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The rapid and continuing progress in gene discovery for complex diseases is fueling interest in the potential application

of genetic risk models for clinical and public health practice. The number of studies assessing the predictive ability is

steadily increasing, but they vary widely in completeness of reporting and apparent quality. Transparent reporting of the

strengths and weaknesses of these studies is important to facilitate the accumulation of evidence on genetic risk prediction.

A multidisciplinary workshop sponsored by the Human Genome Epidemiology Network developed a checklist of 25 items

recommended for strengthening the reporting of Genetic RIsk Prediction Studies (GRIPS), building on the principles established

by previous reporting guidelines. These recommendations aim to enhance the transparency, quality and completeness of study

reporting, and thereby to improve the synthesis and application of information from multiple studies that might differ in design,

conduct or analysis.
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The advent of genome-wide association studies has accelerated the
discovery of novel genetic markers, in particular single nucleotide
polymorphisms (SNPs), which are associated with risk for common
complex diseases. Technological developments in large-scale genomic
studies, such as whole genome sequencing, will facilitate the discovery
of novel common SNPs, as well as of rare variants, copy number
variations, deletions/insertions, structural variations (eg, inversions)
and epigenetic effects that influence the regulation of gene expression.
These developments are fueling interest in the translation of this basic
knowledge to health care practice. Knowledge about genetic risk
factors may be used to target diagnostic, preventive and therapeutic
interventions for complex disorders based on a person’s genetic risk,
or to complement existing risk models based on classical non-genetic
factors such as the Framingham risk score for cardiovascular
disease. Implementation of genetic risk prediction in health care
requires a series of studies that encompass all phases of translational
research,1,2 starting with a comprehensive evaluation of genetic risk
prediction.

Genetic risk prediction studies typically concern the development
and/or evaluation of models for the prediction of a particular health
outcome, but there is considerable variation in their design, conduct
and analysis. Genetic risk models most frequently predict risk of
disease, but they are also being investigated for the prediction of
prognostic outcome, treatment response or treatment side effects. Risk
prediction models are used in research and clinical settings to classify
individuals into homogeneous groups for example, for randomization
in clinical trials and for targeting preventive or therapeutic interven-
tions. The main study designs are cohort, cross-sectional or case–
control. The genetic risk factors often are SNPs, but other variants
such as insertions/deletions, haplotypes and copy number variations
can be included as well. The risk models are based on genetic variants
only, or include both genetic and non-genetic risk factors. Risk
prediction models are statistical algorithms, which can be simple
genetic risk scores (eg, risk allele counts), or be based on regression
analyses (eg, weighted risk scores or predicted risks) or on more
complex analytic approaches such as support vector machine learning
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or classification trees. Papers on genetic risk prediction vary as to
whether they present the development of a risk model only, the
validation of one or more risk models only, or both development
and validation of a risk model.3 Lastly, studies vary in the measures
used to assess model performance. So far, assessments have nearly
always included measures of discrimination, but hardly any considered
calibration.3 Recent studies have additionally assessed measures of
reclassification, despite debate on the appropriate use and interpreta-
tion of these measures.4,5

So far, most genetic prediction studies have shown that the
predictive performance of genetic risk models is poor, with some
exceptions, such as those for age-related macular degeneration,
hypertriglyceridemia and Crohn’s disease.6–8 Although the poor per-
formance is most likely because of the low number of variants that
have been definitely linked to a phenotype to date, many publications
lack sufficient details to judge methodological or analytic aspects.
Information that is often missing includes details in the description of
how the study was designed and conducted (eg, how genetic variants
were selected, how risk models or genetic risk scores were constructed
and how risk categories were chosen), or how the results should be
interpreted. An appropriate assessment of the study’s strengths and
weaknesses is not possible without this information. With increasing
numbers of discovered genetic markers that can be used in future
genetic risk prediction studies, it is crucial to enhance the quality of
the reporting of these studies, as valid interpretation could be
compromised by the lack of reporting of key information. There is
ample evidence that prediction research often suffers from poor design
and biases, and these might have an impact also on the results of the
studies and on models of disease outcomes based on these studies.9–11

Although most prognostic studies published to date claim significant
results,12,13 very few translate to clinically useful applications, in part
because study findings resulted from chance, methodological biases or
the inclusion of risk factors that had not been previously replicated.
Just as for observational epidemiological studies,14 poor reporting
complicates the use of the specific study for research, clinical, or public
health purposes and the deficiencies also hamper the synthesis of
evidence across studies.

Reporting guidelines have been published for various research
designs15 and these contain many items that are also relevant to
genetic risk prediction studies. In particular, the guidelines for genetic
association studies (STREGA) have relevant items on the assessment
of genetic variants, and the guidelines for observational studies
(STROBE) have relevant items about the reporting of study design.
The guidelines for diagnostic studies (STARD) and those for tumor
marker prognostic studies (REMARK) include relevant items about
test evaluation, and the REMARK guidelines include relevant items
about risk prediction.16–19 However, none of these guidelines are fully
suited to genetic risk prediction studies, an emerging field of inves-
tigations with specific methodological issues that need to be addressed,
such as the handling of large numbers of genetic variants (from 10s to
10 000s), which come with greater challenges and flexibility on how
these can be dealt with in the analyses.

The main goal of this paper is to propose and justify a set of guiding
principles for reporting results of Genetic RIsk Prediction Studies
(GRIPS). To minimize confusion in the field, these recommendations
build on previous reporting guidelines whenever possible. The
intended audience for the reporting guideline is broad and includes
epidemiologists, geneticists, statisticians, clinician scientists and
laboratory-based investigators who undertake genetic risk prediction
studies, as well as journal editors and reviewers who have to appraise
the design, conduct and analysis of such studies. In addition, it

includes ‘users’ of such studies who wish to understand the basic
premise, design and limitations of genetic prediction studies to
interpret the results for their potential application in health care.
These guidelines are also intended to ensure that essential data
from genetic risk prediction studies are presented, which will
facilitate information synthesis as part of systematic reviews and
meta-analyses.

Finally, it is important to emphasize that these recommendations
are guidelines only for how to report research; the recommendations
do not prescribe how to perform genetic risk prediction studies.
Nevertheless, we suggest that increased transparency of reporting
might have a favorable effect on the quality of research, and thereby
improve the translation into practice, as has been the case for the
adoption of the CONSORT checklist in the reporting of randomized
controlled trials.20

DEVELOPMENT OF THE GRIPS STATEMENT

The GRIPS Statement was developed by a multidisciplinary panel of
25 risk prediction researchers, epidemiologists, geneticists, methodol-
ogists, statisticians and journal editors, seven of whom were also part
of the STREGA initiative.17 They attended a two-day meeting in
Atlanta, GA, USA in December 2009 sponsored by the Centers for
Disease Control and Prevention on behalf of the Human Genome
Epidemiology Network (HuGENet).21 Participants discussed a draft
version of the checklist that was prepared and distributed before the
meeting. This draft version was developed based on existing reporting
guidelines, namely STREGA,17 REMARK19 and STARD.18 These were
selected from all available guidelines (see http://www.equator-network.
org) because of their focus on observational study designs and genetic
factors (STREGA), prediction models (REMARK) and test evaluation
(REMARK and STARD). Methodological issues pertinent to risk
prediction studies were addressed in presentations during the meeting.
Workshop participants revised the initial recommendations both
during the meeting and in extensive electronic correspondence after
the meeting. To harmonize our recommendations for genetic risk
prediction studies with previous guidelines, we chose the same
wording and explanations for the items wherever possible. Finally,
we tried to maintain consistency with previous guidelines for the
evaluation of risk prediction studies of cardiovascular diseases and
cancer.2,22 The final version of the checklist is presented in Table 1.

SCOPE OF THE GRIPS STATEMENT

The GRIPS statement is intended to maximize the transparency,
quality and completeness of reporting on research methodology and
findings in a particular study. Researchers can use the statement to
inform their choice of study design and analyses, but the guidelines do
not support or oppose the choice of any particular study design or
method. For example, the guidelines recommend that the study
population should be described, but do not specify which population
is preferred in a particular study.

Items presented in the checklist are relevant for a wide array of
observational risk prediction studies, because the checklist focuses on
the main aspects in the design and analysis of risk prediction studies.
GRIPS does not address randomized trials that may be performed to
test risk models, nor does it specifically address decision analyses, cost-
effectiveness analyses, assessment of health care needs or assessment of
barriers to health care implementation.23 Once the performance
of a risk model has been established, these next steps towards
implementation require further evaluation.24,25 For the reporting of
these studies, which go beyond the assessment of genetic risk
models as such, additional requirements apply. However, proper
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documentation of genetic predictive research according to GRIPS
might facilitate the translation of research findings into clinical and
public health practice.

HOW TO USE THIS PAPER

This paper illustrates and elaborates on the items of the GRIPS
statement that are published in several journals. We modeled this

Explanation and Elaboration document along the lines of those
developed for other reporting guidelines.26–29 The GRIPS Statement
consist of 25 items grouped by article sections (title and abstract,
introduction, methods, results and discussion). The discussion of each
item in this paper follows a standardized format. First, we illustrate
each item with one or more published examples of what we consider
to be transparent reporting, drawn from the genetic risk prediction
studies referenced in Table 2. Table or figure numbers in the examples

Table 1 Reporting recommendations for evaluations of risk prediction models that include genetic variants

Title and abstract

1 (a) Identify the article as a study of risk prediction using genetic factors. (b) Use recommended keywords in the abstract:

genetic or genomic, risk, prediction.

Introduction

Background and rationale 2 Explain the scientific background and rationale for the prediction study.

Objectives 3 Specify the study objectives and state the specific model(s) that is/are investigated. State if the study concerns the development

of the model(s), a validation effort, or both.

Methods

Study design

and setting

4 Specify the key elements of the study design and describe the setting, locations and relevant dates, including periods of recruitment,

follow-up and data collection.a

Participants 5 Describe eligibility criteria for participants, and sources and methods of selection of participants.a

Variables: definition 6 Clearly define all participant characteristics, risk factors and outcomes. Clearly define genetic variants using a widely-used

nomenclature system.a

Variables: assessment 7 (a) Describe sources of data and details of methods of assessment (measurement) for each variable. (b) Give a detailed description

of genotyping and other laboratory methods.a

Variables: coding 8 (a) Describe how genetic variants were handled in the analyses. (b) Explain how other quantitative variables were handled in the

analyses. If applicable, describe which groupings were chosen, and why.

Analysis: risk model

construction

9 Specify the procedure and data used for the derivation of the risk model. Specify which candidate variables were initially

examined or considered for inclusion in models. Include details of any variable selection procedures and other model-building issues.

Specify the horizon of risk prediction (eg, 5-year risk).

Analysis: validation 10 Specify the procedure and data used for the validation of the risk model.

Analysis: missing data 11 Specify how missing data were handled.

Analysis: statistical

methods

12 Specify all measures used for the evaluation of the risk model including, but not limited to, measures of model fit and

predictive ability.

Analysis: other 13 Describe all subgroups, interactions and exploratory analyses that were examined.

Results

Participants 14 Report the numbers of individuals at each stage of the study. Give reasons for non-participation at each stage. Report the number

of participants not genotyped, and reasons why they were not genotyped.a

Descriptives: population 15 Report demographic and clinical characteristics of the study population, including risk factors used in the risk modeling.a

Descriptives:

model estimates

16 Report unadjusted associations between the variables in the risk model(s) and the outcome. Report adjusted estimates and

their precision from the full risk model(s) for each variable.

Risk distributions 17 Report distributions of predicted risks and/or risk scores.a

Assessment 18 Report measures of model fit and predictive ability, and any other performance measures, if pertinent.

Validation 19 Report any validation of the risk model(s).

Other analyses 20 Present results of any subgroup, interaction or exploratory analyses, whenever pertinent.

Discussion

Limitations 21 Discuss limitations and assumptions of the study, particularly those concerning study design, selection of participants,

measurements and analyses and discuss their impact on the results of the study.

Interpretation 22 Give an overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar

studies, and other relevant evidence.

Generalizability 23 Discuss the generalizability and, if pertinent, the health care relevance of the study results.

Other

Supplementary information 24 State whether databases for the analyzed data, risk models and/or protocols are or will become publicly available and if so,

how they can be accessed.

Funding 25 Give the source of funding and the role of the funders for the present study. State whether there are any conflicts of interest.

aMarked items should be reported for every population in the study.
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refer to the tables and figures in the present manuscript, not the
original article. Second, for each item, we explain in detail the
rationale for its inclusion in the checklist. Third, we present details
about each item that need to be addressed to ensure transparent
reporting.

Frequently, papers about genetic risk prediction are conducted
using data from multiple populations. Many studies have combined
multiple datasets to develop the risk model, for example by obtaining
controls and cases from different populations,7,30–32 or have derived
risk models in multiple populations.33 Studies may also use one or
more populations to validate the model in independent samples.
Readers need to be able to assess the similarities and differences
among these populations in terms of the design of the study, selection
of participants, data collection and analyses. Differences in the study
designs and population characteristics that might impact the validity
and generalizability of the findings should be reported. These may
include ascertainment of participants, distributions of age, sex and
ethnicity as well as the prevalence of risk factors, disease and
comorbidities.3 Authors should describe any efforts made to harmo-
nize the assessment methods, if these were different. The essential
items that should be reported for each population are marked in
Table 1.

Finally, genetic risk models may also be applied to predict other
clinically relevant outcomes such as prognosis, treatment response and
side effects of treatment. To improve the readability of the paper, the
paper focuses on prediction of disease risk, but the items also apply to
other health outcomes as well.

THE GRIPS CHECKLIST

For each checklist item shown in Table 1, this section provides
examples of appropriate reporting from actual scientific articles of
genetic risk models for diseases and health conditions, as well as an
explanation of the importance and need for the item and helpful
guidance about details that constitute transparent reporting.

Title and abstract
Item 1: (a) Identify the article as a study of risk prediction using genetic
factors. (b) Use recommended keywords in the abstract: genetic or
genomic, risk, prediction.

Examples: (Title) ‘Combining information from common type 2
diabetes risk polymorphisms improves disease prediction.’34

(Title) ‘Prediction model for prevalence and incidence of advanced
age-related macular degeneration based on genetic, demographic, and
environmental variables.’ 6

Table 2 Genetic terminology used in titles of genetic risk prediction studies and retrieval of the studies in Pubmed

Pubmed clinical query

Clinical prediction guides Prognosis

Terminology Reference Narrow Broad Narrow Broad

Genetic risk

predictiona

Candidate gene genotypes 55 No Yes No Yes No

DNA variants 33 No Yes No Yes Yes

Gene polymorphisms 54 No Yes Yes Yes Yes

Gene variants 32 No No Yes Yes No

Genetic approaches 92 No Yes No Yes Yes

Genetic prediction 93 No Yes No Yes Yes

Genetic risk factors 52 No Yes Yes Yes Yes

Genetic risk score 35 No Yes Yes Yes Yes

Genetic variables 6 No Yes No Yes Yes

Genetic variants 67 No No No No No

31 No Yes Yes Yes Yes

Genetic variation 56 No Yes Yes Yes Yes

Genotype score 48 No Yes No Yes Yes

Molecular prediction 7 No Yes Yes Yes Yes

Polygenic determinants 8 No No No No No

Polymorphisms 51 No Yes No Yes Yes

42 No Yes No Yes Yes

47 No Yes Yes Yes No

34 No Yes No Yes Yes

43 No Yes Yes Yes Yes

36 No Yes No Yes Yes

Susceptibility gene variants 30 No No No No No

Weighted genetic score 57 No No No Yes Yes

No mention of genetics in title 37 Yes Yes No Yes Yes

Retrieved (out of 24) 1 19 9 21 18

(genetic[ti] or gene[ti] or DNA[ti] or polymorphism*[ti] or

molecular[ti] or polygenic[ti]) AND /querySb

4772 156 641 18 090 67 931

(Genetic or genomic) risk predictiona 1597

Retrieval data were obtained from PubMed queries conducted in February 2010.
aThe search strategy used in the last column is described in the last row.
bThe first part of this strategy captures the genetic descriptions from the titles of all papers listed in the table, except the one that had no mention of genetics in the title. The second part refers
to the query listed in the column heading.
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(Abstract) ‘Recent studies have evaluated whether incorporating
non-traditional risk factors improves coronary heart disease (CHD)
prediction models. This 1986–2001 US study aggregated the contribu-
tion of multiple single nucleotide polymorphisms into a genetic risk
score (GRS) and assessed whether the GRS plus traditional risk factors
predict CHD better than traditional risk factors alone’. 35

(Abstract) ‘The degree to which currently known genetic variants
can improve the prediction of CHD risk beyond conventional risk
factors in this disorder was investigated’. 36

Explanation: Public bibliographic databases have become an essen-
tial tool in knowledge synthesis and dissemination and a key source
for identifying studies. To date, there is no single strategy that retrieves
all or most papers on genetic risk prediction in these databases. Table 2
shows that the 24 studies of genetic risk prediction cited in this paper
have used 17 different terms in their titles and one study made no
reference to genetic factors at all.37 PubMed Clinical Queries has
implemented standardized search strategies for retrieving clinical
prediction guides 38 and prognosis studies in general,39 but these are
inefficient strategies to retrieve genetic risk prediction studies. The
broad versions of both types of PubMed Clinical Queries were able to
ascertain most of the listed papers, but at the same time many other
studies not related to this topic (Table 2). To facilitate identification
and indexing, authors are encouraged to exploit all three opportu-
nities, namely title, abstract and Medical Subject Headings (MeSH
terms), to help ensure the capture of the article in the clinical queries
and routine PubMed searches.

In the abstract, authors should explicitly describe their work as a study
of genetic risk prediction by using the three keywords: ‘genetic’ (or
‘genomic’), ‘risk’ and ‘prediction’. These words do not need to be
mentioned in a specific combination or order. If the report focuses on
genetic risk prediction as a main objective, authors are advised to
mention the keywords in the title. The use of the keyword ‘genetic’ or
‘genomic’ is particularly important because a variety of genetic variants
exists, such as chromosomes, SNPs, haplotypes or copy number varia-
tions. It will be difficult to retrieve all relevant studies if authors only use
the specific terminology and not a broad descriptor like ‘genetic variant’.
Table 2 shows that the combination of the keywords was by far more
specific in identifying the prediction studies that are cited in this paper as
compared with the PubMed Clinical Queries. The use of these keywords
is also essential when risk prediction is not the main objective of a study,
for example, when prediction analysis is part of genome-wide association
studies.40 To ensure that these articles are identifiable, authors should
mention the prediction analysis in the abstract as well.

MeSH terms are another opportunity to identify an article as a study
of genetic risk prediction, but this is often not under control of the
author. The articles listed in Table 2 have been given a variety of MeSH
terms and no single term or combination of terms would have retrieved
all papers. To facilitate future synthesis of studies, we recommend that
studies on this topic at least use the MeSH terms ‘genetic predisposition
to disease’, ‘risk assessment’ and ‘predictive value of tests’. These three
terms are analogous to the keywords ‘genetic’, ‘risk’ and ‘prediction’.
Each MeSH term alone retrieved 18 of the articles listed in Table 2, and
over 50 000 other articles (results not shown). The exact combination of
the three MeSH terms did not retrieve any of these studies, but also only
a little over 100 other papers in total. Consequently, assigning the three
MeSH terms to genetic risk prediction studies potentially allows for a
very specific search strategy to retrieve future articles.

Introduction
Item 2: Explain the scientific background and rationale for the prediction
study.

Example: ‘Knowledge about genetic and epidemiologic associations
with the leading cause of blindness among the elderly, age-related
macular degeneration, has grown exponentially in recent years. Several
genetic variants with strong and consistent associations with AMD
have recently been identified. We also know that in addition to age,
ethnicity, and family history, there are modifiable factors: smoking,
nutritional antioxidants and omega-3 fatty acid intake, and overall
and abdominal adiposity. However, it remains unknown whether all
these genetic and environmental factors act independently or jointly
and to what extent they as a group can predict the occurrence of
age-related macular degeneration (AMD) or progression to advanced
AMD from early and intermediate stages. Such information might be
useful for screening those at high risk due to a positive family history
or having signs of early or intermediate disease, among whom some
progress to advanced stages of AMD with visual loss. Early detection
could reduce the growing societal burden due to AMD by
targeting and emphasizing modifiable habits earlier in life and
recommending more frequent surveillance for those highly susceptible
to the disease.’6

Explanation: The background should inform the reader what is
already known on the topic, and what gaps in knowledge justify
conducting the present study. Relevant background information
should include, but is not limited to, the following two topics:

First, what is known about the role of genetic factors in the
outcome of interest, and in particular about the genetic variants
that are being considered for inclusion in the prediction model?
Such information could include a summary of how many genetic
variants have been discovered and possibly what is the range of their
observed effect sizes.

Second, the introduction should inform what alternative models for
risk prediction are available or have been investigated for the outcome
of interest, including models that are based on fewer genetic variants,
the same variants, non-genetic risk factors or a combination of genetic
and non-genetic factors. The assessment of the performance of these
risk models can provide a reference value for the evaluation of the risk
model under study.13,41 A comparison with earlier studies is most
informative when essential information about the comparability of the
studies is provided. Such information may include details about the
setting (see below) and the age, sex and ethnicity of the population
investigated.

For some topics, summarizing this information systematically
would require formal systematic reviews of extensive bodies of
literature and hundreds of pages, far beyond the typical short
introduction of most research papers. Therefore, we recommend
that the authors should be concise in reviewing the status of current
risk research on the topic of interest and how the current study
proposes to build on this existing evidence.

Item 3: Specify the study objectives and state the specific model(s) that
is/are investigated. State if the study concerns the development of
the model(s), the validation effort of the model(s), or both.

Examples: ‘We examined subjects in two large Scandinavian
prospective studies with a median follow-up period of 23.5 years
to determine whether these genetic variants alone or in combination
with clinical risk factors might predict the future development of type
2 diabetes and whether these variants were associated with changes in
insulin secretion or action over time.’ 33

‘The present study was designed to evaluate whether the findings
of Zheng et al could be replicated in a population-based sample of
American Caucasian men and to evaluate how the combination of
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SNP genotypes and family history function in prediction models for
prostate cancer risk and for prostate cancer-specific mortality.’ 31

Explanation: Objectives refer to the specific research questions that
are investigated in the study. For genetic risk prediction studies, the
objectives should specify which models are investigated for the
prediction of which outcome in which population and setting.
Furthermore, authors should state whether the report concerns the
development of a novel risk model (and if so, whether some sort of
internal or external validation is performed) or about a replication or
validation of an earlier model. Finally, any planned subgroup and
interaction analyses should be specified, including a priori hypotheses
or a statement that subgroup and interaction effects were explored
without any hypothesis.

Methods
Item 4: Specify the key elements of the study design and describe the
setting, locations and relevant dates, including periods of recruitment,
follow-up and data collection.

Examples: ‘The Rotterdam Study is a prospective, population-based,
cohort study among 7,983 inhabitants of a Rotterdam suburb,
designed to investigate determinants of chronic diseases. Participants
were aged 55 years and older. Baseline examinations took place from
1990 until 1993. Follow-up examinations were performed in
1993–1994, 1997–1999, and 2002–2004. Between these exams, con-
tinuous surveillance on major disease outcomes was conducted.
Information on vital status was obtained from municipal health
authorities.’ 42

‘A cohort of 2,576 men and 2,636 women from a general population
(aged 30–65 years at inclusion) participated in the DESIR longitudinal
study and were clinically and biologically evaluated at inclusion, at
3-, 6-, and 9-year visits.’ 43

Explanation: Key elements about the study design include whether
the analyses were performed in: a cohort study, which follows a group
of individuals over time to identify incident cases of disease; a cross
sectional study, which examines prevalent disease in a defined popula-
tion; or a case–control study, which compares individuals with the
trait of interest to those without.17,29,44 Setting refers to how partici-
pants were recruited, for example, through hospitals, outpatient
clinics, screening centers or registries and location refers to the
country, region and cities, if relevant. Stating the dates of data-
collection rather than the duration of the follow-up helps to place
the study in historical context and is particularly important in the
context of changes in diagnostic methods (eg, imaging and use of
biomarkers), and changes in the assessment of genotype and other risk
factors.

Researchers should also state whether the data were de novo
collected specifically for the purpose stated in the introduction, or
whether the analyses were conducted using previously collected data.29

The secondary use of existing data is not necessarily less credible, but a
statement might help to explain limitations in the study, including,
but not limited to, relevant data not being assessed or the presence of
peculiar population characteristics.

Item 5: Describe eligibility criteria for participants, and sources and
methods of selection of participants.

Examples: (Eligibility criteria) ‘The diagnosis of diabetes in case
subjects was based on either current treatment with diabetes-specific
medication or laboratory evidence of hyperglycemia if treated with
diet alone. Patients with confirmed diagnosis of monogenic diabetes

and those treated with regular insulin therapy within 1 year of
diagnosis were excluded. Case subjects in this study had an age at
diagnosis between 35 and 70 years, inclusive. Control subjects had not
been diagnosed with diabetes at the time of recruitment or subse-
quently and were excluded if there was evidence of hyperglycemia
during recruitment (fasting glucose 47.0 mmol/l, A1C 46.4%) or if
they were 480 years old’. 45

(Sources and methods of selection) ‘The study population consisted
of 283 women with previous gestational diabetes mellitus who were
admitted to the Department of Obstetrics, Copenhagen University
Hospital, Rigshospitalet, Denmark, during 1978–1996 and who had
participated in a follow-up study during 2000–2002’. 32

Explanation: The predictive performance of a risk model might vary
with the population in which the test is applied, and is preferably
assessed by testing a random sample of individuals from the popula-
tion at risk of the disease or outcome. The eligibility criteria, source
and methods of selection of the study participants thus inform readers
about the assumed target population for testing as well as about the
representativeness of the study population. Knowledge of the selection
criteria is essential in appraising the validity and generalizability of the
study results. Eligibility criteria may be presented as inclusion and
exclusion criteria, specifying characteristics, such as age, sex, ancestry,
ethnicity and/or geographical region, and, for case–control studies,
diagnosis and comorbidity. The source refers to the populations from
which the participants were selected and to the methods of selection—
whether participants were, for example, randomly invited, referred or
self-selected. The diagnostic criteria should be clearly described,
including references to standards, if applicable.

For cohort and cross-sectional studies, the population base from
which participants were invited (eg, from a general population,
specific region or hospital) should be specified. Depending on the
aim of the cohort, typical eligibility criteria may include age, sex,
ethnicity, specific risk factors and for cohorts of patients, diagnosis,
disease duration or stage and comorbidity.29

For case–control studies, one should specify the (diagnostic) criteria
that were used to select cases, and the criteria for selecting the controls.
The extent to which controls were screened for absence of symptoms
related to the disease or outcome under study should be described.
Description of the criteria should enable understanding of the
spectrum of disease involved. Case–control studies sometimes com-
pare very severe cases with very healthy controls, particularly if the
data were previously collected primarily for gene discovery.8,46 Such
stringent selection of participants is an effective strategy for gene
discovery, but predictive performance might be overestimated com-
pared with assessment in unselected populations where controls might
have early symptoms or risk factors of disease. Furthermore, for case–
control studies, it is important to specify whether cases and controls
were matched and how, as overmatching might affect the predictive
power of that factor in the sample relative to its predictive power in an
unmatched population.

Item 6: Clearly define all participant characteristics, risk factors and
outcomes. Clearly define genetic variants using a widely-used nomen-
clature system.

Examples: (Predictors) ‘We selected six SNPs from six loci on the basis
of their association with levels of LDL or HDL cholesterol in at least
one previous study. These six SNPs were, for association with LDL
cholesterol, APOB (apolipoprotein B, rs693), PCSK9 (proprotein
convertase subtilisin/kexin type 9, rs11591147), and LDLR (low-
density lipoprotein receptor, rs688); and for association with HDL
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cholesterol, CETP (cholesteryl ester transfer protein, rs1800775), LIPC
(hepatic lipase, rs1800588), and LPL (lipoprotein lipase, rs328).’ 47

(Predictors) Another example is provision of the information in
tabular form (See Table 3).48

(Predictors) ‘We defined a positive self reported family history of
diabetes as a report that one or both parents had diabetes; this
definition is more than 56% sensitive and 97% specific for confirmed
parental diabetes. [y] We considered diabetes to be present in a
parent when medication was prescribed to control the diabetes or
when the casual plasma glucose level was 11.1 mmol per liter or higher
or 200.0 mg per deciliter or higher at any examination’. 48

(Outcomes) ‘The prespecified composite end point of cardiovas-
cular events was defined as myocardial infarction, ischemic stroke, and
death from coronary heart disease. Myocardial infarction was defined
on the basis of codes 410 and I21 in the International Classification of
Diseases, 9th Revision and 10th Revision (ICD-9 and ICD-10),
respectively. Ischemic stroke was defined on the basis of codes 434
or 436 (ICD-9) and I63 or I64 (ICD-10)’. 47

Explanation: All participant characteristics, genetic and non-genetic
risk factors, and outcomes that are considered and used in the analyses,
should be defined and described unambiguously. Disease outcomes
should be defined by reference to established diagnostic criteria or
justification of study-specific criteria, if such are employed. Both the
selection of genetic and non-genetic risk factors should be clarified.
Authors should specify whether all known risk factors are included,
and, if not, why some are excluded. Genetic variants should be
described using widely-used nomenclature.49 For example, SNPs
could be presented with rs numbers with allusion to the pertinent
reference database and build (eg, HapMap release 27).50 When proxies
(surrogate markers) are considered, the correlation with the intended
variant should be quantified, for example, in terms of R2 along with the
population used to derive the correlation. When variants are obtained
by imputation, the imputation method and reference database should
be described along with an estimate of the quality of the imputation.

Item 7: (a) Describe sources of data and details of methods of assessment
(measurement) for each variable. (b) Give a detailed description of
genotyping and other laboratory methods.

Examples: (Sources of data) ‘Phenotyping was performed by the
participating gastroenterologist from each university medical center
by reviewing a patient’s chart retrospectively.’ 7

(Sources of data) ‘All clinical measurements were performed in
practice by [the first author] (first measurement) and a nurse practi-
tioner (second, third and fourth measurements with in-between
periods of 3 months)’. 51

(Methods of assessment) ‘Weight was measured in underwear
to the nearest 0.1 kg on Soehnle electronic scales. We measured height
in bare feet to the nearest 1 mm by using a stadiometer with the
participant standing erect with head in the Frankfort plane. We
calculated body mass index as weight (kilograms)/height (metres)
squared. We measured waist circumference, taken as the smallest
circumference at or below the costal margin, with participants
unclothed in the standing position by using a fibreglass tape measure
at 600 g tension. We measured systolic blood pressure and diastolic
blood pressure twice in the sitting position after five minutes’ rest
with the Hawksley random zero sphygmomanometer. We took the
average of the two readings to be the measured blood pressure.
We took venous blood in the fasting state or at least 5 h after a
light, fat-free breakfast, before a 2 h 75 g oral glucose tolerance test was
done. Serum for lipid analyses was refrigerated at �41C and assayed
within 72 h. We used a Cobas Fara centrifugal analyzer (Roche
Diagnostics System, Nutley, NJ, USA) to measure cholesterol and
triglyceride concentrations. We measured high-density lipoprotein
cholesterol by precipitating non-high-density lipoprotein cholesterol
with dextran sulfate-magnesium chloride with the use of centrifuge
and measuring cholesterol in the supernatant fluid. We used the
Friedewald formula to calculate low-density lipoprotein cholesterol
concentration’. 52

(Outcomes) ‘Women with gestational diabetes mellitus in the years
1978–1985 were diagnosed by a 3 h, 50 g oral glucose tolerance
test (OGTT), whereas women with gestational diabetes mellitus in
1987–1996 were diagnosed by a 3 h, 75 g OGTT’. 32

(Genotyping) ‘Genotyping was performed with the use of matrix-
assisted laser desorption–ionization time of-flight mass spectrometry
on a MassARRAY platform (Sequenom), as described previously.
All SNPs were in Hardy–Weinberg equilibrium (P40.001).

Table 3 Example table: description of genetic variants used in the analyses

SNP Locus Chromosome Locus relative to gene Risk allele Source

rs10923931 NOTCH2 1 Intron 5 T Zeggini et al

rs10490072 BCL11A 2 3¢ of gene T Zeggini et al

rs7578597 THADA 2 Missense, exon 24 T Zeggini et al

rs1470579 IGF2BP2 3 Intron 2 C Saxena et al

rs1801282 PPARg 3 Intron 1 C Saxena et al

rs4607103 ADAMTS9 3 Intron 2 C Zeggini et al

rs7754840 CDKAL1 6 Intron 5 C Saxena et al

rs9472138 VEGFA 6 3¢ of gene T Zeggini et al

rs864745 JAZF1 7 Intron 1 T Zeggini et al

rs13266634 SLC30A8 8 Missense, exon 8 C Saxena et al

rs10811661 CDKNA/2B 9 5¢ of gene T Saxena et al

rs1111875 HHEX 10 3¢ of gene C Saxena et al

rs12779790 CDC123,CAMK1D 10 3¢ of gene G Zeggini et al

rs7903146 TCF7L2 10 Intron 6 T Saxena et al

rs5219 KCNJ11 11 Missense, exon 1 T Saxena et al

rs689 INS 11 Intron 1 T Meigs et al

rs1153188 DCD 12 5¢ of gene A Zeggini et al

rs7961581 TSPAN8, LGR5 12 5¢ of gene C Zeggini et al

Adapted from ref. 48.
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The genotyping success rate was 96%. Using 15 samples analyzed in
quadruplicate, we found the genotyping error rate to be o0.7%’. 47

Explanation: Apart from the selection and definitions of the
variables, the sources and methods used for the assessment can impact
the quality of the study. Important quality concerns are the potential
for misclassification of risk factors and outcomes, as well as the
accuracy of genotyping.29 Sources of data basically refer to who did
the data collection and how. Were the data collected by research
physicians or trained students? Were questionnaires completed in an
interview or based on self-report, and was the genotyping performed
in house or by a specialized laboratory? Methods of assessment refer to
the specific techniques or questionnaires that were used. If methods
have been published previously, provide a reference. The laboratory
procedures used to measure biomarkers should be described in
sufficient detail for others to be able to perform them and evaluate
the generalizability of prediction models that include them. For less
widely-used assessments, such as questionnaires and procedures that
are developed by the researchers themselves, authors should report
validity and reliability information about the quality of the assess-
ment.53 When different assessments are used at baseline and follow-up
(eg, baseline assessments done by research physicians and follow-up
assessments obtained from medical records of the general practitioner)
these should be explained. When there is an arbitration process for
outcomes (eg, centralized team arbitrating on outcomes based on
information contributed by local investigators in peripheral centers),
this process should be specified.

Item 8: (a) Describe how genetic variants were handled in the analyses.
(b) Explain how other quantitative variables were handled in the
analyses. If applicable, describe which groupings were chosen, and why.

Examples: (Genetic variants) ‘Using these 18 SNPs, we constructed a
genotype score ranging from 0 to 36 on the basis of the number of risk
alleles (see Table 3 for coding of the risk alleles)’. 48

(Genetic variants) ‘For the first analysis of the effects of the
polymorphic DNA variants, we used additive genetic models. In
addition, we tested dominant and recessive alternative models for
the best fit [y]. Multivariate linear regression analyses were used to
test correlations between genotype and phenotype. Non-normally
distributed variables were logtransformed before analysis. The effect
size of a genetic or clinical risk factor on the risk of type 2 diabetes was
calculated from multivariate regression analysis, with adjustment for
age and sex, with the use of Nagelkerke R square. We estimated the
predictive value of a combination of risk alleles (each person could
have 0, 1, or 2 of them, for a total of 22) in 11 genes, which
significantly predicted the risk of diabetes by defining subjects with
more than 12 risk alleles (about 20%) as being at high risk and those
with fewer than 8 risk alleles (about 20%) as being at low risk’. 33

(Other variables) ‘Multivariate unconditional logistic regression
analysis was performed to evaluate the relationships between preva-
lence or progression of AMD and all the genotypes plus various risk
factors, controlling for age (70 years or older versus younger than 70),
sex and education (high school or less versus more than high school),
cigarette smoking (never, past, or current) and body mass index
(BMI), which was calculated as the weight in kilograms divided by
the square of the height in meters (o25, 25–29.9, and 30+)’. 6

Explanation: There are many approaches to data analysis of genetic
variants; thus, specification and clarification of this handling is
particularly relevant. Genetic variants may be entered in regression
analysis separately as dominant or recessive effects for example,54,55

per allele (additive or log-additive) effects,32 or genotype

categories.42,56 Any of these three approaches can be followed depend-
ing on what was the best fitting genetic model for each variant.6–8

Alternatively, genetic variants may be entered combined as risk
scores.33,47,52 Risk scores often simply sum the number of risk alleles
or genotypes (unweighted), or sum their b-coefficients from regres-
sion analyses (weighted). When using risk scores, authors should
explain which of the alleles or genotypes is considered as the risk
variant, as this is not necessarily the less common (minor) variant (see
Table 3). The description of the coding of the genetic variants should
enable other researchers to replicate the analyses for validation or
updating of the risk model.

Quantitative variables can be handled as continuous or be categor-
ized. Transformations may be required when the relationships between
the variables and the outcome are not linear, and these should be
specified. Frequently, quantitative variables are categorized before
inclusion in the analyses. A well-known example is body mass
index, which is categorized as underweight, normal weight, over-
weight and obese. The rationale and thresholds used for categorization
should be explained, particularly when they deviate from commonly
used cut-offs based on clinical or epidemiological studies.

Item 9: Specify the procedure and data used for the derivation of the risk
model. Specify which candidate variables were initially examined or
considered for inclusion in models. Include details of any variable
selection procedures and other model-building issues. Specify the horizon
of risk prediction (eg, 5-year risk).

Examples: (Model derivation) ‘We constructed multivariable propor-
tional-hazards models to examine the association between the genotype
score and the time to the first cardiovascular event, excluding subjects
who had had a previous myocardial infarction or ischemic stroke. We
first confirmed that the proportional-hazards assumption was met. The
hazard ratio for the genotype score as a continuous measure was
estimated in a model adjusting for all 14 available baseline covariates.
Cumulative incidence curves were constructed according to the geno-
type score with the use of Cox regression analysis.’ 47

(Variable selection) ‘Twenty-three candidate genes involved in the
pathogenesis of inflammation and myocardial ischemia-reperfusion
injury were selected a priori based on previous transcription profiling
in humans and animal models, pathway analysis, a review of linkage
and association studies reported in the literature, and expert opinion.
Forty-eight SNPs were subsequently selected in these process-specific
candidate genes, based on literature review, genomic context, and
predictive analyses with an emphasis on functionally important
variants’. 54

(Model building issues) ‘Both univariate and multivariate odds
ratios (ORs) were calculated with a binary-logistic regression model
y to evaluate the relationship between polymorphisms and prevalent
CVD. For that purpose, dummy variables were created using the
homozygous wild-type genotype as reference category. Age and
gender, both demographic variables, were incorporated in both the
univariate as well as in the multivariate linear regression analyses y

Adjustment for potential confounders was performed by incorporat-
ing smoking, alcohol, diabetes mellitus, waist circumference, serum
creatinine, mean systolic and diastolic blood pressure, microalbumi-
nuria and dyslipidaemia into these models. To avoid collinearity, waist
circumference was used instead of waist-to-hip ratio or body mass
index and condensed measures such as diabetes and dyslipidaemia
were used, as defined earlier’. 51

Explanation: Because of the potential for flexibility in the derivation
of the risk model, authors need to clarify why and how they
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constructed the model as they did and which data they used. This
clarification includes a specification of the variables, defined in item 6,
that were initially considered and which procedures were followed for
a final selection (eg, backward deletion or forward inclusion, and the
criteria for deletion and inclusion), if applicable. Clarification also
includes a specification of the study participants included in the
analysis, if different from the total study population, transformations
of the variables, the choice of statistical model (eg, logistic or
Cox proportional hazards models), and the handling of interaction
effects between predictors in the model (see also item 13). The
specification also concerns the rationale for constructing separate
models for subgroups, eg, for different ethnic groups, or including
the stratification variable as a variable or interaction effect in a model
for the total population.

Authors should also specify and explain the horizon of the risk
prediction, when appropriate (eg, in cohort studies, whether the
model predicts, for instance, 5 year or lifetime risk). When more
complicated risk prediction models are developed using statistical
learning methods such as regularized regression or support vector
machines, these should be explained and specified in sufficient detail
that others can implement these models in other data sets. For some
more complex ‘black box’ models (such as random forests) this may
require making a software implementation of the final model avail-
able. The description of the data used should include whether a
selection of the population was used for the derivation of the model,
how this sub-population was selected, and how censored data were
handled in cohort studies.

Some studies aim only to validate and further apply an already
existing model. In this case, it should simply be stated that a previous
model was used with appropriate reference to the previous study or
studies that developed the model along with a succinct description of
its features.

Item 10: Specify the procedure and data used for the validation of the risk
model.

Example: ‘The internal validity of the prediction models was assessed
using bootstrapping techniques. A total of 100 random bootstrap
samples were drawn with replacement from the (total) group of 1337
patients. The discriminative accuracy of the 100 prediction models as
fit on these bootstrap samples was determined for each bootstrap
sample and for the original group (n ¼1,337). This comparison gives
an impression of how ‘overoptimistic’ the model is, ie, how much the
performance of the model would deteriorate when applied to a new
group of similar patients.’ 36

‘Evaluation of model predictive performance using the same dataset
used for fitting the model usually leads to a biased assessment. To
obtain an unbiased assessment of discriminatory power of the multi-
variate regression models, a tenfold cross-validation was used in the
ROC analysis and in the IDI analysis. Tenfold crossvalidation
randomly divides the data into ten (roughly) equal subsets and
repeatedly uses any nine subsets for model fitting and the remaining
subset as validation until each of the ten subsets has been used exactly
once as validation data.’ 57

Explanation: Assessment of the risk model in the same population
as that from which the model was derived generally leads to more
positive conclusions than when the evaluation is conducted in an
independent population.58 Therefore, validation of the risk model,
reassessing the performance of the model in another dataset, is an
essential part of model evaluation,59 especially when models are
developed with the specific intention to apply them in health care.

There are two main types of validation: internal validation in the same
population or external validation in an independent sample. Internal
validation is useful to prevent optimistic assessments, but it does not
inform about the performance of the model in other samples of the
same population.60 Moreover, many methods of standard internal
validation, such as cross-validation, can still give inflated estimates of
classification accuracy, even if properly performed. Authors should
report whether they performed (internal or external) validation,
and describe the procedure of the validation process. For example,
for internal validation, authors should describe what part of the
population was used to derive the risk model and what part was used
for the validation, and whether they, for example, used cross validation
and bootstrapping techniques.60 For external validation, they should
describe the populations that are used for the validation, particularly the
comparability with the population that was used to derive the risk
model. If the model is already validated elsewhere in previous research,
this should also be stated. So far, none of the genetic risk prediction
studies had performed an external validation of the risk model.3

Item 11: Specify how missing data were handled.

Examples: ‘Variables with missing values were hypertension (1%),
smoking (10%), BMI (14%), plasma HDL cholesterol (19%), plasma
LDL cholesterol (20%) and plasma triglycerides (16%). We applied a
multiple imputation method (aregImpute function of the R statistical
package; version 2.5.1; http://www.r-project.org) to impute these
missing values in our Cox proportional hazards models because
imputation decreases bias in the hazard ratios that may occur when
patients with incomplete information are excluded from the analysis.
In a secondary analysis, we used the full data set (n¼2,145) and
multiple imputation to impute both missing values for conventional
risk factors and missing genotype data. This analysis gave discrimi-
native accuracies for the 3 prediction models virtually identical to the
analysis without imputation of missing genotype data [y].’ 36

Explanation: Missing data are inevitable in observational studies.
Authors should specify the percentage of missing values in their data,
indicate whether there are theoretical or empirical grounds that
missingness could be non-random, and specify how missing data
were handled in the analyses. Authors should specify the methods
used to deal with the missing data (eg, complete case analysis,
imputation, reweighting) and the assumptions that underlie this
choice. Assumptions may include the distribution of the data and
whether data were missing completely at random, or related to other
variables, including the outcome of the study.61

Item 12: Specify all measures used for the evaluation of the risk model
including, but not limited to, measures of model fit and predictive ability.

Examples: ‘We calculated odds ratios and 95% confidence intervals
associated with each additional risk allele for each SNP individually
and in the genotype score. Using C statistics y, we evaluated the
discriminatory capability of the models with the genotype score as
compared with the models without the genotype score. We also
evaluated risk reclassification with the use of the genotype score,
according to the method developed by Pencina et al for determining
net reclassification improvement. We assessed model calibration using
the Hosmer–Lemeshow chi-square test. We used categories of geno-
type score to calculate likelihood ratios and posterior probabilities of
diabetes. Statistical analyses were performed with the use of SAS
software, version 8 (SAS Institute). A two-tailed P-value of r0.05 was
considered to indicate statistical significance’.48
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‘Our primary measure of discrimination was the Harrell c-index, a
generalization of the area under the receiver-operating characteristic
curve that allows for censored data. The c-index assesses the ability of
the risk score to rank women who develop incident cardiovascular
disease higher than women who do not. We assessed general calibra-
tion across deciles of predicted risk by using the Hosmer–Lemeshow
goodness-of-fit test to compare the average predicted risk with the
Kaplan–Meier risk estimate within each decile and considered a
chi-square value of 20 or higher (Po0.01) to be poor calibration.
We assessed risk reclassification by sorting the predicted 10-year risk
for each model into 4 categories (o5, 5 to o10, 10 to o20, and
Z20%). We then compared the assigned categories for a pair of
models. For each pair, we calculated the proportion of participants
who were reclassified by the comparison model versus the reference
model; we considered reclassification to be correct if the Kaplan–Meier
risk estimate for the reclassified group was closer to the comparison
category than the reference. We computed the Hosmer–Lemeshow
statistic for the reclassification tables, which assesses agreement
between the Kaplan–Meier risk estimate and predicted risk within the
reclassified categories. We also computed the Net Reclassification Improve-
ment, which compares the shifts in reclassified categories by observed
outcome, and the Integrated Discrimination Improvement, which directly
compares the average difference in predicted risk for women who go on to
develop cardiovascular disease with women who do not for the 2 models,
on the women who were not censored before 8 years’.56

Explanation: A thorough assessment of a risk prediction model
comprises many different aspects, but generally includes at least the
following questions: (1) How well does the model fit the underlying
data?; and (2) What is the predictive ability of the model? Several
measures are available to answer each question, and the methods
section should clearly describe which measures were used to answer
which questions.4,62 Measures of model fit (also referred to as
calibration) include the Hosmer Lemeshow statistic, R2, log-likelihood
and Akaike information criterion (AIC), and measures of predictive
ability (also called discrimination measures) include the area under
the receiver operating characteristic curve (AUC), discrimination slope
and Brier score. These measures can be accompanied by figures and
tables, including calibration plots (eg,60), risk distributions (see
Figure 1), AUC plots (see Figure 2), discrimination plots (eg,63) and
predictiveness curves (eg,64). The description of the methods used
should clarify also what measures of uncertainty are employed (eg,
95% confidence intervals) and specify any tests used to determine the
significance of the findings. When P-values are reported, authors
should indicate what P-value threshold they considered for statistical
significance.

When two risk models are compared and one is an expanded
version of the other, the assessment of the risk models includes the two
questions for each model. Increases in AUC or in discrimination slope
(called integrated discrimination improvement, IDI) provide simple
ways to assess improvement of one model over the other.58 Recent
studies have also assessed whether the improvement of risk models
also reclassifies people into different risk categories.2,65 These measures
of reclassification, such as the percentage of total reclassification and
net reclassification improvement,4,66 are calculated from a reclassifica-
tion table (Table 4). When risk categories are used (eg, for the
calculation of reclassification measures), the rationale for the cut-off
values should be presented with either appropriate reference to
previous work showing that this is a standard choice, or appropriate
justification for the choice of cut-offs made by the authors. When
several different cut-off categorizations have been studied, all of them
should be reported.

Item 13: Describe all subgroups, interactions and exploratory analyses
that were examined

Examples: (Subgroups) ‘[In introduction:] However, it remains
unknown whether all these genetic and environmental factors act

Figure 1 Example: distribution of the number of disease risk alleles among

sporadic long-lived participants of the Leiden 85 Plus Study and

Netherlands twin register controls.94

Figure 2 Example: ROC curve analysis of adding genetic variables to clinical

risk factors for the prediction of age-related macular degeneration. Area
under the receiver operating characteristic curve for the age-related macular

degeneration (AMD). The risk models were constructed from published

genotype/exposure frequencies and odds ratios,6 using a simulation method

that has been described previously.95 The clinical prediction model was

based on age, sex, education, baseline AMD grade, smoking, body mass

index and treatment. The added genetic factors were six single nucleotide

polymorphisms. The curves indicate the sensitivity and 1-specificity for every

possible cut-off value of predicted risks. The diagonal line indicates a

hypothetical random predictor, which AUC equals 0.50.
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independently or jointly and to what extent they as a group can predict
the occurrence of AMD or progression to advanced AMD from early
and intermediate stages. Such information may be useful for screening
those at high risk due to a positive family history or having signs of
early or intermediate disease, among whom some progress to advanced
stages of AMD with visual loss. y [In Methods:] Individuals with
advanced AMD were compared to the control group of persons with no
AMD, and progressors were compared to non-progressors with regard
to genotype and risk factor data’. 6

(Interactions) ‘Multiplicative interactions were tested for each pair
of [all 6] SNPs by including both main effects and an interaction term
(a product of two main effects) in a logistic regression model’. 67

Explanation: For the evaluation of the predictive performance there
might be subgroups in which the risk model performs better than in
the initial study population, and there might be genetic variants that
jointly have a larger impact on disease risk. The large number of
possible analyses that include subgroups or interactions, however,
increases the likelihood of finding at least some statistically significant
effect by chance.68 Authors should therefore not only clarify all
additional subgroup analyses they performed, but also indicate
whether these were planned based on a priori clinical or epidemiolo-
gical evidence, or arose in an exploratory manner. Similarly, authors
should also explain whether interaction effects were considered and, if
so, which ones and why, and how the selection in the final model was
done (see item 9). These descriptions should include any methods
used to prevent over interpretation of the results, for example,
methods that adjust the P-value thresholds to adjust for multiple
testing. Planned analyses of subgroups and interactions should logi-
cally follow from the introduction (see item 3); exploratory analyses
can be introduced in the methods.

RESULTS

Item 14: Report the numbers of individuals at each stage of the study.
Give reasons for non-participation at each stage. Report the number of
participants not genotyped, and reasons why they were not genotyped.

Examples: ‘Among 3648 identified subjects with prostate cancer, 3161
(87%) agreed to participate. DNA samples from blood, tumor–node–
metastasis (TNM) stage, Gleason grade (as determined by biopsy),
and levels of prostate-specific antigen (PSA) at diagnosis were avail-
able for 2893 subjects (92%)’.67

‘[In Methods:] In short, the Rotterdam Study is a prospective,
population based, cohort study among 7983 inhabitants of a Rotter-
dam suburb, designed to investigate determinants of chronic diseases
y [In Results:] A total of 6544 participants were successfully
genotyped for at least one polymorphism. Complete genotype infor-
mation on all polymorphisms was present in 5297 subjects (of whom
490 were incident cases and 545 were prevalent cases)’.42

Explanation: The study report should clearly present the number of
participants that were eligible for the study and how many were
included in the final analyses. The authors should report the main
reasons for non-participation, so that the reader can judge the extent
to which the population available for the analyses is a representative
selection of those who were eligible. Any evidence for missingness not
completely at random should be presented.69 A flowchart can help
clarify complex datasets, and is particularly useful for follow-up
studies. A flowchart presents the exact numbers and the structure of
the study (eg,29). When a flowchart of the study has been previously
published and the flow of participants is the same, a reference to the
earlier publication can save space. For cohort studies, descriptive
information about the follow-up time, eg, in terms of the range, median
and interquartile range of follow-up duration, should be provided.

Frequently, studies do not have complete genotype information for
all participants for many reasons, including budget issues, unavail-
ability of DNA material and genotyping quality issues. As some
reasons might impact the validity of the study, the number of
participants that were not genotyped and the reasons should be
reported. An example is survivor bias, which might occur when
genotyping is performed on DNA obtained in one of the follow-up
assessments of a cohort study (eg,52).

Item 15: Report demographic and clinical characteristics of the study
population, including risk factors used in the risk modeling.

Examples: ‘The mean age of cases was similar to that of controls, 59.9
and 59.6 years, respectively. In comparison with controls, a higher
proportion of cases had a first-degree family history of prostate
cancer (see Table 5). The majority of cases had serum PSA values of
4.0–9.9 ng/ml at diagnosis, localized stage disease and Gleason scores
of 5 or 6; most were treated with radical prostatectomy’. 31

Explanation: The authors should describe their populations in as
much detail as is needed for the readers to judge the generalizability of

Table 4 Example table: net reclassification improvement based on addition of gene count score to Framingham offspring risk score

Framingham offspring risk score plus gene count score Reclassified

Framingham offspring risk score o5% 5–10% 10–15% 415% Increased risk Decreased risk

Net correctly

reclassified

People without diabetes during follow-up

o5% 2295 48 0 0

5–10% 36 482 43 0 121 64 �1.7%

10–15% 0 19 181 30

415% 0 0 9 181

People with diabetes during follow-up

o5% 52 8 0 0

5–10% 2 37 3 0 14 11 1.5%

10–15% 0 4 24 3

415% 0 0 5 64

Net reclassification improvement �0.2% (95% CI �5.1 to +4.7); P¼0.94.

Adapted from ref. 52.
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the results. This description should include relevant demographic
information, such as age, sex and ethnicity, and information on other
risk factors and relevant pathology, for example, early disease char-
acteristics and comorbidity. Continuous variables are preferably
described by means and SD, and when their distributions are skewed,
by medians and inter-quartile ranges. Variables that have a small
number of response categories are preferably presented as percentages
and numbers. This descriptive information is preferably presented
separately for those people with and without the outcome of interest.

Item 16: Report unadjusted associations between the variables in the risk
model(s) and the outcome. Report adjusted estimates and their precision
from the full risk model(s) for each variable.

Examples: ‘Table 6 displays the unadjusted association between
demographic, environmental, and genetic variables and incident
advanced AMD as well as the sample sizes within the groups. All
factors except gender were related to progression. Baseline macular
status was strongly related to progression. Both modifiable factors
(smoking and BMI) and genetic variants were also associated with
worsening of macular disease over time. The antioxidant/mineral
treatment group had a lower rate of progression. y Table 7 displays
the multivariate adjusted ORs for incident advanced AMD and shows

that, after adjustment for genotypes, older age, smoking, and higher
BMI were related to a higher rate of progression. Baseline grade was a
strong predictor of incident advanced AMD, and antioxidant–mineral
treatment was protective. The two CFH variants each independently
increased risk of progression about two- to three-fold, with similar
increased risk for C3, comparing the homozygous risk and nonrisk
genotypes. Variants in the two complement genes C2 and CFB
reduced risk, although the association with CFB was not significant
for progression to incident advanced AMD. y’ 6

Explanation: To understand which risk factors have contributed to
the distribution in risk predictions, authors should report model
estimates for each, for example, regression coefficients, such as odds
ratios or hazard ratios, and confidence intervals from each full model
considered for all risk factors included. Adjusted estimates should be
presented next to the unadjusted estimates, so that readers are able to
judge the extent to which the findings change by the inclusion of other
risk factors in the model. This is particularly relevant for models that
combine genetic and non-genetic risk factors, because non-genetic risk
factors can be intermediate factors in the biological pathway 41 and
many non-genetic risk factors have complex correlation patterns.70,71

Note that several studies have presented adjusted effect sizes for
genetic variants (eg, 42,48,51) that were adjusted only for non-genetic
risk factors. This is not the same as effect sizes for genetic variants
from the full model, where coefficients are additionally adjusted for
the other genetic variants as well. When regression methods were used
for the prediction of risks, the intercept of the full model should be
reported to facilitate future replication and validation of the risk
model (see Table 7). For complex models, where exhaustive specifica-
tion of parameter estimates is not feasible, authors should provide
software implementations of the risk prediction algorithm (see item 24).

Item 17: Report distributions of predicted risks and/or risk scores.

Examples: The distribution of predicted risks or risk scores is best
presented in a figure, see Figure 1.45

Explanation: Distributions of predicted risks inform the reader
about the spread of risks in the population, as well as the frequencies
at the higher and lower ends of the distribution. Preferably the report
should present separate distributions for participants with and those
without the outcome of interest, as this illustrates the discriminative
accuracy of the risk model. The more the two distributions disperse,
the higher the AUC. Authors should label the highest and lowest
category by their actual range at least once. For example, Figure 1
shows that the lowest category is labeled 10-11 risk alleles, rather than
0-11, which informs readers that none of the participants had 0 to 9
risk alleles.

Item 18: Report measures of model fit and predictive ability, and any
other performance measures, if pertinent.

Examples: ‘We also evaluated whether genetic risk factors would
further increase the risk imposed by an increase in the BMI or a
decrease in the disposition index. There was a stepwise increase in
diabetes risk with an increasing number of risk alleles and increasing
quartiles of BMI (Figure [not shown]) or a disposition index
above or below the median. Therefore, carriers of more than 12 risk
alleles who were in the highest quartile of BMI (263 of 826 subjects vs
45 of 874 subjects) or who had a low disposition index (58 of 153
subjects vs 17 of 168 subjects) had an odds ratio for type 2 diabetes of
8.0 (95% CI, 5.71–11.19; P¼9.1�10–34) and 5.8 (95% CI, 3.18–10.61,
P¼1.1�10–8), respectively (Figure [not shown]). The C statistics had

Table 5 Example table: demographic and clinical characteristics of

study participants with and without prostate cancer

Cases Controls

Characteristic N¼1308 % N¼1266 %

Age (years)

35–49 102 7.8 107 8.5

50–54 188 14.4 178 14.1

55–59 325 24.9 343 27.1

60–64 395 30.2 334 26.4

65–69 153 11.7 160 12.6

70–74 145 11.1 144 11.4

First degree family history of prostate cancer

No 1025 78.4 1125 88.9

Yes 283 21.6 141 11.1

PSA at diagnosis or interview (ng/ml)

0–3.9 178 13.6 351 27.7

4.0–9.9 721 55.1 33 2.6

10.0–19.9 190 14.5 6 0.5

Z20.0 118 9.0 0 —

Gleason score

2–4 66 5.1

5–6 681 52.2

7¼3+4 355 27.2

7¼4+3 76 5.8

8–10 126 9.7

Primary treatment

Radical prostatectomy 770 58.9

Radiation 352 26.9

Androgen deprivation therapy 60 4.6

Other treatment 11 0.8

Active surveillance 115 8.8

Adapted from ref. 31.
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minimal yet significant improvement after the addition of data from
the genotyped DNA variants to the clinical model (from 0.74 to 0.75,
P¼1.0�10–4) (Supplementary Table [not shown]). y we also
reclassified subjects into three risk categories (0 to r10%, 410 to
r20% and 420%) using the net-reclassification-improvement
method (Supplementary Table [not shown]). By adding genetic
factors to clinical factors, we could reclassify 9% of the MPP
subjects (P¼2.5�10–5) and 20% of the Botnia subjects (P¼0.05) to
a higher risk category. Also, the use of the integrated-discrimination
improvement method, which did not require predefined risk
categories, significantly improved the prediction of future diabetes
in both the MPP subjects (P¼3.7�10–14) and the Botnia subjects
(P¼0.001)’.33

Explanation: All measures of model performance that are reported
in the Results section should be described in the Methods section (see
item 12), so that it is clear which measure is assessed to answer which
research question. As described in item 12, assessment of the perfor-
mance of the genetic risk prediction model should include at least
measures of model fit and predictive ability. For measures of interest,
confidence intervals or other pertinent measures of uncertainty for the
estimated values should be reported, wherever appropriate.

Item 19: Report any validation of the risk model(s).

Examples: (Internal validation) ‘The epidemiologic-genetic model
fitted our data well with AUC of 0.80 (95% CI, 0.77–0.82), 0.81
(95% CI, 0.77–0.85), and 0.80 (95% CI, 0.76–0.83) for the combined,
training, and validation data sets, respectively (Table [not shown]). y
The leave one out validation algorithm yielded an average
prediction error rate of 28.0, 27.8 and 27.9% for patient cases,
controls, and all samples, indicating relatively high discriminatory
prediction accuracy of the model’.37

(External validation) ‘We used independent GWAS samples to
replicate the polygenic component, to examine whether this compo-
nent is shared with bipolar disorder, and to demonstrate specificity by
considering non-psychiatric diseases. We used the entire International
Schizophrenia Consortium (ISC) for the discovery sample [y]. The
ISC-derived score was highly associated with disease in both European
schizophrenia samples (Fig (not shown))’.72

Explanation: Essentially, the measures that need to be presented for
the validation analyses are the same as reported for the assessment of
the performance of the model in the derivation population (see items
12 and 18). If, for reasons of space, authors have to choose between
presenting detailed assessment for the derivation or validation data,
they should choose to report the validation analyses in more detail.

Item 20: Present results of any subgroup, interaction or exploratory
analyses, whenever pertinent.

Examples: ‘Finally we estimated the two-way interaction between each
combination of the 19 variants (171 combinations) (Supplementary

Table 6 Example table: descriptive associations between

demographic, environmental and genetic variables and progression to

advanced age-related macular degeneration

Progressors,

n (%)

Non-progressors,

n (%) OR (95% CI) P

Total patients 279 1167

Age (years)

o70 137 (49) 743 (64) 1.0

70+ 142 (51) 424 (36) 1.8 (1.4–2.4) o0.001

Sex

Female 163 (58) 694 (59) 1.0 0.74

Male 116 (42) 473 (41) 1.0 (0.8–1.4)

Education

rHigh school 119 (43) 383 (33) 1.0 0.002

4High school 160 (57) 784 (67) 0.7 (0.5–0.9)

Baseline AMD grades

2 8 (3) 446 (38) 1.0

3 161 (58) 566 (48) 15.9 (7.7–32.6) o0.001

4 110 (39) 155 (13) 39.6 (18.9–83.0)

Smoking

Never 110 (39) 557 (48) 1.0

Past 137 (49) 564 (48) 1.2 (0.9–1.6) 0.14

Current 32 (11) 46 (4) 3.5 (2.1–5.8) o0.001

BMI

o25 69 (25) 416 (36) 1.0

25–29 130 (47) 484 (41) 1.6 (1.2–2.2) 0.003

30+ 80 (29) 267 (23) 1.8 (1.3–2.6) 0.001

Treatment group

Placebo 74 (27) 264 (23) 1.0

Antioxidants 77 (28) 295 (25) 0.9 (0.7–1.3) 0.70

Zinc 67 (24) 294 (25) 0.8 (0.6–1.2) 0.27

Antioxidants and zinc 61 (22) 314 (27) 0.7 (0.5–1.0) 0.056

rs1061170

TT 39 (14) 366 (31) 1.0

CT 116 (42) 521 (45) 2.1 (1.4–3.1)

CC 124 (44) 280 (24) 4.1 (2.8–6.1) o0.001

rs10490924

GG 67 (24) 612 (52) 1.0

GT 138 (49) 446 (38) 2.8 (2.1–3.9) o0.001

TT 74 (27) 109 (9) 6.2 (4.2–9.1)

rs1410996

TT 8 (3) 158 (14) 1.0

CT 74 (27) 472 (40) 3.1 (1.5–6.6) o0.001

CC 197 (71) 537 (46) 7.2 (3.5–15.0)

rs9332739

GG 271 (97) 1075 (92) 1.0

CG/CC 8 (3) 92 (8) 0.3 (0.2–0.7) 0.005

rs641153

CC 256 (92) 1023 (88) 1.0

CT/TT 23 (8) 143 (12) 0.6 (0.4–1.0) 0.06

Table 6 (Continued )

Progressors,

n (%)

Non-progressors,

n (%) OR (95% CI) P

rs2230199

CC 124 (44) 652 (56) 1.0

CG 130 (47) 456 (39) 1.5 (1.1–2.0)

GG 25 (9) 59 (5) 2.2 (1.3–3.7) o0.001

Adapted from ref. 6.
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Table [not shown]) and the result demonstrated few, probably
spurious, associations (Po0.05). As none of the associations was
significant after Bonferroni correction we believe that an additive
model between each variant is acceptable. Additionally, we calculated
the AUC under an ROC curve in which a model including all variants
(additive) is compared with a model including a two-way interaction
term in addition to the variants (interaction). The results showed that
if interaction is included an AUC of 0.56 is reached, which indicates
reduced discriminatory value (Supplementary Table [not shown])’.30

‘The predictive accuracy of these 4-gene genotypes was not
significantly different in study participants in the lowest, middle, or
top tertile of conventional risk factor score [0.65 (0.55–0.75), 0.63
(0.55–0.72), and 0.60 (0.53–0.67), respectively; P¼0.66]. Adding
APOE genotype alone significantly improved the AUC [0.68
(0.64–0.72); Po0.01 vs conventional risk factors only], but none
of the other genotypes singly or in pairwise combinations did so
(see Table [not shown])’.55

Explanation: In the presentation of subgroups, it should be clear,
which findings follow from pre-specified hypotheses and which follow
from exploration of the data. This distinction is particularly important
for the discussion, as exploratory analyses might lead to incidental
findings that need more cautious interpretation and replication.73

DISCUSSION

Item 21: Discuss limitations and assumptions of the study, particularly
those concerning study design, selection of participants, measurements
and analyses, and discuss their impact on the results of the study.

Examples: ‘One of the limitations of our study is that the 18 SNPs we
included are probably insufficient to account for the familial risk of
diabetes. They account for a minority of diabetes heritability, and the
SNP array platforms from which they were chosen capture only
approximately 80% of common variants in Europeans. y

Our study has other limitations. There were few significant associa-
tions between individual risk alleles and diabetes in the Framingham
Offspring Study cohort, but this finding was expected, given that
alleles of small effect were tested in a community-based sample of
modest size, and the aggregate set of 18 SNPs was predictive of new
cases of diabetes. The participants in the Framingham Offspring Study
are essentially all of European ancestry; allelic variation may require
that different SNPs be used to generate a genotype score in different
ancestry groups. Our genotype score gave all alleles the same weight;
this may not be a true reflection of the biologic basis of type 2
diabetes. We considered the marginal value of the genotype score after

Table 7 Example table: multivariate association between

demographic, environmental and genetic risk factors and

progression to advanced age-related macular degeneration (AMD)

Regression coefficient (bi) OR (95% CI) a P

Intercept (a) �5.780

Age (years)

r70 0 1.0

470 0.4116 1.5 (1.1–2.0) 0.008

Sex

Female 0 1.0

Male 0.0688 1.1 (0.8–1.5) 0.68

Education

rHigh school 0 1.0

4High school �0.1280 0.9 (0.6–1.2) 0.42

Baseline grade

2 0 1.0

3 2.3944 11.0 (5.3–22.8) o0.001

4 2.9521 19.1 (8.9–41.2) o0.001

Smoking

Never 0 1.0

Past 0.1211 1.1 (0.8–1.6) 0.47

Current 1.1261 3.1 (1.7–5.6) o0.001

BMI

o25 0 1.0

25–29 0.5170 1.7 (1.2–2.4) 0.006

30+ 0.4754 1.6 (1.1–2.4) 0.024

Treatment group

Placebo 0 1.0

Antioxidants �0.1299 0.9 (0.6–1.3) 0.54

Zinc �0.3897 0.7 (0.4–1.0) 0.075

Antioxidants and zinc �0.4973 0.6 (0.4–0.9) 0.023

rs1061170

TT 0 1.0

CT 0.2644 1.3 (0.8–2.1) 0.29

CC 0.6778 2.0 (1.1–3.5) 0.019

P trend 0.014

rs10490924

GG 0 1.00

GT 0.8396 2.3 (1.6–3.3) o0.001

TT 1.3837 4.0 (2.6–6.1) o0.001

P trend o0.001

rs1410996

TT 0 1.0

CT 0.5251 1.7 (0.7–4.0) 0.23

CC 0.8606 2.4 (1.0–5.8) 0.061

P trend 0.029

rs9332739

GG 0 1.0

CG/CC �1.0510 0.4 (0.2–0.8) 0.010

rs641153

CC 0 1.0

Table 7 (Continued )

Regression coefficient (bi) OR (95% CI) a P

CT or TT �0.2147 0.8 (0.5–1.4) 0.42

rs2230199

CC 0 1.0

CG 0.3679 1.4 (1.1–2.0) 0.022

GG 0.5970 1.8 (1.0–3.2) 0.044

P trend 0.006

Adapted from ref. 6.
aORs adjusted for age (o70, Z70), sex, education (rhigh school, 4high school), smoking
(never, past, current), baseline AMD grade, BMI (o25, 25–29, 30+) and treatment groups
(placebo, antioxidants, zinc and antioxidants plus zinc), and all six genetic variants and
associated genotypes as listed in the table. Calculation of the AMD progression risk
Score¼a+biXi, where i refers to each of the variables listed.
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accounting for only phenotypic risk factors, without consideration
of behavioral risk factors for diabetes. We expect that accounting
for unhealthful behaviors associated with the risk of diabetes would
only further diminish the discriminatory capacity of a genotype
score. However, persons with relatively less healthful lifestyle behaviors
might be more susceptible to genetic risk than those with
more healthful behaviors. Whether the genotype score would have
value in predicting the risk of diabetes in specific subgroups that
have an elevated risk on the basis of poor health habits remains to
be tested.’ 48

Explanation: The interpretation of the study should take proper
account of the results in light of all analyses that were performed.
Caution in the interpretation is warranted when there was consider-
able opportunity for flexibility in the analyses, for example, when
arbitrary categories of predicted risks were considered or when many
subgroup analyses were done. Most studies avoid a comprehensive
discussion of limitations 74 and many authors admit that they fear that
discussion of limitations might make their paper less attractive for
publication.75 However, this is not the case.76 A discussion of the
limitations of the study should help the reader in interpreting the
validity of the findings. The description of the limitations should
include not only the sources of potential bias and confounding that
might have affected the results, but also the direction and magnitude
of their effect.29 An informative discussion addresses issues in the
design and analyses of the study that might lead to alternative
interpretations of the data than the one presented in the paper.
These can refer to issues that directly influence the results, but also
to issues that lead to different inferences drawn about things, such as
the health care relevance of the findings. Examples include, character-
istics of the study population, selection of participants, procedures and
measures used in data collection, length of follow-up, unaccounted
multiplicity of analyses and missing data. Any possible threats to the
validity of the results should be addressed in the discussion.

Item 22: Give an overall interpretation of results considering objectives,
limitations, multiplicity of analyses, results from similar studies and other
relevant evidence.

Examples: ‘In this study, we show that, at a population level,
accumulation of several susceptibility genes for diabetes is accompa-
nied by a substantial increase in the risk of having the disease. This was
particularly apparent, in terms of prevalence, among obese indivi-
duals. We also show that the weighted genetic score added some
information that was not captured by clinical variables, including
family history of diabetes. The present data also show that weighting
the genetic score with the reported effect of risk alleles provided more
predictive value than an unweighted genetic score generated by
counting the number of risk alleles. The clinical usefulness of the
score, however, remains to be demonstrated.

The present population-based cross-sectional study is in line with
two very recently published prospective studies. In both of these
studies, a high unweighted genetic score was associated with a marked
increase in the incidence of diabetes. However, the predictive value of
this score beyond clinical variables was modest’.57

Explanation: The interpretation of the study should compare the
study with that of others. Other studies can include genetic prediction
studies on the same outcome, but also studies that have investigated
non-genetic or combined models. This discussion should compare not
only the main results, but also address whether the design and conduct
of the studies were comparable. Specific attention should be given to
the genetic variants included in the risk models, because their number

increases with the rapid developments in gene discovery. Ideally the
discussion of other studies should be systematic and any relevant
systematic reviews and meta-analyses might be helpful to employ in
this setting.77 It would be worthwhile discussing whether previous
evidence is considered to be subject to selective reporting, which
might be quite prevalent in prognostic research.10

Item 23: Discuss the generalizability and, if pertinent, the health care
relevance of the study results.

Examples: ‘Although prospective, the Whitehall II study is workplace
based and therefore not necessarily representative of the general
population. However, the excellent performance in Whitehall II of
the non-genetic risk functions for type 2 diabetes, both of which were
developed and validated in general populations, suggests that this is
unlikely to bias our conclusions substantially. Moreover, our findings
are consistent with those of prospective studies set in representative
general populations. Our findings are also not generalizable to people
of non-European ancestry, who we excluded from this analysis.
Although DNA was collected some time after baseline, which could
have introduced a survivor bias, we think that this is unlikely to have
affected our results given the modest effect of the alleles we studied on
risk of diabetes and the long natural history of the development of the
life threatening complications of diabetes. Phenotype based risk
models (the Framingham offspring and Cambridge risk scores)
provided greater discrimination for type 2 diabetes than did models
based on 20 common independently inherited alleles associated with
risk of type 2 diabetes. The addition of 20 common genotypes
associated with modest risk to phenotype based risk models produced
only minimal improvement in the accuracy of risk estimation assessed
by recalibration and at best a minor net reclassification improvement.
The major translational application of the currently known common,
small effect genetic variants influencing susceptibility to type 2
diabetes is likely to come from the insight they provide on causes of
disease and potential therapeutic targets’.52

Explanation: Generalizability refers to the external validity or
applicability of the risk model in other populations than the one
used for the development of the model. Discussion of generalizability
should include reference to the representativeness of the study
population in comparison with the (future) target population for
testing. Differences in key demographic variables, such as in sex, age
and important risk factors, should be mentioned.

Although most studies currently do not have direct relevance to
health care or disease prevention,41 genetic risk prediction studies
sometimes are interpreted with too much optimism 60,78 and expecta-
tions run high.79 One of the reasons is that clinical or public health
relevance is concluded from statistical significance. However, in large-
scale population-based studies, minor increases in predictive perfor-
mance or low percentages of reclassification could be statistically
significant without being clinically relevant. When interpreting the
clinical relevance, authors should consider: (1) the efforts it takes to
obtain the additional genotype information, (2) the impact genetic
results might have on medical or public health decision making and
on expected health benefits, and finally, (3) the extent to which these
benefits will outweigh the potential harms related to genetic testing
and be affordable. A consideration of what information is needed
might help prevent overoptimistic interpretations. Describe what
evidence is still needed before health care implementation can be
considered, for example by referencing the stage of translational
research the study fits in.1 The latter also includes a reflection on
whether the population investigated is an appropriate representation
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of the target population and whether the risk period (eg, 5-year risk)
and the outcome are clinically relevant.

SUPPLEMENTARY INFORMATION

Item 24: State whether databases for the analyzed data, risk models and/
or protocols are or will become publicly available and if so, how they can
be accessed.

Explanation: With the advances in genomics research, data and
analytic plans of genetic risk prediction studies become increasingly
complex. So far, most empirical studies have used logistic or Cox
proportional hazards regression analyses,3 but other methods includ-
ing support vector machine learning, fuzzy logic, neural networks and
classification trees have been applied.80,81 There is increasing apprecia-
tion that it is important for these complex and extensive data to be
publicly available. This allows scrutiny of the process and the results by
other investigators, and appropriate use of these data for further
analyses, eg, validation studies and meta-analyses. For some ‘omics’
fields, public availability of data and protocols are a prerequisite for
publication in specific journals, for example, all gene expression
profiling studies need to do this as a prerequisite for publication in
Nature Genetics (http://www.nature.com/authors/editorial_policies/
availability.html), although full deposition of data and protocols
has not yet been achieved.82 For studies of gene-phenotype
associations, initiatives such as the Database of Genotype and
Phenotype (dbGAP) and the Genetic Association Information
Network (GAIN) are promoting the public data availability of
genotype-phenotype data.83,84

FUNDING

Item 25: Give the source of funding and the role of the funders for the
present study. State whether there are any conflicts of interest.

Examples: ‘This study was supported by grants from the National
Heart, Lung and Blood Institute and National Cancer Institute,
National Institutes of Health; the Donald W. Reynolds Foundation;
and the Leducq Foundation. Additional support for DNA extraction,
reagents and data analysis was provided by Roche Diagnostics
and Amgen. Genotyping of the 9p21.3 variant was performed by
Celera. The funding sources had no role in the design, conduct, or
reporting of this study or the decision to submit the manuscript for
publication’.56

Explanation: Authors should disclose any funding they received to
carry out the study, and state what the role of the funding agency/
agencies was in the design, conduct and analyses of the study. Given
the potential commercial interests in predictive tests that could be
used in large populations of diseased and healthy people, both inside
and outside health care practice, any financial or other conflicts of
interest should be transparent. Conflicts of interest can impact all
stages of the research, including the study design, choice of exposures,
outcomes, statistical methods and selective interpretation and pub-
lication of results.29,85

CONCLUDING REMARKS AND FUTURE DIRECTIONS

High quality reporting reveals the strengths and weaknesses of
empirical studies, facilitates the interpretation of the scientific and
health care relevance of the results, in particular within the framework
of systematic reviews and meta-analyses, and helps build a solid
evidence base for moving genomic discoveries into applications in
health care practice. The GRIPS guidelines were developed to improve
the transparency, quality and completeness of the reporting of genetic

risk prediction studies. GRIPS does not prescribe how studies should
be designed, conducted and analyzed, and therefore, the guidelines
should not be used to assess the quality of empirical studies.86 The
guidelines should only be used to check whether all essential items are
adequately reported.

The GRIPS guidelines were developed by a multidisciplinary group
of 25 experts, seven of whom were also part of the STREGA
initiative.17 Taking advantage of their earlier work, we organized the
GRIPS workshop and manuscript writing along the same lines. The
strategy we followed in developing our guidelines is consistent with
the recommendations proposed in a recent paper on how to develop
health research reporting guidelines,87 which was published after our
workshop. In short, we had reviewed genetic risk prediction studies
and identified the need for guidance,3,41 prepared a proposal for
GRIPS on the basis of previous guidelines for other studies,17–19

organized a workshop to discuss each item of the proposal in-
depth, had several consultation rounds for the writing of this paper
and pilot-tested the checklist.

Guidelines have been developed for a wide range of empirical and
review studies,15 but it should be acknowledged that their uptake and
impact on reporting has not been extensively investigated. Several
studies have shown that reporting guidelines do improve the reporting
of studies, but there is still room for improvement.88,89 For example, a
comparison of randomized controlled trials published in 2000 and in
2006 showed that more recommended items were addressed in the
papers, but that reporting remained suboptimal.89 Fortunately, correct
reporting of items was more frequent among papers published in
journals that endorsed the CONSORT guidelines compared with
journals that did not. We agree with the researchers from the
EQUATOR project that ‘ [reporting guidelines] improve the accuracy
and transparency of publications, thus facilitating easier and more
reliable appraisal of quality and relevance’.90

The methodology for designing and assessing genetic risk predic-
tion models is still developing. For example, newer measures of
reclassification were first introduced in 2007 91 and several alternative
reclassification measures have been proposed,4 which measures to
apply and when to use measures of reclassification is still subject to
ongoing evaluation and discussion.65 Furthermore, alternative strate-
gies for constructing risk models other than simple regression analyses
are being explored, and these might add increasing complexity to the
reporting. In formulating the items of the GRIPS Statement, these
methodological advances were anticipated. It was for this reason that
the GRIPS Statement recommends how a study should be reported
and not how a study should be conducted or analyzed. Therefore,
methodological and analytical developments will not immediately
impact the validity and relevance of the items, but the GRIPS
statement will be updated when this is warranted by essential new
developments in the construction and evaluation of genetic risk
models.
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