the fol-
lowing parameters (C' = 2% and 3 = 0.7) perform best with a miss rate of 20.7%.
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Fig. 4. Cross-validation results (log-average miss rate) as the pAUC 5" regularization

parameter C' and the false positive rate 3 change. Without pAUC®*"*, the detector
achieves the miss rate of 21.3%. The detector with post-tuning (C' = 2* and 8 = 0.7)
performs best with a miss rate of 20.7% (an improvement of 0.6%).

miss rate
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Fig. 5. Detection performance of our detectors with pAUC """ post-tuning on INRIA
(left), ETH (middle) and TUD-Brussels (right) benchmark data sets

In the next experiment, we evaluate the detector with the post-learning step on
INRIA, ETH and TUD-Brussels benchmark data sets. ROC curves along with
their log-average miss rates between [0.01, 1] FPPI are shown in Fig. 5. Based
on our results, applying pAUCS®ut improves the log-average miss rate of the
original detector on both ETH and TUD-Brussels benchmark data sets by 0.6%.
However we do not observe an improvement on the INRIA test set. Our conjec-
ture is that the INRIA test set consists of high-resolution human in a standing
position which might be easier to detect than those appeared in ETH and TUD-
Brussels data sets. No improvement in detection performance is observed on the
INRIA test set as compared to the detection results on ETH and TUD-Brussels
data sets.

3.3 Comparison with State-of-the-Art Results

In the next experiment, we compare our combined features with state-of-the-art
detectors. Recently Lim et al. [17] propose sketch tokens (ST) feature which
achieves the state-of-the-art result on the INRIA test set (a miss rate of 13.3%).
Our new detector outperforms ST by achieving a miss rate of 11.2%. Our best
performance is achieved when we apply pAUCS"Ut to the combined features (a
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Table 4. Log-average miss rates of various algorithms on INRIA, ETH, TUD-Brussels
and Caltech-USA test sets. The best detector is shown in boldface. We train two
detectors: one using INRIA training set (evaluated on INRIA, ETH and TUD-Brussels
test sets) and another one using Caltech-USA training set (evaluated on Caltech-USA
test set). The log-average miss rate of our detection results are calculated using the
Caltech pedestrian detection benchmark version 3.2.0. { Results reported here are
taken from http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
and are slightly different from the one reported in the original paper.

Approach INRIA ETH TUD-Brussels Caltech-USA
Sketch tokens [17] (Prev. best on INRIAT) 13.3% N/A N/A N/A
DBN-Mut [14] (Prev. best on ETH') N/A 41.1% N/A 48.2%
MultiFtr4+Motion+2Ped [35] (Prev. best on TUD-Brussels) N/A N/A 50.5% N/A
SDtSVM [8] (Prev. best on Caltech-USA) N/A N/A N/A 36.0%
Roerei [16] (2-nd best on INRIAT & ETHT) 13.5% 43.5% 64.0% 48.4%
Ours (sp-Cov+sp-LBP+M+0O+LUV) 11.1% 38.0% 42.4% 29.4%
Ours (sp-Cov+sp-LBP+M+O+LUV + pAUCstruct) 11.2% 37.4% 41.8% 29.2%
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Fig.6. ROC curves of our proposed approach on INRIA, ETH, TUD-Brussels and
Caltech-USA pedestrian detection benchmarks

miss rate of 11.1%). As shown in Table 4, the combined features + pAUCStuct
outperform all previous best results on four major pedestrian detection bench-
marks. Fig. 6 compares our best results (the last row in Table 4) with other
state-of-the-art methods. Fig. 7 shows the spatial distribution of regions selected
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Fig. 7. Spatial distribution of selected regions based on their feature types. White
pixels indicate that a large number of features are selected in that area. Often selected
regions correspond to human contour and human body.

by different feature types. White pixels indicate that a large number of features
are selected in that region. From the figure, most selected regions typically con-
tain human contours (especially the head and shoulders). Colour features are
selected around the human face (skin colour) while edge features are mainly se-
lected around human contours (head, shoulders and feet). sp-LBP features are
selected near human head and human hips while sp-Cov features are selected
around human chest and regions between two human legs.

It is important to point out that our significant improvement comes at the
cost of increased computational complexity. We briefly list these additional com-
putational costs compared to [12] here. (i) Additional CPU time to extract two
additional features: sp-Cov and sp-LBP. (ii) The time taken to re-compute the
confidence score of positive patches. To be more specific, we additionally cal-
culate the dot product of the weak learners’ output and pAUCS™Ut variables
(new coefficients for weak learners), i.e., w'h where w is pAUCS"™Ut variables,
h = [h1(-), -+ ,h(-)] and hy(-) is the k-th weak learner. (iii) Additional CPU
time to perform the global normalization (ACE). In our experiment, applying
the colour normalization on a 640 x 480 pixels image takes approximately 0.3
seconds. This fast result is already based on an approximation of ACE [36],
which estimates a slope function with an odd polynomial approximation and
uses the DCT transform to speed up the convolutions. Using a single core Intel
Xeon CPU 2.70GHz processor, our detector currently operates at approximately
0.126 frames per second (without global normalization) and 0.119 frames per sec-
ond (with global normalization) on the Caltech data sets (detecting pedestrians
larger than 50 pixels).

4 Conclusion

In this paper we propose a simple yet effective feature extraction method based
on spatially pooled low-level visual features. To achieve optimal log-average miss
rate performance measure, we learn another set of weak learners’ coefficients
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whose aim is to improve the detection rate at the range of most practical impor-
tance. The combination of our approaches contributes to a pedestrian detector
which outperforms all competitors on all of the standard benchmark datasets.
Based on our experiments, we observe that the choice of discriminative features
and implementation details are crucial to achieve the best detection performance.
Future work includes incorporating motion information through the use of spa-
tial and temporal pooling to further improve the detection performance.

Acknowledgements. This work was in part supported by Australian Research
Council grant FT120100969.
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