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Abstract 

 

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine 

advances in human genomics and the eventual integration of this information in the practice of medicine 

and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to 

synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of 

Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of 

Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 

items on the STROBE checklist. The additions concern population stratification, genotyping errors, 

modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, 

rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical 

methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are 

important to consider in genetic association studies.  The STREGA recommendations do not prescribe 

or dictate how a genetic association study should be designed but seek to enhance the transparency of its 

reporting, regardless of choices made during design, conduct, or analysis.  
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The rapidly evolving evidence on genetic associations is crucial to integrating human genomics into the 

practice of medicine and public health [1,2]. Genetic factors are likely to affect the occurrence of 

numerous common diseases, and therefore identifying and characterizing the associated risk (or 

protection) will be important in improving the understanding of etiology and potentially for developing 

interventions based on genetic information.  The number of publications on the associations between 

genes and diseases has increased tremendously; with more than 34 000 published articles, the annual 

number has more than doubled between 2001 and 2008 [3,4]. Articles on genetic associations have been 

published in about 1500 journals and in several languages.  

 

Despite the many similarities between genetic association studies and “classical” observational 

epidemiologic studies (that is, cross-sectional, case-control, and cohort) of lifestyle and environmental 

factors, genetic association studies present several specific challenges including an unprecedented 

volume of new data [5,6] and the likelihood of very small individual effects. Genes may operate in 

complex pathways with gene-environment and gene-gene interactions [7]. Moreover, the current 

evidence base on gene-disease associations is fraught with methodological problems [8-10]. Inadequate 

reporting of results, even from well-conducted studies, hampers assessment of a study’s strengths and 

weaknesses, and hence the integration of evidence [11].   

 

Although several commentaries on the conduct, appraisal and/or reporting of genetic association studies 

have so far been published [12-39], their recommendations differ. For example, some papers suggest 

that replication of findings should be part of the publication [12,13,16,17,23,26,34-36] whereas others 

consider this suggestion unnecessary or even unreasonable [21,40-44]. In many publications, the 

guidance has focused on genetic association studies of specific diseases [14,15,17,19,22,23,25,26,31-38] 
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or the design and conduct of genetic association studies [13-15,17,19,20,22,23,25,30-32,35,36] rather 

than on the quality of the reporting.  

 

Despite increasing recognition of these problems, the quality of reporting genetic association studies 

needs to be improved [45-49].  For example, an assessment of a random sample of 315 genetic 

association studies published from 2001 to 2003 found that most studies provided some qualitative 

descriptions of the study participants (for example, origin and enrolment criteria), but reporting of 

quantitative descriptors such as age and sex was variable [49]. In addition, completeness of reporting of 

methods that allow readers to assess potential biases (for example, number of exclusions or number of 

samples that could not be genotyped) varied [49]. Only some studies described methods to validate 

genotyping or mentioned whether research staff were blinded to outcome. The same problems persisted 

in a smaller sample of studies published in 2006 [49]. Lack of transparency and incomplete reporting 

have raised concerns in a range of health research fields [11,50-53] and poor reporting has been 

associated with biased estimates of effects in clinical intervention studies [54].  

 

The main goal of this article is to propose and justify a set of guiding principles for reporting results of 

genetic association studies.  The epidemiology community has recently developed the Strengthening the 

Reporting of Observational studies in Epidemiology (STROBE) Statement for cross-sectional, case-

control, and cohort studies [55,56]. Given the relevance of general epidemiologic principles for genetic 

association studies, we propose recommendations in an extension of the STROBE Statement called the 

STrengthening the REporting of Genetic Association studies (STREGA) Statement. The 

recommendations of the STROBE Statement have a strong foundation because they are based on 

empirical evidence on the reporting of observational studies, and they involved extensive consultations 

in the epidemiologic research community [56]. We have sought to identify gaps and areas of controversy 

in the evidence regarding potential biases in genetic association studies. With the recommendations, we 
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have indicated available empirical or theoretical work that has demonstrated or suggested that a 

methodological feature of a study can influence the direction or magnitude of the association observed. 

We acknowledge that for many items, no such evidence exists. The intended audience for the reporting 

guideline is broad and includes epidemiologists, geneticists, statisticians, clinician scientists, and 

laboratory-based investigators who undertake genetic association studies. In addition, it includes "users" 

of such studies who wish to understand the basic premise, design, and limitations of genetic association 

studies in order to interpret the results. The field of genetic associations is evolving very rapidly with the 

advent of genome-wide association investigations, high-throughput platforms assessing genetic 

variability beyond common single nucleotide polymorphisms (SNPs) (for example, copy number 

variants, rare variants), and eventually routine full sequencing of samples from large populations. Our 

recommendations are not intended to support or oppose the choice of any particular study design or 

method. Instead, they are intended to maximize the transparency, quality and completeness of reporting 

of what was done and found in a particular study.  

 

 

Methods 

A multidisciplinary group developed the STREGA Statement by using literature review, workshop 

presentations and discussion, and iterative electronic correspondence after the workshop. Thirty-three of 

74 invitees participated in the STREGA workshop in Ottawa, Ontario, Canada, in June, 2006.  

Participants included epidemiologists, geneticists, statisticians, journal editors and graduate students.  

 

Before the workshop, an electronic search was performed to identify existing reporting guidance for 

genetic association studies. Workshop participants were also asked to identify any additional guidance.  

They prepared brief presentations on existing reporting guidelines, empirical evidence on reporting of 

genetic association studies, the development of the STROBE Statement, and several key areas for 
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discussion that were identified on the basis of consultations before the workshop. These areas included 

the selection and participation of study participants, rationale for choice of genes and variants 

investigated, genotyping errors, methods for inferring haplotypes, population stratification, assessment 

of Hardy-Weinberg equilibrium (HWE), multiple testing, reporting of quantitative (continuous) 

outcomes, selectively reporting study results, joint effects and inference of causation in single studies.   

Additional resources to inform workshop participants were the HuGENet handbook [57,58], examples 

of data extraction forms from systematic reviews or meta-analyses, articles on guideline development 

[59,60] and the checklists developed for STROBE. To harmonize our recommendations for genetic 

association studies with those for observational epidemiologic studies, we communicated with the 

STROBE group during the development process and sought their comments on the STREGA draft 

documents. We also provided comments on the developing STROBE Statement and its associated 

explanation and elaboration document [56].  

 

 

Results 

In Table 1, we present the STREGA recommendations, an extension to the STROBE checklist [55] for 

genetic association studies. The resulting STREGA checklist provides additions to 12 of the 22 items on 

the STROBE checklist. During the workshop and subsequent consultations, we identified five main 

areas of special interest that are specific to, or especially relevant in, genetic association studies: 

genotyping errors, population stratification, modelling haplotype variation, HWE and replication. We 

elaborate on each of these areas, starting each section with the corresponding STREGA 

recommendation, followed by a brief outline of the issue and an explanation for the recommendations. 

Complementary information on these areas and the rationale for additional STREGA recommendations 

relating to selection of participants, choice of genes and variants selected, treatment effects in studying 
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quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and issues 

of data volume, are presented in Table 2. 

 

Genotyping Errors 

Recommendation for reporting of methods (Table 1, item 8(b)): Describe laboratory methods, 

including source and storage of DNA, genotyping methods and platforms (including the allele 

calling algorithm used, and its version), error rates and call rates. State the laboratory/centre 

where genotyping was done. Describe comparability of laboratory methods if there is more than 

one group. Specify whether genotypes were assigned using all of the data from the study 

simultaneously or in smaller batches.  

Recommendation for reporting of results (Table 1, item 13(a)): Report numbers of individuals in 

whom genotyping was attempted and numbers of individuals in whom genotyping was 

successful. 

Genotyping errors can occur as a result of effects of the DNA sequence flanking the marker of interest, 

poor quality or quantity of the DNA extracted from biological samples, biochemical artefacts, poor 

equipment precision or equipment failure, or human error in sample handling, conduct of the array or 

handling the data obtained from the array [61]. A commentary published in 2005 on the possible causes 

and consequences of genotyping errors observed that an increasing number of researchers were aware of 

the problem, but that the effects of such errors had largely been neglected [61]. The magnitude of 

genotyping errors has been reported to vary between 0.5% and 30% [61-64]. In high-throughput centres, 

an error rate of 0.5% per genotype has been observed for blind duplicates that were run on the same gel 

[64]. This lower error rate reflects an explicit choice of markers for which genotyping rates have been 

found to be highly repeatable and whose individual polymerase chain reactions (PCR) have been 

optimized. Non-differential genotyping errors, that is, those that do not differ systematically according 

to outcome status, will usually bias associations towards the null [65,66], just as for other non-

differential errors. The most marked bias occurs when genotyping sensitivity is poor and genotype 
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prevalence is high (>85%) or, as the corollary, when genotyping specificity is poor and genotype 

prevalence is low (<15%) [65]. When measurement of the environmental exposure has substantial error, 

genotyping errors of the order of 3% can lead to substantial under-estimation of the magnitude of an 

interaction effect [67]. When there are systematic differences in genotyping according to outcome status 

(differential error), bias in any direction may occur. Unblinded assessment may lead to differential 

misclassification. For genome-wide association studies of SNPs, differential misclassification between 

comparison groups (for example, cases and controls) can occur because of differences in DNA storage, 

collection or processing protocols, even when the genotyping itself meets the highest possible standards 

[68]. In this situation, using samples blinded to comparison group to determine the parameters for allele 

calling could still lead to differential misclassification. To minimize such differential misclassification, it 

would be necessary to calibrate the software separately for each group. This is one of the reasons for our 

recommendation to specify whether genotypes were assigned using all of the data from the study 

simultaneously or in smaller batches.  

 

Population Stratification 

Recommendation for reporting of methods (Table 1, item 12(h): Describe any methods used to 

assess or address population stratification.  

Population stratification is the presence within a population of subgroups among which allele (or 

genotype; or haplotype) frequencies and disease risks differ.  When the groups compared in the study 

differ in their proportions of the population subgroups, an association between the genotype and the 

disease being investigated may reflect the genotype being an indicator identifying a population subgroup 

rather than a causal variant.  In this situation, population subgroup is a confounder because it is 

associated with both genotype frequency and disease risk. The potential implications of population 

stratification for the validity of genetic association studies have been debated [69-83]. Modelling the 

possible effect of population stratification (when no effort has been made to address it) suggests that the 
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effect is likely to be small in most situations [75,76,78-80]. Meta-analyses of 43 gene-disease 

associations comprising 697 individual studies showed consistent associations across groups of different 

ethnic origin [80], and thus provide evidence against a large effect of population stratification, hidden or 

otherwise. However, as studies of association and interaction typically address moderate or small effects 

and hence require large sample sizes, a small bias arising from population stratification may be 

important [81].    Study design (case-family control studies) and statistical methods [84] have been 

proposed to address population stratification, but so far few studies have used these suggestions [49].  

Most of the early genome-wide association studies used family-based designs or such methods as 

genomic control and principal components analysis [85,86] to control for stratification. These 

approaches are particularly appropriate for addressing bias when the identified genetic effects are very 

small (odds ratio <1.20), as has been the situation in many recent genome-wide association studies 

[85,87-105].  In view of the debate about the potential implications of population stratification for the 

validity of genetic association studies, we recommend transparent reporting of the methods used, or 

stating that none was used, to address this potential problem. This reporting will enable empirical 

evidence to accrue about the effects of population stratification and methods to address it. 

 

Modelling Haplotype Variation 

Recommendation for reporting of methods (Table 1, item 12(g): Describe any methods used for 

inferring genotypes or haplotypes.  

A haplotype is a combination of specific alleles at neighbouring genes that tends to be inherited 

together. There has been considerable interest in modelling haplotype variation within candidate genes. 

Typically, the number of haplotypes observed within a gene is much smaller than the theoretical number 

of all possible haplotypes [106,107]. Motivation for utilizing haplotypes comes, in large part, from the 

fact that multiple SNPs may “tag” an untyped variant more effectively than a single typed variant.  The 

subset of SNPs used in such an approach is called “haplotype tagging” SNPs.  Implicitly, an aim of 
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haplotype tagging is to reduce the number of SNPs that have to be genotyped, while maintaining 

statistical power to detect an association with the phenotype.  Maps of human genetic variation are 

becoming more complete, and large scale genotypic analysis is becoming increasingly feasible. In 

consequence, it is possible that modelling haplotype variation will become more focussed on rare causal 

variants, because these may not be included in the genotyping platforms.   

 

In most current large-scale genetic association studies, data are collected as unphased multilocus 

genotypes (that is, which alleles are aligned together on particular segments of chromosome is 

unknown).  It is common in such studies to use statistical methods to estimate haplotypes [108-111], and 

their accuracy and efficiency have been discussed [112-116]. Some methods attempt to make use of a 

concept called haplotype “blocks” [117,118], but the results of these methods are sensitive to the 

specific definitions of the “blocks” [119,120].  Reporting of the methods used to infer individual 

haplotypes and population haplotype frequencies, along with their associated uncertainties should 

enhance our understanding of the possible effects of different methods of modelling haplotype variation 

on study results as well as enabling comparison and syntheses of results from different studies. 

 

Information on common patterns of genetic variation revealed by the International Haplotype Map 

(HapMap) Project [107] can be applied in the analysis of genome-wide association studies to infer 

genotypic variation at markers not typed directly in these studies [121,122].  Essentially, these methods 

perform haplotype-based tests but make use of information on variation in a set of reference samples 

(for example, HapMap) to guide the specific tests of association, collapsing a potentially large number 

of haplotypes into two classes (the allelic variation) at each marker.  It is expected that these techniques 

will increase power in individual studies, and will aid in combining data across studies, and even across 

differing genotyping platforms. If imputation procedures have been used, it is useful to know the 

method, accuracy thresholds for acceptable imputation, how imputed genotypes were handled or 
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weighted in the analysis, and whether any associations based on imputed genotypes were also verified 

on the basis of direct genotyping at a subsequent stage.   

 

Hardy-Weinberg Equilibrium 

Recommendation for reporting of methods (Table 1, item 12(f): State whether Hardy-Weinberg 

equilibrium was considered and, if so, how.   

Hardy-Weinberg equilibrium  has become widely accepted as an underlying model in population 

genetics after Hardy [123] and Weinberg [124] proposed the concept that genotype frequencies at a 

genetic locus are stable within one generation of random mating; the assumption of HWE is equivalent 

to the independence of two alleles at a locus. Views differ on whether testing for departure from HWE is 

a useful method to detect errors or peculiarities in the data set, and also the method of testing [125]. In 

particular, it has been suggested that deviation from HWE may be a sign of genotyping errors [126-128]. 

Testing for departure from HWE has a role in detecting gross errors of genotyping in large-scale 

genotyping projects such as identifying SNPs for which the clustering algorithms used to call genotypes 

have broken down [85,129]. However, the statistical power to detect less important errors of genotyping 

by testing for departure from HWE is low [130] and, in hypothetical data, the presence of HWE was 

generally not altered by the introduction of genotyping errors [131]. Furthermore, the assumptions 

underlying HWE, including random mating, lack of selection according to genotype, and absence of 

mutation or gene flow, are rarely met in human populations [132,133]. In five of 42 gene-disease 

associations assessed in meta-analyses of almost 600 studies, the results of studies that violated HWE 

significantly differed from results of studies that conformed to the model [134]. Moreover, the study 

suggested that exclusion of HWE-violating studies may result in loss of the statistical significance of 

some postulated gene-disease associations and that adjustment for the magnitude of deviation from the 

model may also have the same consequence for some other gene-disease associations. Given the 

differing views about the value of testing for departure from HWE and about the test methods, 
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transparent reporting of whether such testing was done and, if so, the method used, is important for 

allowing the empirical evidence to accrue. 

 

For massive-testing platforms, such as genome-wide association studies, it might be expected that many 

false-positive violations of HWE would occur if a lenient P value threshold were set. There is no 

consensus on the appropriate P value threshold for HWE-related quality control in this setting. So, we 

recommend that investigators state which threshold they have used, if any, to exclude specific 

polymorphisms from further consideration.  For SNPs with low minor allele frequencies, substantially 

more significant results than expected by chance have been observed, and the distribution of alleles at 

these loci has often been found to show departure from HWE. 

 

For genome-wide association studies, another approach that has been used to detect errors or 

peculiarities in the data set (due to population stratification, genotyping error, HWE deviations or other 

reasons) has been to construct quantile-quantile (Q/Q) plots whereby observed association statistics or 

calculated P values for each SNP are ranked in order from smallest to largest and plotted against the 

expected null distribution [129,130].  The shape of the curve can lend insight into whether or not 

systematic biases are present. 

 

Replication 

Recommendation: State if the study is the first report of a genetic association, a 

replication effort, or both. (Table 1, item 3)  

Articles that present and synthesize data from several studies in a single report are becoming more 

common. In particular, many genome-wide association analyses describe several different study 

populations, sometimes with different study designs and genotyping platforms, and in various stages of 

discovery and replication [129,130].  When data from several studies are presented in a single original 
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report, each of the constituent studies and the composite results should be fully described. For example, 

a discussion of sample size and the reason for arriving at that size would include clear differentiation 

between the initial group (those that were typed with the full set of SNPs) and those that were included 

in the replication phase only (typed with a reduced set of SNPs) [129,130]. Describing the methods and 

results in sufficient detail would require substantial space in print, but options for publishing additional 

information on the study online make this possible.   

 

Discussion 

The choices made for study design, conduct and data analysis potentially influence the magnitude and 

direction of results of genetic association studies. However, the empirical evidence on these effects is 

insufficient. Transparency of reporting is thus essential for developing a better evidence base (Table 2). 

Transparent reporting helps address gaps in empirical evidence [45], such as the effects of incomplete 

participation and genotyping errors. It will also help assess the impact of currently controversial issues 

such as population stratification, methods of inferring haplotypes, departure from HWE and multiple 

testing on effect estimates under different study conditions.  

 

The STREGA Statement proposes a minimum checklist of items for reporting genetic association 

studies. The statement has several strengths.  First, it is based on existing guidance on reporting 

observational studies (STROBE). Second, it was developed from discussions of an interdisciplinary 

group that included epidemiologists, geneticists, statisticians, journal editors, and graduate students, thus 

reflecting a broad collaborative approach in terminology accessible to scientists from diverse disciplines. 

Finally, it explicitly describes the rationale for the decisions (Table 2) and has a clear plan for 

dissemination and evaluation.  
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The STREGA recommendations are available at www.strega-statement.org. We welcome comments, 

which will be used to refine future versions of the recommendations. We note that little is known about 

the most effective ways to apply reporting guidelines in practice, and that therefore it has been suggested 

that editors and authors collect, analyze, and report their experiences in using such guidelines [135]. We 

consider that the STREGA recommendations can be used by authors, peer reviewers and editors to 

improve the reporting of genetic association studies. We invite journals to endorse STREGA, for 

example by including STREGA and its Web address in their Instructions for Authors and by advising 

authors and peer reviewers to use the checklist as a guide. It has been suggested that reporting guidelines 

are most helpful if authors keep the general content of the guideline items in mind as they write their 

initial drafts, then refer to the details of individual items as they critically appraise what they have 

written during the revision process [135]. We emphasize that the STREGA reporting guidelines should 

not be used for screening submitted manuscripts to determine the quality or validity of the study being 

reported. Adherence to the recommendations may make some manuscripts longer, and this may be seen 

as a drawback in an era of limited space in a print journal. However, the ability to post information on 

the Web should alleviate this concern. The place in which supplementary information is presented can 

be decided by authors and editors of the individual journal. 

 

We hope that the recommendations stimulate transparent and improved reporting of genetic association 

studies. In turn, better reporting of original studies would facilitate the synthesis of available research 

results and the further development of study methods in genetic epidemiology with the ultimate goal of 

improving the understanding of the role of genetic factors in the cause of diseases.  
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Table 1. STREGA reporting recommendations, extended from STROBE Statement  
 

Item 
Item 

number 

STROBE Guideline 

 

Extension for Genetic 

Association Studies 

(STREGA) 

(a) Indicate the study’s design with a commonly used term in the title or 

the abstract. 

 Title and 

Abstract 

  

1 

 
(b) Provide in the abstract an informative and balanced summary of what 

was done and what was found. 

  

Introduction 

 

Background 

rationale 

2 Explain the scientific background and rationale for the investigation being 

reported. 

 

Objectives  3 State specific objectives, including any pre-specified hypotheses. State if the study is the first 

report of a genetic 
association, a replication 

effort, or both.  

Methods 
 

Study design 4 Present key elements of study design early in the paper.  

Setting 5 Describe the setting, locations and relevant dates, including periods of 

recruitment, exposure, follow-up, and data collection. 
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Item 
Item 

number 

STROBE Guideline 

 

Extension for Genetic 

Association Studies 

(STREGA) 

(a) Cohort study – Give the eligibility criteria, and the sources and 

methods of selection of participants.  Describe methods of follow-up. 

Case-control study – Give the eligibility criteria, and the sources and 

methods of case ascertainment and control selection. Give the 

rationale for the choice of cases and controls. 

Cross-sectional study – Give the eligibility criteria, and the sources 
and methods of selection of participants. 

Give information on the 

criteria and methods for 

selection of subsets of 
participants from a larger 

study, when relevant.  

Participants 6 

(b) Cohort study – For matched studies, give matching criteria and 

number of exposed and unexposed. 

Case-control study – For matched studies, give matching criteria 

and the number of controls per case. 

 

Variables 7 (a) Clearly define all outcomes, exposures, predictors, potential 

confounders, and effect modifiers. Give diagnostic criteria, if applicable. 

 (b) Clearly define genetic 

exposures (genetic variants) 

using a widely-used 

nomenclature system. 
Identify variables likely to be 

associated with population 

stratification (confounding 
by ethnic origin). 

Data sources 

measurement 

  

8* 

 

(a) For each variable of interest, give sources of data and details of 

methods of assessment (measurement). Describe comparability of 

assessment methods if there is more than one group. 

 (b) Describe laboratory 

methods, including source 

and storage of DNA, 
genotyping methods and 

platforms (including the 

allele calling algorithm used, 

and its version), error rates 
and call rates. State the 

laboratory/centre where 
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Item 
Item 

number 

STROBE Guideline 

 

Extension for Genetic 

Association Studies 

(STREGA) 

genotyping was done. 

Describe comparability of 

laboratory methods if there 
is more than one group. 

Specify whether genotypes 

were assigned using all of 

the data from the study 
simultaneously or in smaller 

batches.  

Bias 9 (a) Describe any efforts to address potential sources of bias.   (b) For quantitative outcome 

variables, specify if any 
investigation of potential 

bias resulting from 

pharmacotherapy was 
undertaken. If relevant, 

describe the nature and 

magnitude of the potential 
bias, and explain what 

approach was used to deal 

with this. 

Study size 10 Explain how the study size was arrived at.   

Quantitative 
variables    

11 Explain how quantitative variables were handled in the analyses. If 
applicable, describe which groupings were chosen, and why. 

If applicable, describe how 
effects of treatment were 

dealt with. 

(a) Describe all statistical methods, including those used to control for 

confounding. 

State software version used 

and options (or settings) 
chosen. 

Statistical 

methods 

  

12 

 

 (b) Describe any methods used to examine subgroups and interactions.  
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Item 
Item 

number 

STROBE Guideline 

 

Extension for Genetic 

Association Studies 

(STREGA) 

(c) Explain how missing data were addressed.   

(d) Cohort study – If applicable, explain how loss to follow-up was 

addressed. 

Case-control study – If applicable, explain how matching of cases 

and controls was addressed. 

Cross-sectional study – If applicable, describe analytical methods 
taking account of sampling strategy. 

 

  

(e) Describe any sensitivity analyses.  

   (f) State whether Hardy-
Weinberg equilibrium was 

considered and, if so, how.  

   (g) Describe any methods 

used for inferring genotypes 
or haplotypes.  

   (h) Describe any methods 

used to assess or address 

population stratification.  

   (i) Describe any methods 

used to address multiple 

comparisons or to control 

risk of false positive 
findings.  

   (j) Describe any methods 

used to address and correct 
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Item 
Item 

number 

STROBE Guideline 

 

Extension for Genetic 

Association Studies 

(STREGA) 

for relatedness among 

subjects 

Results 

 

(a) Report the numbers of individuals at each stage of the study – e.g., 

numbers potentially eligible, examined for eligibility, confirmed eligible, 

included in the study, completing follow-up, and analysed. 

Report numbers of 

individuals in whom 
genotyping was attempted 

and numbers of individuals 

in whom genotyping was 
successful. 

(b) Give reasons for non-participation at each stage.  

Participants 

   

13* 

(c) Consider use of a flow diagram.  

(a) Give characteristics of study participants (e.g., demographic, clinical, 

social) and information on exposures and potential confounders. 

 

Consider giving information 
by genotype.  

(b) Indicate the number of participants with missing data for each variable 

of interest. 

 

Descriptive data 

 

  

14* 

 

(c) Cohort study – Summarize follow-up time, e.g. average and total 

amount. 
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Item 
Item 

number 

STROBE Guideline 

 

Extension for Genetic 

Association Studies 

(STREGA) 

Cohort study-Report numbers of outcome events or summary measures 

over time. 

 

Report  outcomes 

(phenotypes) for each 

genotype category over time 

Case-control study – Report numbers in each exposure category, or 

summary measures of exposure. 

 

Report numbers in each 

genotype category 

 

Outcome data 15 * 

Cross-sectional study – Report numbers of outcome events or summary 

measures. 

 

Report outcomes 
(phenotypes) for each 

genotype category 

(a) Give unadjusted estimates and, if applicable, confounder-adjusted 

estimates and their precision (e.g., 95% confidence intervals). Make clear 

which confounders were adjusted for and why they were included. 

 

(b) Report category boundaries when continuous variables were 

categorized. 

 

Main results 16 

(c) If relevant, consider translating estimates of relative risk into absolute 

risk for a meaningful time period. 

 

   (d) Report results of any 
adjustments for multiple 

comparisons.  

Other analyses 17 (a) Report other analyses done – e.g., analyses of subgroups and 

interactions, and sensitivity analyses. 
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Item 
Item 

number 

STROBE Guideline 

 

Extension for Genetic 

Association Studies 

(STREGA) 

   (b) If numerous genetic 

exposures (genetic variants) 

were examined, summarize 
results from all analyses 

undertaken. 

   (c) If detailed results are 

available elsewhere, state 

how they can be accessed. 

Discussion  

Key results 18 Summarize key results with reference to study objectives.  

Limitations 19 Discuss limitations of the study, taking into account sources of potential 

bias or imprecision. Discuss both direction and magnitude of any potential 

bias. 

 

Interpretation   20 Give a cautious overall interpretation of results considering objectives, 
limitations, multiplicity of analyses, results from similar studies, and other 

relevant evidence. 

 

Generalizability  21 Discuss the generalizability (external validity) of the study results.  

Other Information 

 

Funding 22 Give the source of funding and the role of the funders for the present 

study and, if applicable, for the original study on which the present article 

is based. 
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STREGA = STrengthening the REporting of Genetic Association studies; STROBE = STtrengthening the Reporting of Observational Studies 

in Epidemiology. 

 

 

* Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort 

and cross-sectional studies. 

 



 9 

Table 2. Rationale for Inclusion of Topics in the STREGA Recommendations  
 
Specific Issue 

in Genetic 

Association 

Studies 

Rationale for inclusion in 

STREGA 

Item(s) in STREGA Specific suggestions for reporting 

Main areas of special interest (See also main text) 

. 

Genotyping 

errors 

(misclassificatio

n of exposure) 

Non-differential genotyping errors 

will usually bias associations 

towards the null [65,66]. When 

there are systematic differences in 

genotyping according to outcome 

status (differential error), bias in 

any direction may occur.  

 

8(b): Describe laboratory methods, 

including source and storage of 

DNA, genotyping methods and 

platforms (including the allele 

calling algorithm used, and its 

version), error rates and call rates. 

State the laboratory/centre where 

genotyping was done. Describe 

comparability of laboratory methods 

if there is more than one group. 

Specify whether genotypes were 

assigned using all of the data from 

the study simultaneously or in 

smaller batches. 

 

13(a): Report numbers of individuals 

in whom genotyping was attempted 

and numbers of individuals in whom 

genotyping was successful. 

Factors affecting the potential extent of misclassification (information 

bias) of genotype include the types and quality of samples, timing of 

collection, and the method used for genotyping [18,61,136].  

 

When high throughput platforms are used, it is important to report not 

only the platform used but also the allele calling algorithm and its 

version.  Different calling algorithms have different strengths and 

weaknesses ([130] and supplementary information in [85]).  For 

example, some of the currently used algorithms are notably less accurate 

in assigning genotypes to single nucleotide polymorphisms with low 

minor allele frequencies (<0.10) than to single nucleotide polymorphisms 

with higher minor allele frequencies [129].  Algorithms are continually 

being improved. Reporting the allele calling algorithm and its version 

will help readers to interpret reported results, and it is critical for 

reproducing the results of the study given the same intermediate output 

files summarizing intensity of hybridization. 

 

For some high throughput platforms, the user may choose to assign 

genotypes using all of the data from the study simultaneously, or in 

smaller batches, such as by plate [68,137] and supplementary 

information [85]).  This choice can affect both the overall call rate and 

the robustness of the calls.   

 

For case-control studies, whether genotyping was done blind to case-

control status should be reported, along with the reason for this decision.  

 

 

Population 

stratification 

(confounding by 

ethnic origin) 

When study sub-populations differ 

both in allele (or genotype) 

frequencies and disease risks, then 

confounding will occur if these 

sub-populations are unevenly 

distributed across exposure groups 

(or between cases and controls).  

12(h): Describe any methods used to 

assess or address population 

stratification. 

In view of the debate about the potential implications of population 

stratification for the validity of genetic association studies, transparent 

reporting of the methods used, or stating that none was used,  to address 

this potential problem is important for allowing the empirical evidence to 

accrue.  

 

Ethnicity information should be presented (see for example Winker 
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 [138], as should genetic markers or other variables likely to be associated 

with population stratification. Details of case-family control designs 

should be provided if they are used. 

 

 

As several methods of adjusting for population stratification have been 

proposed [84], explicit documentation of the methods is needed. 

Modelling 

haplotype 

variation 

In designs considered in this 

article, haplotypes have to be 

inferred because of lack of 

available family information. 

There are diverse methods for 

inferring haplotypes.   

12(g): Describe any methods used for 

inferring genotypes or haplotypes. 

When discrete “windows” are used to summarize haplotypes, variation in 

the definition of these may complicate comparisons across studies, as 

results may be sensitive to choice of windows.  Related “imputation” 

strategies are also in use [85,91,139].  

 

It is important to give details on haplotype inference and, when possible, 

uncertainty. Additional considerations for reporting include the strategy 

for dealing with rare haplotypes, window size and construction (if used) 

and choice of software.   

 

Hardy-

Weinberg 

equilibrium 

(HWE) 

 

 

Departure from Hardy-Weinberg 

equilibrium may indicate errors or 

peculiarities in the data [128]. 

Empirical assessments have found 

that 20%-69% of genetic 

associations were reported with 

some indication about conformity 

with Hardy-Weinberg equilibrium, 

and that among some of these, 

there were limitations or errors in 

its assessment [128].   

 

12(f): State whether Hardy-Weinberg 

equilibrium was considered and, if 

so, how. 

Any statistical tests or measures should be described, as should any 

procedure to allow for deviations from Hardy-Weinberg equilibrium in 

evaluating genetic associations [131]. 

Replication Publications that present and 

synthesize data from several 

studies in a single report are 

becoming more common. 

3: State if the study is the first report 

of a genetic association, a replication 

effort, or both. 

 

The selected criteria for claiming successful replication should also be 

explicitly documented 

 

Additional issues 

 

Selection of 

participants 

 

Selection bias may occur if  

(i) genetic associations are 

investigated in one or more subsets 

of participants (sub-samples) from 

a particular study; or  

(ii) there is differential non-

6(a): Give information on the criteria 

and methods for selection of subsets 

of participants from a larger study, 

when relevant. 

 

13(a): Report numbers of individuals 

Inclusion and exclusion criteria, sources and methods of selection of sub-

samples should be specified, stating whether these were based on a priori 

or post hoc considerations. 
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participation in groups being 

compared; or, 

(iii) there are differential 

genotyping call rates in groups 

being compared.  

 

in whom genotyping was attempted 

and numbers of individuals in whom 

genotyping was successful. 

Rationale for 

choice of genes 

and variants 

investigated 

Without an explicit rationale, it is 

difficult to judge the potential for 

selective reporting of study results. 

There is strong empirical evidence 

from randomised controlled trials 

that reporting of trial outcomes is 

frequently incomplete and biased 

in favour of statistically significant 

findings [140-142]. Some evidence 

is also available in 

pharmacogenetics [143].   

7(b): Clearly define genetic 

exposures (genetic variants) using a 

widely-used nomenclature system. 

Identify variables likely to be 

associated with population 

stratification (confounding by ethnic 

origin). 

The scientific background and rationale for investigating the genes and 

variants should be reported. 

 

For genome-wide association studies, it is important to specify what 

initial testing platforms were used and how gene variants are selected for 

further testing in subsequent stages. This may involve statistical 

considerations (for example, selection of P value threshold), functional or 

other biological considerations, fine mapping choices, or other 

approaches that need to be specified.   

 

Guidelines for human gene nomenclature have been published by the 

Human Gene Nomenclature Committee [144,145].  Standard reference 

numbers for nucleotide sequence variations, largely but not only SNPs 

are provided in dbSNP, the National Center for Biotechnology 

Information’s database of genetic variation [146]. For variations not 

listed in dbSNP that can be described relative to a specified version, 

guidelines have been proposed [147,148]. 

Treatment 

effects in 

studies of 

quantitative 

traits 

A study of a quantitative variable 

may be compromised when the 

trait is subjected to the effects of a 

treatment for example, the study of 

a lipid-related trait for which 

several individuals are taking lipid-

lowering medication. Without 

appropriate correction, this can 

lead to bias in estimating the effect 

and loss of power. 

9(b):  For quantitative outcome 

variables, specify if any investigation 

of potential bias resulting from 

pharmacotherapy was undertaken. If 

relevant, describe the nature and 

magnitude of the potential bias, and 

explain what approach was used to 

deal with this. 

11: If applicable, describe how 

effects of treatment were dealt with. 

 

Several methods of adjusting for treatment effects have been proposed 

[149]. As the approach to deal with treatment effects may have an 

important impact on both the power of the study and the interpretation of 

the results, explicit documentation of the selected strategy is needed. 

Statistical 

methods 

Analysis methods should be 

transparent and replicable, and 

genetic association studies are 

often performed using specialized 

software. 

12(a): State software version used 

and options (or settings) chosen. 

 

 

Relatedness The methods of analysis used in 

family-based studies are different 

from those used in studies that are 

based on unrelated cases and 

12(j) Describe any methods used to 

address and correct for relatedness 

among subjects 

For the great majority of studies in which samples are drawn from large, 

non-isolated populations, relatedness is typically negligible and results 

would not be altered depending on whether relatedness is taken into 

account. This may not be the case in isolated populations or those with 
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controls. Moreover, even in the 

studies that are based on 

apparently unrelated cases and 

controls, some individuals may 

have some connection and may be 

(distant) relatives, and this is 

particularly common in small, 

isolated populations, for example, 

Iceland.  This may need to be 

probed with appropriate methods 

and adjusted for in the analysis of 

the data. 

considerable inbreeding. If investigators have assessed for relatedness, 

they should state the method used [150-152] and how the results are 

corrected for identified relatedness. 

Reporting of 

descriptive and 

outcome data 

The synthesis of findings across 

studies depends on the availability 

of sufficiently detailed data. 

14(a): Consider giving information 

by genotype. 

 

15: Cohort study-  Report  outcomes 

(phenotypes) for each genotype 

category over time 

 

Case-control study – Report numbers 

in each genotype category 

 

Cross-sectional study – Report 

outcomes (phenotypes) for each 

genotype category 

 

 

Volume of data The key problem is of possible 

false-positive results and selective 

reporting of these. Type I errors 

are particularly relevant to the 

conduct of genome-wide 

association studies.  A large search 

among hundreds of thousands of 

genetic variants can be expected by 

chance alone to find thousands of 

false positive results (odds ratios 

significantly different from 1.0). 

12(i): Describe any methods used to 

address multiple comparisons or to 

control risk of false positive findings. 

 

16(d): Report results of any 

adjustments for multiple 

comparisons.  

 

17(b): If numerous genetic exposures 

(genetic variants) were examined, 

summarize results from all analyses 

undertaken 

. 

17(c): If detailed results are 

available elsewhere, state how they 

can be accessed. 

Genome-wide association studies collect information on a very large 

number of genetic variants concomitantly. Initiatives to make the entire 

database transparent and available online may supply a definitive 

solution to the problem of selective reporting [7].   

 

Availability of raw data may help interested investigators reproduce the 

published analyses and also pursue additional analyses. A potential 

drawback of public data availability is that investigators using the data 

second-hand may not be aware of limitations or other problems that were 

originally encountered, unless these are also transparently reported. In 

this regard, collaboration of the data users with the original investigators 

may be beneficial. Issues of consent and confidentiality [153,154] may 

also complicate what data can be shared, and how. It would be useful for 

published reports to specify not only what data can be accessed and 

where, but also briefly mention the procedure. For articles that have used 

publicly available data, it would be useful to clarify whether the original 

investigators were also involved and if so, how. 
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The volume of data analyzed should also be considered in the 

interpretation of findings. 

 

Examples of methods of summarizing results include giving distribution 

of P values (frequentist statistics), distribution of effect sizes and 

specifying false discovery rates. 
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