
DOI: 10.1007/s00145-005-0307-3

J. Cryptology (2006) 19: 169–209

© 2005 International Association for
Cryptologic Research

Strengthening Zero-Knowledge
Protocols Using Signatures∗

Juan A. Garay
Bell Labs – Lucent Technologies,

600 Mountain Avenue,
Murray Hill, NJ 07974, U.S.A.
garay@research.bell-labs.com

Philip MacKenzie
DoCoMo USA Laboratories,
181 Metro Drive, Suite 300,
San Jose, CA 95110, U.S.A.

philmac@docomolabs-usa.com

Ke Yang
Google Inc.,

1600 Amphitheatre Parkway,
Mountain View, CA 94043, U.S.A.

yangke@google.com

Communicated by Ronald Cramer

Received 27 February 2003 and revised 14 March 2005
Online publication 19 December 2005

Abstract. Recently there has been an interest in zero-knowledge protocols with
stronger properties, such as concurrency, simulation soundness, non-malleability, and
universal composability. In this paper we show a novel technique to convert a large
class of existing honest-verifier zero-knowledge protocols into ones with these stronger
properties in the common reference string model. More precisely, our technique utilizes
a signature scheme existentially unforgeable against adaptive chosen-message attacks,
and transforms any �-protocol (which is honest-verifier zero-knowledge) into a sim-
ulation sound concurrent zero-knowledge protocol. We also introduce �-protocols, a
variant of �-protocols for which our technique further achieves the properties of non-
malleability and/or universal composability.

In addition to its conceptual simplicity, a main advantage of this new technique
over previous ones is that it avoids the Cook–Levin theorem, which tends to be rather

∗ A preliminary version of this paper appeared in Eurocrypt 2003. The work of Philip MacKenzie was
primarily performed at Bell Labs. This research by Ke Yang was done at Bell Labs and Carnegie Mellon
University, and was also partially sponsored by DIMACS, and by National Science Foundation (NSF) Grants
CCR-0122581 and CCR-0085982.

169

170 J. A. Garay, P. MacKenzie, and K. Yang

inefficient. Indeed, our technique allows for very efficient instantiation based on the
security of some efficient signature schemes and standard number-theoretic assump-
tions. For instance, one instantiation of our technique yields a universally composable
zero-knowledge protocol under the Strong RSA assumption, incurring an overhead of
a small constant number of exponentiations, plus the generation of two signatures.

Key words. Zero knowledge, Signatures, Simulation soundness, Non-malleability.

1. Introduction

The concept of a zero-knowledge (ZK) proof, as defined by Goldwasser et al. [34], has
become a fundamental tool in cryptography. Informally, if a prover proves a statement
to a verifier in ZK, then the verifier gains no information except for being convinced of
the veracity of that statement. In particular, whatever the verifier could do after the ZK
proof, it could have done before the ZK proof, in some sense because it can “simulate”
the proof itself. In early work, Goldreich et al. [33] showed that any NP statement could
be proven in (computational) ZK. In another early work, Goldreich et al. [32] showed
the usefulness of ZK proofs in multiparty protocols, in particular, in having the parties
prove the correctness of their computations. There has been a great deal of work since
then on all properties of ZK proofs. Here we focus on a few such properties, namely,
concurrency, non-malleability, simulation soundness, and universal composability, with
our main goal being to construct efficient protocols that achieve these properties.

The problem of concurrency was first discussed by Dwork et al. [23]. (The more con-
strained problem of parallelism was discussed previously by Goldreich and Krawczyk
[31].) Informally, the problem arises when many verifiers are interacting with a prover.
An adversary controlling all the verifiers may coordinate the timing of their messages so
that a simulator would not be able to simulate the execution of the prover in polynomial
time. Canetti et al. [12] showed that without additional assumptions, such as timing
constraints or a common reference string, logarithmic rounds are necessary to achieve
concurrent (black-box) ZK. Kilian and Petrank [40] showed that polylogarithmic rounds
suffice, and later Prabhakaran et al. [51] showed that logarithmic rounds suffice. On
the other hand, Damgård [18] showed that concurrent, constant-round ZK protocols
can be achieved in the common reference string model. Furthermore, Barak [1] showed
that by using a non-black-box simulator, constant-round, concurrent protocols can be
constructed in the plain model.1

The problem of malleability was first pointed out by Dolev et al. [22]. Roughly speak-
ing, the problem is that an adversary may be able to play a “man-in-the-middle” attack
on a ZK protocol, playing the role of the verifier in a first protocol, and that of the
prover in a second protocol, and such that using information from the first protocol he
is able to prove something in the second protocol that he could not prove without that
information. A ZK protocol that does not suffer from this problem is said to achieve
one-time non-malleability (since the adversary only interacts with one prover). Dolev
et al. give a construction of a one-time non-malleable ZK protocol that uses a polylog-

1 His construction, however, only admits bounded concurrency, meaning that the number of sessions that the
protocol can execute concurrently and still retain its ZK property is at most a fixed polynomial in the security
parameter.

Strengthening Zero-Knowledge Protocols Using Signatures 171

arithmic number of communication rounds. Katz [39] describes efficient protocols for
one-time non-malleable proofs of plaintext knowledge for several encryption schemes.
His protocols work in the common reference string model, and consist of three rounds
and a constant number of exponentiations. However, since the witness extractor uses
“rewinding,” the resulting protocols were only proven secure in a concurrent setting
with the introduction of timing constraints. Barak [2] gives a construction of constant-
round, one-time non-malleable ZK protocols in the plain model. His construction uses a
non-black-box proof of security and is not very efficient. Sahai [54] provides a definition
for one-time non-malleability in the case of non-interactive ZK (NIZK) proofs. De Santis
et al. [20] generalize this to unbounded non-malleability of NIZK proofs, where even
any polynomial number of simulator-constructed proofs does not help an adversary to
construct any new proof. (As they do, for the remainder of this paper we simply refer to
this property as non-malleability, leaving off the “unbounded” modifier.) Their defini-
tion is very strong in that (in some sense) it requires a witness to be extractable from the
adversary.2

Further, they introduce the notion of a robust NIZK argument, which, in addition
to being non-malleable, requires the so-called “simulator” of the ZK property to use a
common reference string with the same distribution (uniform) as the one used by the
real prover. (Following [20], we call this the same-string ZK property.) Finally, they give
two constructions of non-malleable (and robust) ZK proofs for any NP language. In fact,
these proofs are non-interactive, and thus achieve concurrent (constant-round) ZK.

The notion of simulation soundness for NIZK proofs was introduced by Sahai [54]
in the context of chosen-ciphertext security of the Naor–Yung [46] encryption scheme.
Informally, an NIZK proof is one-time simulation sound if even after seeing a “simulated
proof” (which could be of a false statement) generated by the simulator, the adversary
cannot generate a proof for a false statement. Sahai notes that the Naor–Yung encryption
scheme would be adaptive chosen-ciphertext secure if it used a one-time simulation-
sound NIZK proof. De Santis et al. [20] further generalized this notion to unbounded
simulation soundness. An NIZK proof is unbounded simulation sound if even after seeing
any polynomial number of simulated proofs, the adversary cannot generate a proof of
a false statement. The non-malleable NIZK protocols given in [20] are also unbounded
simulation sound. (For the remainder of this paper we simply refer to this property as
simulation soundness, leaving off the “unbounded” modifier.)

The notions of simulation soundness, non-malleability, and robustness extend natu-
rally to the case of interactive proof systems; we do this in Section 2. Informally, we
say an interactive ZK protocol is simulation sound if the adversary cannot generate a
proof of a false statement, even after interacting with any number of (simulated) provers.
(See [44] for an application of simulation-sound ZK protocols in a threshold password-
authenticated key exchange protocol.) We say a ZK protocol is non-malleable if there
exists an efficient witness extractor that successfully extracts a witness from an adver-
sary if the adversary would cause the verifier to accept, even when the adversary is also

2 Note that this is a stricter definition than that of [22], and the definition we propose in this paper is even
stricter. However, all known protocols achieving non-malleability according to the definition of [22] also
achieve non-malleability according to our definition. Also, our definition is useful in proving a relationship
between non-malleability and universal composability, as we discuss in our results, below.

172 J. A. Garay, P. MacKenzie, and K. Yang

allowed to interact with any number of (simulated) provers. We note that this definition
of non-malleability implies that the ZK protocol is a proof of knowledge, and also that it
satisfies the notion of “witness-extended emulation” from [3]. Naturally, a non-malleable
ZK protocol is also simulation sound. Finally, we call a ZK protocol that is non-malleable
and same-string, a robust ZK protocol.

Universal composability is a notion proposed by Canetti [10] to describe protocols
that behave like ideal functionalities, and can be composed in arbitrary ways. Universal
composability can be defined in either the adaptive model or the static model, denoting
whether the adversary is allowed to corrupt parties adaptively, or must decide which
parties to corrupt before the protocol starts, respectively. Universal composability is a
very strong notion. For example, a universally composable ZK (UCZK) protocol is both
non-malleable (at least in an intuitive sense) and concurrent.

Canetti [10] proved that UCZK protocols do not exist in the “plain” model, where
there is no assumption about the system set-up. On the other hand, UCZK is possible
in the common reference string model, which is the model we focus on in this paper.
As pointed out by Canetti et al. [13], the non-malleable NIZK protocols of [20] are also
UCZK protocols in the static corruption model. Since they use non-interactive proof
techniques and general NP reductions, these protocols are not very efficient. Canetti and
Fischlin [11] give a construction of a UCZK protocol for any NP language secure in the
adaptive model. Basically, they use a standard three-round ZK protocol for Hamiltonian
Cycle, except that they use universally composable commitments as a building block.
Damgård and Nielsen [19] use the same general ZK protocol construction as Canetti and
Fischlin, but with a more efficient UC commitment scheme.3 Specifically, for a security
parameter k, their UC commitment scheme allows commitment to k bits using a constant
number of exponentiations and O(k) bits of communication. Their most efficient UC
commitment schemes are based on the p-subgroup assumption [47] or the decisional
composite residuosity assumption (DCRA) [48]. Note that even with the more efficient
UC commitment scheme, this approach to constructing UCZK protocols tends to be
fairly inefficient, since a general NP reduction to Hamiltonian Cycle or SAT is used.

Our results. We show a new technique that allows us to convert certain types of honest-
verifier ZK protocols into ZK protocols with the stronger properties described above,
i.e., concurrency, simulation soundness, non-malleability, robustness, and/or universal
composability, in the common reference string model. More precisely, we can

1. transform any�-protocol [16] (which are special three-round, honest-verifier pro-
tocols where the verifier only sends random bits) into a simulation-sound ZK
protocol; and

2. transform any �-protocol (which we introduce in this paper as a variant of �-
protocols) into a non-malleable ZK protocol, and further into a UCZK protocol.

The main transformations (sufficient to achieve all results except for UCZK protocols
secure in the adaptive model) use a signature scheme that is existentially unforgeable
against adaptive chosen-message attacks [34], which exists if one-way functions ex-

3 In a later version of their paper, Damgård and Nielsen use SAT instead of Hamiltonian Cycle [19].

Strengthening Zero-Knowledge Protocols Using Signatures 173

ist [53], as well as a �-protocol to prove knowledge of a signature. Note that one-way
functions can be used to construct commitments, and thus if one-way functions exist,
�-protocols exist for any NP statement (say, through a Cook–Levin reduction, and a
standard �-protocol for Hamiltonian Cycle). Hence the requirement of our main trans-
formations is the existence of one-way functions. On the other hand, certain signature
schemes, such as the Cramer–Shoup [17] scheme and the DSA scheme [41], admit very
efficient�-protocols. Using these schemes (and at the price of specific number-theoretic
assumptions), we are able to construct strengthened ZK protocols that are more efficient
than all previously known constructions, since we can completely avoid the Cook–Levin
theorem [15], [42].4 To achieve a UCZK protocol that is secure in the adaptive model,
we also require a simulation-sound trapdoor commitment scheme, a new type of com-
mitment scheme that we introduce and which may be of independent interest. This may
be based on trapdoor permutations, but we show a more efficient version based on DSA.

We now sketch the intuition behind our technique. We first select two signature
schemes, the second of which being a one-time signature scheme [25].5 The common
reference string will contain a randomly generated verification key vk for the first signa-
ture scheme, and hence neither the prover nor the verifier will know the corresponding
signing key. We then take an honest-verifier ZK protocol � for an NP statement ϕ, and
we modify it to�∗, which consists of (1) a witness indistinguishable (WI) proof for the
statement

“Eitherϕ is true, or I know the signature for the message vk ′ w.r.t. verification
key vk,”

where vk ′ is a freshly generated verification key for the one-time signature scheme that is
also sent to the verifier, and (2) a signature on the transcript of the WI proof using the secret
key corresponding to vk ′.6 Informally,�∗ is the “OR” of� and a proof of knowledge of
a signature on vk ′. It turns out that if both� and the proof of knowledge of the signature
are so-called �-protocols [16] (see Section 2.2), then �∗ can be constructed from �

very efficiently [16]. Furthermore, if the signature scheme admits a very efficient proof,
then the total overhead is very small. In particular, we show that if the Cramer–Shoup
signature scheme [17] or the DSA signature scheme [41] is used, then the total overhead
is only a constant number of exponentiations plus the generation of two signatures.

After the transformation, the completeness of protocol � is obviously preserved.
Protocol�∗ is also ZK, since a simulator generating the verification key in the common
reference string can simultaneously generate the corresponding signing key, and thus
has no problem simulating �∗, by the witness indistinguishability of �∗. Furthermore,
we show that �∗ is simulation sound: If an adversary A is able to cause the verifier
to accept a false statement after interacting with a polynomial number of (simulated)
prover instances, then we show how to construct a machine M , which, having access to
the signing oracle and interacting with A, manages to forge a signature.

4 We note that previous constructions using the Cook–Levin theorem were only meant to show feasability,
not efficiency.

5 The second signature scheme may be the same as the first, although for greater efficiency, a signature
scheme that is specifically designed for one-time use may be employed.

6 The technique of proving “Either ϕ is true, or I know something” has been used previously (e.g., [38]).

174 J. A. Garay, P. MacKenzie, and K. Yang

In order to achieve non-malleability (and also robustness and universal composability)
in this paper we introduce �-protocols, a variant of �-protocols that may be of inde-
pendent interest. In a nutshell, an �-protocol is similar to a �-protocol but it assumes
the existence of a common reference string and allows for the extraction of a witness
from a single execution of the protocol without rewinding. As one example, we present
an efficient �-protocol for the discrete logarithm relation based on the strong RSA as-
sumption [4] and DCRA [48]. As another example, we present a “partial-extracting”
�-protocol for proving knowledge of the plaintext of an ElGamal ciphertext [24] based
on the Decision Diffie–Hellman assumption [6].

We show that if the original protocol� is an�-protocol, then the transformed protocol
�∗ is non-malleable, basically by noting that if one could not extract a witness for�, then
one could extract (and thus forge) a signature. Furthermore, the distribution of reference
strings output by the simulator in our construction is identical to the distribution of
reference strings in the real protocol. Therefore our construction is also robust ZK.

We then show that a non-malleable ZK protocol can be easily augmented to obtain a
UCZK protocol in the static model. Invoking this result, we show as a corollary that (an
“augmented” version of) �∗ is also a UCZK protocol in the static model. Finally, we
show that we can further modify�∗ to be a UCZK protocol in the adaptive model (with
erasures), while still maintaining efficiency. To achieve this we follow the approach
of Damgård [18] and Jarecki and Lysyanskaya [37] of using a trapdoor commitment
to commit to the first message of a �-protocol, which is then opened when sending
the last message. However, it turns out that a “plain” trapdoor commitment scheme
does not provide the properties we need to deal with adaptive corruptions. We thus
introduce a stronger type of trapdoor commitment scheme, which we call a simulation-
sound trapdoor commitment (SSTC) scheme. Furthermore, we demonstrate an efficient
construction of an SSTC scheme under the DSA assumption.

We remark that if the properties are taken in the order (1) simulation soundness,
(2) non-malleability, and (3) universal composability, each subsequent property is in
some sense stronger, and requires more involved (and somewhat less efficient) protocols
to achieve. Since all have useful applications, and one would generally like to use the
simplest and most efficient protocol to solve a problem, it is therefore of interest to study
all these properties. It is also of theoretical interest to understand the definitions of all
these properties and how they relate to each other.

Organization of the paper.. In Section 2 we present formulations of the various notions
of interactive ZK protocols in the common reference string setting, together with some
of the building blocks that we will be using in our protocols. In Section 3 we present the
construction of simulation-sound ZK protocols. In Section 4 we introduce �-protocols
and present the construction of non-malleable (and robust) ZK protocols. In Section 5
we first show that non-malleable ZK implies UCZK assuming static corruptions, and
then we demonstrate how to achieve UCZK in the adaptive model with erasures using
an SSTC scheme. Finally, in Section 6 we present some efficient instantiations of the
constructions above. They include using the Cramer–Shoup signature scheme and/or the
DSA signature scheme to construct simulation-sound ZK protocols and non-malleable
ZK protocols; an SSTC scheme based on DSA; an efficient �-protocol for the discrete
logarithm relation (implying efficient non-malleable ZK and UCZK protocols for discrete

Strengthening Zero-Knowledge Protocols Using Signatures 175

logarithm); and a generalized �-protocol for proving knowledge of the plaintext of
an ElGamal ciphertext (implying an efficient non-malleable ZK protocol for ElGamal
plaintext knowledge).

2. Preliminaries and Definitions

All our results will be in the common reference string (CRS) model, which assumes that
there is a string generated from some distribution and is available to all parties at the
start of a protocol. Note that this is more liberal than the public random string model,
where a uniform distribution over fixed-length bit strings is assumed.

For a distribution	, we say a ∈ 	 to denote any element that has non-zero probability
in	, i.e., any element in the support of	. We say a

R←	 to denote a is randomly chosen
according to distribution 	. For a set S, we say a

R← S to denote that a is uniformly
drawn from S.

Throughout this paper, adversaries are modeled as non-uniform (interactive) Turing
machines. On the other hand, simulators and extractors are uniform Turing machines, but
they might become non-uniform by running a non-uniform adversary as a subroutine.

2.1. ZK Proofs and Proofs of Knowledge

In this section we provide definitions related to ZK proofs and proofs of knowledge. They
are based on definitions of NIZK proofs from [20], but modified to allow interaction.

For a relation R, let L R = {x : (x, w) ∈ R} be the language defined by the relation.
For any NP language L , note that there is a natural witness relation R containing pairs
(x, w) where w is the witness for the membership of x in L , and that L R = L . We use
k = |x | as the security parameter.

For two interactive machines A and B, we define 〈A, B〉[σ](x) as the local output of B
after an interactive execution with A using CRS σ , and common input x . The transcript
of a machine is simply the common input x appended to the messages on its input and
output communication tapes.7 Two transcripts match if the ordered input messages of
one are equivalent to the ordered output messages of the other, and vice versa. We use
the notation tr �� tr ′ to indicate tr matches tr ′ and tr �� tr ′ to indicate that tr does not
match tr ′.

For some definitions below, we need to define security when an adversary is allowed
to interact with more than one instance of a machine. Therefore it will be convenient to
define a common wrapper machine that handles this “multi-session” type of interaction.8

For an interactive machine A, we define A to be a protocol wrapper for A, that takes
two types of inputs on its communication tape:

– (START, π, x, w): For this message A starts a new interactive machine A with label
π , common input x , private input w, a freshly generated random input r , and using
the same CRS as A (i.e., all machines started by A use the same CRS).

7 Note that a transcript fixes the common input x . Therefore our definition of simulation-sound ZK (and
non-malleable ZK) below implies that proofs are uniquely applicable, and one would not need to require this
as a separate property (as was done in [54]).

8 This is similar to the “multi-session extension” concept in [14].

176 J. A. Garay, P. MacKenzie, and K. Yang

– (MSG, π,m): For this message A sends the message m to the interactive machine
with label π (if it exists), and returns the output message of that machine.

We say A 1 is the wrapper of A that ignores all the subsequent START messages after
seeing the first one. Effectively, A 1 is a “single-session” version of A. We define the
output of A 1 to be a tuple (x, tr, v), where x is the common input (from the first START

message), tr is the transcript of A (i.e., the input and output messages of the single
machine A started with the first START message), and v is the output of A. In particular,
if A is a verifier in a ZK protocol, this output will be 1 for accept, and 0 for reject. If
A is an extractor (such as the machine E2 in the definition of a non-malleable ZK proof
of knowledge below), then this output will be a pair (b, w) where b is a bit designating
accept/reject (as above), andw is the “extracted” witness if b = 1. We define the output
of A to be a tuple (�x, �tr , �v), where the machine started with the i th START message
would produce the tuple (x[i], tr [i], v[i]), as described for the single machine started
in A 1.

We say two interactive machines B and C are coordinated if they have a single
control, but two distinct sets of input/output communication tapes. (Note that B and
C may run concurrently.) For four interactive machines A, B, C , and D we define
(〈A, B〉, 〈C, D〉)[σ] as the local output of D after an interactive execution with C and
after an interactive execution of A and B, all using CRS σ . Note that we will only be
concerned with this if B and C are coordinated.

We note that all our ZK definitions use black-box, non-rewinding simulators, and our
proofs of knowledge use non-rewinding extractors.

Definition 2.1 (Unbounded ZK Proof). � = (D,P,V,S = (S1,S2)) is an unbounded
ZK proof (resp., argument) system for an NP language L with witness relation R if D
is an ensemble of polynomial-time samplable distributions, P , V , and S2 are proba-
bilistic polynomial-time interactive machines, and S1 is a probabilistic polynomial-time
machine, such that

Completeness. There exists a negligible function α(k) such that for all k > 0, for all
x ∈ L of length k, all w such that R(x, w) = 1, and all σ ∈ Dk , the probability
that 〈P(w),V〉[σ](x) = 0 is less than α(k).

Soundness. For all unbounded (resp., non-uniform probabilistic polynomial-time)
adversaries A, there exists a negligible function α(k) such that for all k > 0, for
all x ∈ L of length k, the probability that 〈A,V〉[σ](x) = 1 where σ

R←Dk is less
than α(k).

Unbounded ZK. For all non-uniform probabilistic polynomial-time adversaries A,
|Pr[ExptA(k) = 1] − Pr[ExptSA(k) = 1]| is negligible, where the experiments
ExptA(k) and ExptSA(k) are defined as follows:

ExptA(κ): ExptSA(κ):

σ
R←Dk (σ, τ)← S1(1k)

Return
〈
P ,A

〉
[σ] Return

〈
S ′(τ) ,A

〉
[σ]

where S ′(τ) runs as follows on common reference string σ , common input x , and
private input w: if R(x, w) = 1, S ′(τ) runs S2(τ) on common reference string

Strengthening Zero-Knowledge Protocols Using Signatures 177

σ and common input x ; otherwise S ′(τ) runs Snull, where Snull is an interactive
machine that simply aborts.9

We point out that this definition only requires the simulator to simulate a valid proof,
which is implemented by having S ′ have access to the witness w and only invoking S2

when w is valid.10 However, S2 does not access the witness and will simulate a proof
from the input x only.

We further note that by the definition of the wrapper machines, it is the adversary A
that chooses the common input x in the definition of unbounded ZK.

Definition 2.2 (Same-String Unbounded ZK). � = (D,P,V,S = (S1,S2)) is a
same-string unbounded ZK argument system for an NP language L with witness re-
lation R if � is an unbounded ZK argument system for L with the additional property
that the distribution of the reference string output by S1(1k) is exactly Dk .

We only define same-string unbounded ZK arguments since, as shown in [20], any
protocol that is same-string unbounded ZK must be an argument, and not a proof.

The following defines (unbounded) SSZK (SSZK). This has been useful in applica-
tions. In particular, as shown in [54], the one-time version of SSZK suffices for the secu-
rity of a (non-interactive) ZK protocol in the construction of adaptive chosen-ciphertext
secure cryptosystems using the Naor–Yung [46] paradigm. We directly define the un-
bounded version, needed in other applications such as threshold password-authenticated
key exchange [44].

Definition 2.3 (Simulation-Sound ZK). � = (D,P,V,S = (S1,S2)) is a simulation-
sound ZK proof (resp., argument) system for an NP language L if � is an unbounded
ZK proof (resp., argument) system for L and, furthermore,

Simulation Soundness. For all non-uniform probabilistic polynomial-time adver-
saries A = (A1,A2), where A1 and A2 are coordinated, Pr[ExptA(k) = 1] is
negligible, where ExptA(k) is defined as follows:

ExptA(k):
(σ, τ)← S1(1k)

(x, tr, b)← (〈
S ′′(τ) ,A1

〉
,
〈
A2, V 1

〉)
[σ]

Let Q be the set of transcripts of machines in S ′′(τ)
Return 1 iff b = 1, x ∈ L , and for all tr ′ ∈ Q, tr �� tr ′

where S ′′(τ) runs as follows on CRS σ , common input x and private inputw: S ′′(τ)
runs S2(τ) on CRS σ and common input x .

9 Without loss of generality, we assume that if the common input is not of size k (we implicitly assume that
both A and P can determine k from σ) or the input to P is not a witness for the common input, P simply
aborts.

10 A must supply a witness, since P is restricted to polynomial time, and thus may not be able to generate
a witness itself. This may seem odd compared with definitions of standard ZK that assume an unbounded
prover, but it does seem to capture the correct notion of unbounded ZK, and in particular does not allowA to
test membership in L . See [54] for more discussion.

178 J. A. Garay, P. MacKenzie, and K. Yang

In the above definition, we emphasize that S2 may be asked to simulate false proofs
for x ∈ L R , since S ′′ does not check whether (x, w) ∈ R. The idea is that even if the
adversary is able to obtain acceptable proofs on false statements, it will not be able to
produce any new acceptable proof on a false statement.

The following defines non-malleable zero-knowledge (NMZK) proofs (resp., argu-
ments) of knowledge. If a protocol is NMZK according to our definition, then this implies
the protocol is also NMZK in the explicit witness sense (as defined in [20]).11 Moreover,
we show that the protocol is also UCZK in the model of static corruptions. Also note
that simulation soundness is implied by this definition.

Definition 2.4 (Non-Malleable ZK Proof/Argument of Knowledge). � = (D,P,V,
S=(S1,S2), E = (E1, E2)) is a non-malleable ZK proof (resp., argument) of knowledge
system for an NP language L with witness relation R if � is an unbounded ZK proof
(resp., argument) system for L and furthermore, E1 and E2 are probabilistic polynomial-
time machines such that

Reference String Indistinguishability. The distribution of the first output of S1(1k)

is identical to the distribution of the first output of E1(1k).
Extractor Indistinguishability. For any τ ∈ {0, 1}∗, the distribution of the output

of V 1 is identical to the distribution of the restricted output of E2(τ) 1, where the
restricted output of E2(τ) 1 does not include the extracted value.

Extraction. For all non-uniform probabilistic polynomial-time adversaries A =
(A1,A2), where A1 and A2 are coordinated machines, |Pr[ExptEA(k) = 1] −
Pr[ExptA(k) = 1]| is negligible, where the experiments ExptA(k) and ExptEA(k)
are defined as follows:

ExptA(k): ExptEA(k):
(σ, τ)← S1(1k) (σ, τ1, τ2)← E1(1k)

(x, tr, b)← (〈
S ′′(τ) ,A1

〉
, (x, tr, (b, w))← (〈

S ′′(τ1) ,A1
〉
,〈

A2, V 1

〉)
[σ]

〈
A2, E2(τ2) 1

〉)
[σ]

Let Q be the set of transcripts Let Q be the set of transcripts
of machines in S ′′(τ) . of machines in S ′′(τ1) .

Return 1 iff b = 1 and Return 1 iff b = 1, (x, w) ∈ R, and
for all tr ′ ∈ Q, tr �� tr ′ for all tr ′ ∈ Q, tr �� tr ′

where S ′′(τ) runs as follows on CRS σ , common input x , and private input w:
S ′′(τ) runs S2(τ) on CRS σ and common input x .

In the above definition, as in the definition of SSZK protocols, we emphasize that S2

may be asked to simulate false proofs for x ∈ L R , since S ′′ does not check whether
(x, w) ∈ R. The idea is that even if the adversary is able to obtain acceptable proofs

11 Note that our notion of NMZK (along with that of [20]) implies a proof of knowledge, whereas the
original notion of non-malleable zero-knowledge from [22] does not. However, to our knowledge there is no
NMZK protocol that is not also a proof of knowledge. Since we achieve extraction in our protocols also, we
feel that our definition is useful. Also, for brevity, we generally refer to this notion as an NMZK proof, rather
than an NMZK proof of knowledge.

Strengthening Zero-Knowledge Protocols Using Signatures 179

on false statements, it will not be able to produce any new acceptable proof for which a
witness cannot be extracted.

To conclude with the ZK definitions, we generalize the notion of robust NIZK in [20]
to the interactive setting.

Definition 2.5 (Robust ZK). � is a robust ZK argument of knowledge system for an NP
language L with witness relation R if� is a non-malleable and same-string unbounded
ZK argument of knowledge system for L .

2.2. �-Protocols

Here we provide an overview of the basic definitions and properties of�-protocols [16].
Assume R = {(x, w)} is a relation such that for some given polynomial p(·) it holds
that |w| ≤ p(|x |) for all (x, w) ∈ R. Furthermore, let R be testable in polynomial time.
Recall that L R = {x : (x, w) ∈ R} is the language defined by the relation. For all x ∈ L R ,
let WR(x) = {w: (x, w) ∈ R} be the witness set for x .

A �-protocol (A, B) is defined to be a three-move interactive protocol between a
probabilistic polynomial-time prover A and a probabilistic polynomial-time verifier B,
where the prover acts first. The verifier is only required to send random bits as a challenge
to the prover. For some (x, w) ∈ R, the common input to both players is x while w is a
private input to the prover. For such given x , let (a, c, z) denote the conversation between
the prover and the verifier. To compute the first and final messages, the prover invokes
efficient algorithms a(·) and z(·), respectively, using (x, w) and common random bits
as input. Using an efficient predicate ϕ(·), the verifier decides whether the conversation
is accepting with respect to x . The relation R and the algorithms a(·), z(·), and ϕ(·) are
public. The length of the challenges is denoted tB , and we assume that tB only depends
on the length of the common string x .

We need to broaden this definition slightly, to deal with cheating provers. We define
L̂ R to be the input language, with the property that L R ⊆ L̂ R , and membership in L̂ R

may be tested in polynomial time. We implicitly assume B only executes the protocol if
the common input x ∈ L̂ R .

All �-protocols presented here will satisfy the following security properties:

• Weak special soundness: Let (a, c, z) and (a, c′, z′) be two conversations that are
accepting for some given x ∈ L̂ R . If c = c′, then x ∈ L R . The pair of accepting
conversations (a, c, z) and (a, c′, z′) with c = c′ is called a collision.

• Special honest-verifier zero knowledge (SHVZK): A �-protocol is honest-verifier
zero knowledge (HVZK) if there is a (probabilistic polynomial-time) simulator M
that on input x ∈ L R generates accepting conversations with a distribution that is
indistinguishable12 from when A and B execute the protocol on common input x
(and A is given a witness w for x), and B indeed honestly chooses its challenges
uniformly at random. Furthermore, the �-protocol is SHVZK if this simulator
can additionally take a string c as input, and output an accepting conversation for
x where c is the challenge, where the distribution of accepting conversations is

12 Often this is required to be perfectly indistinguishable, but we generalize the definition slightly to require
only computational indistinguishability.

180 J. A. Garay, P. MacKenzie, and K. Yang

indistinguishable from when A and B execute the protocol on common input x ,
conditioned on c being the challenge. (Note in particular that this indistinguishability
requirement must hold for every challenge c.) In fact, we assume the simulator is
able to output an accepting conversation for every challenge c for not only x ∈ L R ,
but also any x ∈ L̂ R . Naturally, there is no requirement for indistinguishability in
this case, since A would simply not execute the protocol.

Formally, we can specify the indistinguishability requirement as follows. For
all non-uniform probabilistic polynomial-time adversariesA = (A1,A2) there is a
negligible functionα(k) such that for all k>0 and all c ∈ {0, 1}k , |Pr[ExptA(k, c) =
1] − Pr[ExptM

A(k, c) = 1]| ≤ α(k), where the experiments ExptA(k, c) and
ExptM

A(k, c) are defined as follows:

ExptA(k, c): ExptM
A(k, c):

(x, w, s)←A1(c) (x, w, s)←A1(c)
If (x, w) ∈ R return 0 If (x, w) ∈ R return 0

r
R← {0, 1}∗ Return A2(s,M(x, c))

a ← a(x, w, r)
Return A2(s, (a, c, z(x, w, r, c)))

Some of the �-protocols also satisfy the following property:

• Special soundness: Let (a, c, z) and (a, c′, z′) be two conversations that are accept-
ing for some given x , with c = c′. Then given x and those two conversations, a
witness w such that (x, w) ∈ R can be computed efficiently.

In our results to follow, we need a particular simple instance of the main theorem from
[16]. Specifically, we use a slight generalization of a corollary in [16] which enables
a prover, given two relations (R1, R2), values (x1, x2) ∈ L̂ R1 × L̂ R2 , and correspond-
ing three-move �-protocols ((A1, B1), (A2, B2)), to present a three-move �-protocol
(Aor, Bor) for proving the existence of aw such that either (x1, w) ∈ R1 or (x2, w) ∈ R2.
We call this the “OR” protocol for ((A1, B1), (A2, B2)). Technically, this “OR” protocol
is for the relation R = {((x1, x2), w): ((x1, w) ∈ R1 ∧ x2 ∈ L̂ R2)∨ ((x2, w) ∈ R2 ∧ x1 ∈
L̂ R1)} and input language L̂ R = {(x1, x2): x1 ∈ L̂ R1 ∧ x2 ∈ L̂ R2}.

We describe the protocol assuming the challenges from (A1, B1) and (A2, B2) are of
the same length. This can easily be generalized, as long as the challenge length in the
combined protocol is at least as long as the challenges from either protocol. The protocol
consists of (A1, B1) and (A2, B2) running in parallel, but with the verifier’s challenge c
split into c = c1 ⊕ c2, with c1 as the challenge for (A1, B1), and c2 as the challenge for
(A2, B2).

The protocol for Aor is as follows: Without loss of generality, say Aor knows w such
that (x1, w) ∈ R1. Let M2 be the simulator for S2. Then Aor runs M2(x2) to generate
(m, e, z). It sends the first message of (A1, B1), along with m as the first message of
(A2, B2). On challenge c, it chooses c2 = e, and c1 = c⊕c2. It is able to provide the final
response in (A1, B1) because it knows w, and the final response in (A2, B2) is simply
z. The final message of Aor includes c1 along with the final responses for (A1, B1) and
(A2, B2).

Strengthening Zero-Knowledge Protocols Using Signatures 181

We note that if (A2, B2) satisfies special soundness, then (Aor, Bor) satisfies the fol-
lowing property:

• Half-weak special soundness: Let (a, c, z) and (a, c′, z′) be two conversations that
are accepting for some given (x1, x2), with c = c′. Then either there exists a w1

such that (x1, w1) ∈ R1 or given x and those two conversations, a witness w2 such
that (x2, w2) ∈ R2 can be computed efficiently.

For two�-protocols, (A1, B1) and (A2, B2), let (A1, B1)∨ (A2, B2) denote the “OR”
protocol for ((A1, B1), (A2, B2)).

A simple but important result from [16] states that if a�-protocol is HVZK (with per-
fectly indistinguishable simulations), the protocol is witness indistinguishable (WI) [26].
Although the corresponding result with computationally indistinguishable simulations
does not apply, one can show a specific result for an “OR” protocol:

Lemma 2.6. Say �-protocol (A, B) = (A1, B1) ∨ (A2, B2), where (A1, B1) and
(A2, B2) are both HVZK (with computationally indistinguishable simulations). Let R,
R1, and R2 be the associated relations as discussed above. Then (A, B) is WI over R′,
where R′ = {((x1, x2), w): ((x1, x2), w) ∈ R ∧ x1 ∈ L R1 ∧ x2 ∈ L R2}.

Proof. The intuitive reason is that the challenge is split randomly between the two �-
protocols (A1, B1) and (A2, B2), and thus in some sense one can reduce the security to the
honest verifier case. Formally, we proceed as follows. Say there is a string (x1, x2) ∈ L R′

with two witnessesw1 andw2, and there exists a verifier B ′ and string y such that the out-
put of B ′((x1, x2), y) interacting with A((x1, x2), w1) is distinguishable from the output
of B ′((x1, x2), y) interacting with A((x1, x2), w2). Call these experiments E1 and E2,
respectively. Without loss of generality, we may assume (x1, w1) ∈ R1 and (x2, w2) ∈
R2.13 Now define R∗ = {((x1, x2), (w1, w2)) : (x1, w1) ∈ R1 ∧ (x2, w2) ∈ R2}, and
consider the �-protocol (A∗, B∗) over R∗ that simply runs (A1, B1) and (A2, B2), but
where A∗ chooses a random challenge c1 and sets c2 ← c ⊕ c1, where c is the challenge
of B∗. Consider B ′((x1, x2), y) interacting with A∗((x1, x2), (w1, w2)) and call this ex-
periment E∗. Obviously the output of B ′ in experiment E∗ must be distinguishable from
the output of B ′ in either experiment E1 or E2. Say it is E2. (The other case is similar.)
Then we will show that (A1, B1) is not HVZK. (Formally, the definition of HVZK is like
the definition of SHVZK, except that c is chosen randomly afterA1 is executed, instead
of being an input to the two experiments. Also, the input toA1 is simply 1k . It is easy to
see that the SHVZK property implies the HVZK property.)

Construct an adversaryA = (A1,A2) as follows. Let ((x1, x2), (w1, w2)) be such that
for some y the output of B ′((x1, x2), y) in experiment E∗ is distinguishable from the out-
put of B ′((x1, x2), y) in experiment E2. LetA1(1k) output (x1, w1, (x1, x2, w1, w2, y)).
Let A2((x1, x2, w1, w2, y), (a1, c1, z1)) generate r2

R← {0, 1}k and a2 ← a2(x2, w2, r2),
and then invoke B ′((x1, x2), y) with first message (a1, a2). When B ′ returns challenge

13 For example, if (x1, w1), (x1, w2) ∈ R1, then there exists aw3 such that (x2, w3) ∈ R2 (by the definition
of R′) and the output of B ′((x1, x2), y) interacting with A((x1, x2), w3) would necessarily be distinguishable
from the output of the interaction with either A((x1, x2), w1) or A((x1, x2), w2). Then one could use either
w1 and w3, or w2 and w3, as the two witnesses.

182 J. A. Garay, P. MacKenzie, and K. Yang

c, compute c2 ← c ⊕ c1 and z2 ← z2(x2, w2, r2, c2), and send back (z1, z2), c1. Then
output whatever B ′ outputs. The distribution of ExptA(k) is exactly the distribution of
the output of E∗, and the distribution of ExptM

A(k) is exactly the distribution of the output
of E2, and thus they are distinguishable.

2.3. Signature Schemes

A signature scheme SIG is a triple (sig gen, sig sign, sig verify) of algorithms, the first
two being probabilistic, and all running in polynomial time (with a negligible proba-
bility of failing). sig gen takes as input 1k and outputs a public key pair (sk, vk), i.e.,
(sk, vk) ← sig gen(1k). sig sign takes a message m and a secret key sk as input and
outputs a signature σ for m, i.e., σ ← sig sign(sk,m). sig verify takes a message m, a
public key vk, and a candidate signature σ ′ for m as input and returns the bit b = 1 if
σ ′ is a valid signature for m for the corresponding private key, and otherwise returns the
bit b = 0. That is, b ← sig verify(vk,m, σ ′). Naturally, if σ ← sig sign(sk,m), then
sig verify(vk,m, σ) = 1.

Security for signature schemes. We specify existential unforgeability against adaptive
chosen-message attacks [35] for a signature scheme SIG=(sig gen,sig sign,sig verify).
A forger is given vk, where (sk, vk) ← sig gen(1k), and tries to forge signatures with
respect to vk. It is allowed to query a signature oracle OSignvk (that produces signatures
that can be verified with vk) on messages of its choice. It succeeds if after this it outputs
a message/signature pair (m, σ) that is valid (i.e., where sig verify(vk,m, σ) = 1), but
m was not one of the messages signed by the signature oracle. We say a forger (t, q, ε)-
breaks a scheme if the forger runs in time t (k)makes q(k) queries to the signature oracle,
and succeeds with probability at least ε(k). A signature scheme SIG is existentially
unforgeable against adaptive chosen-message attacks if for all t and q polynomial in k,
if a forger (t, q, ε)-breaks SIG, then ε is negligible in k.

In a strong one-time signature scheme [54], security is formulated as above except
that (1) the forger may only query the signature oracle once, and (2) the forger succeeds
if it outputs a valid message/signature pair (m, σ) such that either m was not signed
by the signature oracle, or σ was not output by the signature oracle when queried with
m. We call the resulting security property strong existential unforgeability against a
one-message attack. We note that strong one-time signature schemes can be made very
efficient since they do not need public-key cryptographic operations [25].

3. SSZK

We are now ready to present the first result achieved with our technique: An SSZK
protocol for a relation R = {(x, w)}. We assume that we have the following building
blocks:

1. �R : a �-protocol for the binary relation R.
2. SIGadap = (sig genadap, sig signadap, sig verifyadap): a signature scheme (exis-

tentially unforgeable against chosen-message attacks).

Strengthening Zero-Knowledge Protocols Using Signatures 183

prover verifier

(vk′, sk′)← sig genone−time(1
k)

vk′ ✲

✛
�R(x) ∨�Rvk (vk′)

✲✲

s ← sig signone−time(sk′, transcript)
s ✲ sig verifyone−time(vk′, transcript)

?= 1

Fig. 1. SSR
[vk](x): An SSZK protocol for relationship R with CRS vk (drawn from the distribution

sig genadap(1
k)), and common input x . The prover also knows the witness w such that R(x, w) = 1.

3. Rvk = {(m, s) | sig verifyadap(vk,m, s) = 1}: a binary relation of message–
signature pairs.

4. �Rvk : a�-protocol with the special soundness property for the binary relation Rvk .
5. SIGone−time = (sig genone−time, sig signone−time, sig verifyone−time): a strong one-

time signature scheme.

The protocol SSR
[vk](x) is shown in Fig. 1. It assumes the prover and verifier share a

common input x to a�-protocol�R , and the prover knowsw such that (x, w) ∈ R. The
CRS σ is the verification key vk of a signature scheme that is existentially unforgeable
against adaptive chosen-message attacks. The prover generates a pair (vk ′, sk ′) for a
strong one-time signature scheme, and sends vk ′ to the verifier. After this, vk ′ is the
common input to a �-protocol �Rvk satisfying special soundness. Then the prover uses
the OR construction for �-protocols to prove that either x ∈ L R or it knows a signature
for vk ′ under verification key vk. (Note that since �Rvk satisfies special soundness,
intuitively it is a proof of knowledge.) Finally, the prover signs the transcript with sk ′,
and sends the resulting signature to the verifier.

Now we must describe S = (S1,S2) for SSR
[vk](x). S1(1k) first generates signature

keys (vk, sk)← sig genadap(1
k) and outputs (σ, τ) = (vk, sk). S2(sk) first checks that

common input x ∈ L̂ R . If not, it aborts. Otherwise it runs the protocol as normal,
except generating s ′ ← sig signadap(sk, vk ′), and using knowledge of s ′ to complete the
�-protocol �R(x) ∨�Rvk (vk ′).

Theorem 3.1. The protocol SSR
[vk](x) is an SSZK argument.

Proof. Completeness: Straightforward.
Unbounded ZK: By inspection, S1(1k) produces exactly the same distribution as the

real protocol. Then by the fact that S ′(τ) runs S2(τ) only when (x, w) ∈ R, and
by the fact that �R(x) ∨ �Rvk (vk ′) is an “OR” type of �-protocol, and thus witness
indistinguishable,14 unbounded ZK follows by a straightforward hybrid argument.

Simulation soundness: For an adversaryA=(A1,A2), recall the experiment ExptA(k)
in the definition of SSZK. Let p = Pr[ExptA(k) = 1]. Our goal is to show that p is
negligible.

14 This implication (from Lemma 2.6) requires x ∈ L R and vk′ ∈ L Rvk , the former always being true when
proving unbounded ZK, and the latter always being true by the definition of signatures.

184 J. A. Garay, P. MacKenzie, and K. Yang

Say a forgery occurs if V accepts, and the one-time verification key vk ′ in that session
was used by S2(τ), but on a different transcript, or resulting in a different signature. Let
Expt′A(k) be ExptA(k) except that if a forgery occurs, the experiment halts and fails. Let
p′ = Pr[Expt′A(k) = 1].

First, by the strong existential unforgeability property of SIGone−time, we show that
the difference between p and p′ is negligible. We do this by constructing a non-uniform
probabilistic polynomial-time attacker B1 that can break SIGone−time with probability
ε1 = (1/c)(p − p′), where c is the number of sessions A2 starts with the simulator
in ExptA(k). The input to B1 is a verification key vk ′ and a one-time signature oracle
OSignvk ′ . B1 chooses d

R← {1, . . . , c}, and then runs the experiment ExptA(k), running
the simulator and verifier as normal, except for inserting vk ′ into the dth instance of
S2(τ) and using OSignvk ′ to perform the signature operation for vk ′ in that instance.
If a forgery occurs with verification key vk ′, B1 halts and outputs the forgery, i.e., the
transcript and signature provided by A2 for its session with V . The view of A in this
slightly modified experiment is the same as the view of A in ExptA(k) until a forgery
occurs. Thus, since a forgery occurs with probability p− p′, and since if a forgery occurs,
B1 will break the SIGone−time on vk ′ with probability (1/c), B1 breaks SIGone−time with
probability ε1 = (1/c)(p − p′).

Now by the existential unforgeability property of SIGadap, we show that p′ is negli-
gible. We do this by constructing a non-uniform probabilistic polynomial-time attacker
B0 that can break SIGadap with at most 2c signature oracle queries (again, where c is the
number of sessions A2 starts with the simulator in ExptA(k)), and with probability at
least ε0 = (p′)2 − 2−k .15 The input to B0 is a verification key vk and a signature oracle
OSignvk . B0 runs experiment Expt′A(k), running the simulator and verifier as normal,
except for inserting vk into the CRS and using OSignvk to perform all signature opera-
tions with respect to vk. Also, before V sends a challenge toA2, B0 forks the experiment
and continues independently in each sub-experiment (thus giving independent random
challenges to A2). B0 then examines the output (x, tr1, b1) and (x, tr2, b2) in each sub-
experiment. Now consider the case when b1 = b2 = 1 and x ∈ L R (call this a successful
sub-experiment), and also the challenges in each sub-experiment are distinct. Then since
�R(x) ∨ �Rvk (vk ′) satisfies half-weak special soundness, B0 can generate a signature
s on vk ′ with respect to key vk using the two transcripts tr1 and tr2. (Here vk ′ is the
one-time verification key sent in the first message of both tr1 and tr2. By the definition of
Expt′A(k), vk ′ could not have been used in any instance of S2 in either sub-experiment.)
Thus B0 generates a signature (on a new message vk ′) with respect to vk, and breaks
SIGadap. By inspection, B0 makes at most 2c calls to the signature oracle.

Now we determine the success probability of B0. First note that for each sub-experi-
ment, the view of A is perfectly indistinguishable from the view of A in Expt′A(k),
and thus the probability of success in each sub-experiment is p′. Second, note that the
probability of a random collision on k-bit challenges is 2−k . Then we can determine the

15 The following argument is a simple version of the Forking Lemma [50], although it does not follow
directly, since we are using a signature oracle, and the adversary’s output is not actually a signature from that
scheme, but a �-protocol of knowledge of the signature. Consequently, rather than trying to force our results
into the notation of [50] and prove why the Forking Lemma should hold in our situation, we simply prove our
result directly.

Strengthening Zero-Knowledge Protocols Using Signatures 185

success probability of B0 using Lemma A.1, as follows. A is a random variable denoting
possible runs of experiments up to the challenge fromV . Ba is a random variable denoting
the remainder of a run of an experiment after initial part a in the support of A. For any a
in the support of A, and for any b1 and b2 in the support of Ba , the predicate Colla(b1, b2)

is defined to be true if the challenges from V are equal in b1 and b2. Thus a pair (a, b)
indicates a full run of the experiment, the predicate ϕ(a, b) indicates success in the
experiment, and the predicate ϕ(a, b1, b2) indicates success in each sub-experiment
corresponding to runs (a, b1) and (a, b2), with the challenges from V in b1 and b2 being
distinct. Therefore ϕ(a, b1, b2) indicates that B0 succeeds, and hence, by Lemma A.1,
we see that B0 succeeds with probability at least ε0 = (p′)2 − 2−k .

4. NMZK

Our general NMZK construction is similar to the SSZK construction above, but with a
�-protocol replaced by an �-protocol (defined here) to achieve the NMZK extraction
properties.

4.1. �-Protocols

An �-protocol (A, B)[σ] for a relation R = {(x, w)} and CRS σ , is a �-protocol for
relation R with the following additional properties:

1. For a given distribution ensemble D, a common reference string σ is drawn from
Dk and each function a(·), z(·), and ϕ(·) takes σ as an additional input. (Naturally,
the simulator M in the definition of �-protocols may also take σ as an additional
input.)

2. There exists a polynomial-time extractor E = (E1, E2) such that the reference string
output by E1(1k) is statistically indistinguishable from Dk . Furthermore, given
(σ, τ)← E1(1k), if there exist two accepting conversations (a, c, z) and (a, c′, z′)
with c = c′ for some given x ∈ L̂ R , then E2(x, τ, (a, c, z)) outputs w such that
(x, w) ∈ R.16

Informally, one way to construct �-protocols is as follows. Our common reference
string will consist of a random public key pk for a semantically secure encryption scheme.
Then for a given (x, w) ∈ R, we construct an encryption e of w under key pk, and then
construct a �-protocol to prove that there is a w such that (x, w) ∈ R and that e is an
encryption of w.17

As with �-protocols, we use the ∨ notation to denote an “OR” protocol, even if one
or both of these protocols are �-protocols.

16 Notice that this extraction property is similar to that of weak special soundness of �-protocols, where
there exists an accepting conversation even for an invalid proof, but two accepting conversations guarantee
that the proof is valid. Here, the extractor can always extract something from any conversation, but it might
not be the witness if there is only one accepting conversation. However, having two accepting conversations
sharing the same a guarantees that the extracted information is indeed a witness.

17 We remark that the idea of using encryption and a ZK proof of membership together to allow extraction
has been considered previously, e.g., [21].

186 J. A. Garay, P. MacKenzie, and K. Yang

prover verifier

(vk′, sk′)← sig genone−time(1
k)

vk′ ✲

✛
�R

[σ ′](x) ∨�Rvk (vk′)
✲✲

s ← sig signone−time(sk′, transcript)
s ✲ sig verifyone−time(vk′, transcript)

?= 1

Fig. 2. NMR
[vk,σ ′](x): An NMZK protocol for relationship R with common input x and common reference

string (vk, σ ′), where σ ′ is drawn from the distribution associated with �R
[σ ′](x).

4.2. NMZK Protocol

Let �R
[σ ′](x) be an �-protocol for a relation R with common reference string σ ′ and

common input x . Let NMR
[vk,σ ′](x) be the SSR

[vk](x) protocol with �R(x) replaced by
�R

[σ ′](x). (For every σ ′, the resultant protocol is also a�-protocol.) Let E� = (E�,1, E�,2)
be the extractor for �R

[σ ′](x). The protocol NMR
[vk,σ ′](x) is shown in Fig. 2.

We now describe S = (S1,S2) for NMR
[vk,σ ′]. S1(1k) generates signature keys

(vk, sk)← sig genadap(1
k) and then sets σ ′ R←Dk , where D is the distribution en-

semble for �R
[σ ′]. Next, S1(1k) outputs ((vk, σ ′), sk). S2(sk) first checks that common

input x ∈ L̂ R . If not, it aborts. Otherwise it runs the protocol as normal, except gen-
erating s ′ ← sig signadap(sk, vk ′), and using knowledge of s ′ to complete the protocol
�R

[σ ′](x) ∨�Rvk (vk ′).
Finally, we must describe E = (E1, E2) for NMR

[vk,σ ′](x). E1(1k) generates signa-
ture keys (vk, sk)← sig genadap(1

k), generates (σ ′, τ ′)← E�,1(1k), and then outputs
((vk, σ ′), sk, τ ′). E2(τ

′) simply runs asV untilV outputs a bit b. If b = 1, E2(τ
′) takes the

conversation (a, c, z) produced by�R
[σ ′](x), and generates w← E�,2(x, τ ′, (a, c, z)). If

b = 0, E2(τ
′) sets w←⊥. Then E2(τ

′) outputs (b, w).

Theorem 4.1. The protocol NMR
[vk,σ ′](x) is an NMZK argument of knowledge for the

relation R.

Proof. Completeness: Straightforward.
Reference string indistinguishability: Straightforward.
Extractor indistinguishability: It follows from the extractor indistinguishability of

�R
[σ ′](x).
Unbounded ZK: By inspection, S1(1k) produces exactly the same distribution as the

real protocol. Then by the fact that S ′(τ) runs S2(τ) only when (x, w) ∈ R, and by
the fact that for every σ ′, �R

[σ ′](x) ∨�Rvk (vk ′) is an “OR” type of �-protocol, and thus
witness indistinguishable, unbounded ZK follows by a straightforward hybrid argument.

Extraction: For an adversary A = (A1,A2), recall the experiments ExptA(k)
and ExptEA(k) in the definition of NMZK. Let p1 = Pr[ExptA(k) = 1] and p2 =
Pr[ExptEA(k)=1]. Our goal is to show that |p2 − p1| is negligible.

Say a forgery occurs if V or E2 accepts, and the one-time verification key vk ′ in
that session was used by S2(τ), but on a different transcript, or resulting in a different

Strengthening Zero-Knowledge Protocols Using Signatures 187

signature. Let Expt′A(k) be ExptA(k) except that if a forgery occurs, the experiment halts
and fails. Let p′

1 = Pr[Expt′A(k) = 1]. Similar to the proof of Theorem 3.1, we can show
that p′

1 = p1 − c1ε1, where c1 is the number of sessions A2 starts with the simulator in
ExptA(k), and ε1 is negligible.

Now let Expt′′A(k) be ExptEA(k) except that if a forgery occurs, the experiment halts
and fails. As above, we can show that p′

2 = p2−c2ε2, where c2 is the number of sessions
A2 starts with the simulator in ExptEA(k), and ε2 is negligible.

Let p′′ be the probability in Expt′′A(k) that E2(τ) outputs (1, w) for a session with com-
mon input x , and (x, w) ∈ R. Using the extraction property of �R

[σ ′](x), as in the proof
of Theorem 3.1 one can show that there is a non-uniform probabilistic polynomial-time
breaker B0 that makes at most 2c oracle queries and breaks SIGadap with probability at
least ε0 = (p′′)2−2k . Thus by the existential unforgeability of SIGadap, p′′ is negligible.

By extractor indistinguishability again, the probability of producing output b = 1
with a unique transcript in Expt′A(k) and Expt′′A(k) is the same, so p′

2 = p′
1 − p′′.

Then p1 = p′
1 + c1ε1 = p′

2 + p′′ + c1ε1 = p2 − c2ε2 + c1ε1 + p′′, so |p2 − p1| ≤
c1ε1 + c2ε2 + p′′, which is negligible.

We observe that the construction for protocol NMR
[vk,σ ′](x) is in fact same-string un-

bounded ZK, and thus we have the following:

Corollary 4.2. The protocol NMR
[vk,σ ′](x) is a robust ZK argument of knowledge for

the relation R.

5. UCZK

First we review the framework of universal composability [10]. Then we prove that any
NMZK protocol with certain simple properties can be augmented to be UCZK in the
model of static corruptions. This result implies as a corollary that a slight generalization
of our protocol from the previous section can be augmented to be UCZK in this model.
Then we give a new construction that is UCZK in the model of adaptive corruptions.

5.1. The Universal Composability Framework

This framework was suggested by Canetti for defining the security and composition of
protocols [10]. To define security in this framework, one first specifies an ideal func-
tionality, describing the desired behavior of the protocol using a trusted party. Then one
proves that a particular protocol operating in the real world securely realizes this ideal
functionality, as defined below. We briefly summarize this framework:18

• Communication model: We assume an asynchronous network, without guaranteed
delivery of messages. Further, we assume that the messages are authenticated, since
authentication can be added in standard ways (i.e., the FAUTH model in [10]).

• Entities: The basic entities involved are n parties P1, . . . , Pn , an adversaryA, and
an environment Z . All the entities are modeled as probabilistic interactive Turing
machines.

18 The material in this section is taken from [10], [13], and [14]; refer to these references for further detail.

188 J. A. Garay, P. MacKenzie, and K. Yang

• Session IDs and sub-session IDs: Each message also carries a session ID (sid),
and if the message is for a multi-session functionality (see below), an additional
sub-session ID (ssid). These IDs are used to ensure the uniqueness of the sessions. It
is required that no two instances of protocols have the same ID, and this is enforced
by protocols at a higher level. In other words, only when the uniqueness of sid/ssid
is established is the security of the protocols guaranteed. See [10] and [14] for more
discussions on IDs.

• Corruptions: We specify either static or adaptive corruptions, as in [10]. In the
static case, the adversary corrupts parties only at the onset of the computation; in
the adaptive case, the adversary chooses which parties to corrupt as the computation
evolves. Once the adversary corrupts a party, it learns all its internal information,
including the private input, the communication history, and the random bits used,
except the information explicitly erased by the party before the corruption. Once
they are corrupted, the behavior of the parties is arbitrary, or malicious.

• Real-life execution: At a high level, the execution of a protocolπ , run by the parties
in the presence of A and an environment machine Z , with input z, is modeled as a
sequence of activations of the entities, with Z activated first. When Z is activated,
it may write messages on the other entities input tapes (and thus activate it next),
and read messages from the other entities output tapes. WhenA is activated, it may
read messages from a party’s outgoing communication tapes, and write a message
to a party’s incoming communication tapes, thus activating the party. It may also
corrupt parties, as discussed above. When a party is activated, it runs the protocol
π . (See [10] for more detail on the exact description of all the activations.) Finally,
the environment outputs one bit and halts.

For security parameter k ∈ N and input z ∈ {0, 1}∗, let REALπ,A,Z denote the
distribution ensemble of random variables describing Z’s output when interacting
with adversary A and parties running protocol π , with input z, security parameter
k, and uniformly chosen random tapes for all the entities.

• Ideal process: The security of the protocol is defined by comparing the real execu-
tion of the protocol (as described above) to an ideal process in which an additional
entity, the ideal functionality F , is introduced; essentially, F is an incorruptible
trusted party that is programmed to produce the desired functionality of the given
task. Additionally, the parties are replaced by dummy parties, who do not communi-
cate with each other, but instead have access toF . In this idealized execution, again
the environment is activated first, generating the inputs. Whenever a dummy party
is activated, it forwards its input to F . Let S denote the adversary in this idealized
execution. S can see the destinations of the messages between the parties and F ,
but not the contents. (Again, see [10] for the exact description of the activations.)
As in the real-life execution, at some point the environment outputs one bit and
halts.

Let IDEALF ,S,Z denote the distribution ensemble of random variables describing
Z’s output after interacting with adversary S in the ideal process for F , with input
z, security parameter k, and uniformly chosen random tapes for all the participating
entities (Z , S, and F).

• Security: In this framework, a protocol π securely realizes an ideal functionalityF
if for any real-life adversary A there exists an ideal-process adversary S such that

Strengthening Zero-Knowledge Protocols Using Signatures 189

no environment Z , on any input, can tell with non-negligible probability whether
it is interacting with A and parties running π in the real-life execution, or with
S in the ideal process for F . More precisely, two corresponding binary distribu-

tion ensembles are indistinguishable, denoted REALπ,A,Z
c≈ IDEALF ,S,Z in [10]

(meaning that for any d ∈ N there exists k0 ∈ N such that for all k > k0 and for all
inputs z, |Pr[REALπ,A,Z(k, z)] − Pr[IDEALF ,S,Z(k, z)]| < k−d).

• The hybrid model: Protocols typically would invoke other sub-protocols. The
hybrid model is like a real-life execution, except that some invocations of the sub-
protocols are replaced by the invocation of an instance of an ideal functionality
F ; this is called the “F-hybrid model.” Specifically, the model is identical to the
real-life model, with the addition that besides sending messages to each other, the
parties may exchange messages with an unbounded number of copies of F , where
each copy is identified via a unique session identifier (sid). The communication
between the parties and each one of these copies mimics the ideal execution.

Let HYBFπ,A,Z denote the distribution ensemble of random variables describing
the output of Z , after interacting with A and parties running protocol π in the
F-hybrid model. Now let ρ be a protocol that securely realizes F . The composed
protocol πρ is constructed by replacing the first message toF in π by an invocation
of a new copy of ρ, with fresh random input, the same sid, and with the contents of
that message as input; each subsequent message to that copy of F is replaced with
an activation of the corresponding copy of ρ, with the contents of that message as
new input to ρ.

• The composition theorem: The composition theorem [10] basically says that if
ρ securely realizes F in the G-hybrid model, for some functionality G, then an
execution of the composed protocol πρ , running in the G-hybrid model, “emulates”
an execution of protocol π in theF-hybrid model. That is, no environment machine
Z can distinguish whether it is interacting withA and πρ in the G-hybrid model, or

it is interacting with S and π in the F-hybrid model. In other words, HYBGπρ,A,Z
c≈

HYBFπ,S,Z .

The ZK functionality. We now recall the ideal ZK functionality [10]. As a convention,
all the messages from the parties to the ideal functionality take the form (action, sid, . . .),
where action is in lower case, and all messages from the ideal functionality take the form
(OBJECT, sid, . . .), where OBJECT is in upper case. The functionality is given in Fig. 3.
In the functionality, parameterized by a relation R, the prover sends to the functionality
the input x together with a witness w. If R(x, w) holds, then the functionality forwards
x to the verifier.19 As pointed out in [10], this is actually a proof of knowledge in that
the verifier is assured that the prover actually knows w.

One shortcoming of the above formulation is that we will be designing and analyzing
protocols in the common reference string model, and so they will be operating in the
FDCRS-hybrid model, where FDCRS is the functionality that, for a given security parameter
k, chooses a string from distribution Dk and hands it to all parties. However, directly
realizing F R

ZK in the FDCRS-hybrid model and using the universal composition theorem

19 As in [13], we assume there is a symbol ⊥ such that for any relation R and any string x , (x,⊥) ∈ R.

190 J. A. Garay, P. MacKenzie, and K. Yang

Functionality F R
ZK

F R
ZK proceeds as follows, running with security parameter k, a prover Pi , a verifier Pj , and an adversaryS:

• Upon receiving (zk-prover, sid, Pi , Pj , x, w) from Pi : If R(x, w) then send (ZK-PROOF, sid,
Pi , Pj , x) to Pj and S and halt. Otherwise, ignore.

Fig. 3. The ZK functionality (for relation R).

would result in a composed protocol where a new instance of the reference string is
needed for each proof, which (1) is extremely inefficient, and (2) does not reflect the
notion of the CRS model, where an unbounded number of protocol instances would use
the same copy of the string. Canetti and Rabin [14] suggested the following notion to
cope with this problem:

• Universal composition with joint state: Let F and G be ideal functionalities, and
let F̂ denote the “multi-session extension of F ,” in that F̂ will run multiple copies
of F , where each copy is identified by a special sub-session identifier (ssid). Now
let π be a protocol in the F-hybrid model, and let ρ̂ be a protocol that securely
realizes F̂ in the G-hybrid model. Then construct the composed protocol π [ρ̂] by
replacing all the copies of F in π by a single copy of ρ̂. The universal composition
with joint state theorem states that π [ρ̂], running in the G-hybrid model, correctly
emulates π in the F-hybrid model.

The definition of F̂ R
ZK, the multi-session extension of F R

ZK, is shown in Fig. 4. Note
the two types of indices: the sid, which, as before, differentiates messages to F̂ R

ZK from
messages sent to other functionalities, and ssid, the sub-session ID, which is unique per
input message (or proof).

5.2. NMZK Implies UCZK

Let� be an NMZK protocol between a prover and verifier. We say� is augmentable if
the prover sends the first message, and this message contains the common input x , along
with auxiliary data aux that may contain any arbitrary public values. The reason for aux
is discussed below.

First note that the addition of an auxiliary data field is not a trivial modification: since
the auxiliary field becomes an integral part of the proof transcript, the non-malleability
property should apply to this field as well. In other words, the adversary should not be
able to produce a new proof even in the case where the only difference between the
new proof and the proof the adversary sees is the auxiliary field. We do not know if,

Functionality F̂ R
ZK

F̂ R
ZK proceeds as follows, running with security parameter k, parties P1, . . . , Pn , and an adversary S:

• Upon receiving (zk-prover, sid, ssid, Pi , Pj , x, w) from Pi : If R(x, w) then send (ZK-PROOF,

sid, ssid, Pi , Pj , x) to Pj and S and halt. Otherwise, ignore.

Fig. 4. The multi-session zero-knowledge functionality (for relation R).

Strengthening Zero-Knowledge Protocols Using Signatures 191

in general, an NMZK protocol is augmentable. However, it is not hard to show that the
construction of NMZK protocols in Section 4 is augmentable: one simply includes the
auxiliary field in the strong one-time signature.

We will show how to augment � with additional information in each message to
allow it to be used between two parties in the universal composability framework. This
augmented protocol is denoted �̂, and is constructed as follows.

For an instance of �̂ run between parties Pi and Pj , set aux to (ssid, Pi , Pj), where ssid
is defined in the previous section, Pi is the identity of the prover, and Pj is the identity of
the verifier.20 Then the �th prover message is formatted as (prv�, sid, ssid, Pi , prv-data�),
where prv� is the label for the �th prover message, and prv-data� is the data field con-
taining the �th message sent by the prover in �. Analogously, the �th verifier mes-
sage is formatted as (ver�, sid, ssid, Pj , ver-data�), where ver� is the label for the �th
verifier message, and ver-data� is the data field containing the �th message sent by
the verifier in �. Finally, before accepting, the verifier checks that aux corresponds
to the values (ssid, Pi , Pj) outside the prover data field, and that aux was not used
previously.

Here we show that the augmented NMZK protocol �̂ is a UCZK protocol, assuming
static corruptions.21

Theorem 5.1. Let � = (D,P,V,S� = (S�,1,S�,2), E� = (E�,1, E�,2)) be an aug-
mentable NMZK protocol for a relation R. Then the augmented protocol �̂ securely
realizes functionality F̂ R

ZK in the FDCRS-hybrid model, assuming static corruptions.

Proof. Let A be an adversary that operates against protocol �̂ in the FDCRS-hybrid
model. We construct an ideal process adversary (i.e., a simulator) S such that no envi-
ronment Z can tell whether it is interacting withA and �̂ in the FDCRS-hybrid model, or
with S in the ideal process for F̂ R

ZK.
For simplicity, we assume only one copy of F̂ R

ZK is accessed by Z . Obviously we
could duplicate the actions of S for each copy of F̂ R

ZK (differentiated by the sid value).
Simulator S generates (σ, τ1, τ2)← E�,1(1k), uses σ as the common reference string

for FDCRS, and stores τ1 and τ2.
Simulator S runs a simulated copy ofA. Messages received from Z are forwarded to

the simulatedA, and messages sent by the simulatedA to its environment are forwarded
to Z .

If S receives a message (ZK-PROOF, sid, ssid, Pi , Pj , x) from F̂ R
ZK, i.e., Pi is uncor-

rupted and wishes to perform a ZK proof for common input x , then S simulates Pi in �̂.
In particular, S sets the prover data field in the messages of Pi using protocol S�,2(τ1). If
Pj is also uncorrupted, then S simulates Pj in �̂, setting the verifier data field in the mes-
sages of Pj using the actual verifier protocol. In this case, when the simulated Pj receives

20 This auxiliary data aux is necessary since NMZK allows copying proofs exactly, but the UCZK function-
ality does not, and thus we need some way to make every proof distinct.

21 The problem with handling adaptive corruptions is when a prover’s first message is simulated, and then
that prover gets corrupted. Given our simulation, it seems difficult to provide the adversary with internal prover
data that would correctly correspond to its first message.

192 J. A. Garay, P. MacKenzie, and K. Yang

the final message from the simulated Pi , S forwards (ZK-PROOF, sid, ssid, Pi , Pj , x)
to the actual uncorrupted Pj .

If A, controlling a corrupted party Pi , starts an interaction as a prover with an un-
corrupted party Pj using ssid, then S learns common input x (since it is included in the
first message) and simulates Pj in �̂. In particular, it sets the verifier data field in the
messages of Pj using protocol E�,2(τ2). At the end of the interaction E�,2(τ2)will output
(b, w). If b = 1, S sends (zk-prover, sid, ssid, Pi , Pj , x, w) to F̂ R

ZK; otherwise, it sends
nothing. Then it forwards any response from F̂ R

ZK to Pj .

Now we show that HYB
FDCRS

�̂,A,Z
c≈ IDEALF̂ R

ZK,S,Z
.

First we define a new experiment MixA,Z(k). The new experiment runs simulated
copies of Z and A. Messages received from Z are forwarded to the simulated A, and
messages sent by the simulatedA to its environment are forwarded to Z . The simulator
for �, S�,1(1k) is run to produce (σ, τ), and queries to FDCRS are answered with σ . If
an uncorrupted party Pi receives input (zk-prover, sid, ssid, Pi , Pj , x, w) from Z with
(x, w) ∈ R it sets the prover data field of its messages by running protocol S�,2(τ) with
reference string σ , and common input x . An uncorrupted party Pj responds to a prover
as in the actual verifier protocol in �̂. The output of each experiment is the output of Z .

Let MIXA,Z denote the distribution ensemble of random variables describing the
outputs of MixA,Z(k).

By the unbounded ZK property, we have HYB
FDCRS

�̂,A,Z
c≈ MIXA,Z . To see this, note that

we could construct an adversaryA′ that takes a reference string and runs the protocol �̂,
except thatA′ calls a protocol wrapper with label aux = (ssid, Pi , Pj) when simulating
uncorrupted parties acting as provers. If the wrapper contains an actual prover, then the

distribution of outputs ofA′ will be the same as HYB
FDCRS

�̂,A,Z , and if the wrapper contains
a simulator, then the distribution will be the same as MixA,Z(k).

Now we must show that MIXA,Z
c≈ IDEALF̂ R

ZK,S,Z
. This will follow from the un-

bounded extraction property (which is simply a generalized extraction property for
NMZK implied by the standard extraction property, see Definition 5.2 and Lemma 5.3).
Say that the two distributions can be distinguished with probability γ (k). Since both
MixA,Z(k) and S run the same simulation for the prover, and the output messages of the
extractor run by S are perfectly indistinguishable from the output messages of the veri-
fier, the only difference comes from when the extractor outputs an incorrect witness for a
session started byA, and thus Z receives an output message (indicating a correct proof)
in MixA,Z(k) but not when interacting with S. (Note that the transcripts of corrupted
prover/uncorrupted verifier sessions will never be the same as transcripts of uncorrupted
prover/corrupted verifier sessions because of the auxiliary data aux.) Let �b be the vector
corresponding to simulated verifier sessions, with b = 1 corresponding to whether Z
receives an output message. Then the statistical difference between the distribution of
vectors �b resulting from MixA,Z(k) and vectors �b resulting from S is at least γ (k).

Now we construct an NMZK adversary A′ that takes a reference string and runs
MixA,Z(k) except that it uses the given reference string instead of generating a new one,
and that it calls a “simulator” protocol wrapper when simulating uncorrupted parties
acting as provers with corrupted verifiers, and a “verifier” protocol wrapper when simu-

Strengthening Zero-Knowledge Protocols Using Signatures 193

lating uncorrupted parties acting as verifiers with corrupted provers. Then in ExptA′(k),
the vector �b will have the same distribution as the one resulting from MixA,Z(k). On
the other hand, in ExptE�A′ (k), the vector �b will have the same distribution as the one
resulting from S, up until Z receives an output message in MixA,Z(k) that would not
have appeared in S. It should be clear that the distributions of �b in the two experiments
are statistically distinguishable with the same probability as the distributions of �b result-
ing from MixA,Z(k) and S, i.e., γ (k). By the unbounded extraction property, γ (k) is
negligible.

We now define unbounded extraction NMZK, and show that it is implied by our
standard NMZK definition. This notion was used in the previous proof.

Definition 5.2 (Unbounded-Extraction NMZK Proof/Argument of Knowledge). � =
(D,P,V,S = (S1,S2), E = (E1, E2)) is an unbounded-extraction NMZK proof (resp.,
argument) of knowledge system for an NP language L with witness relation R if� is an
NMZK proof (resp. argument) system for L and, furthermore,

Unbounded Extraction. For all non-uniform probabilistic polynomial-time
adversaries A = (A1,A2), where A1 and A2 are coordinated machines,∑

�b∈{0,1}∗ |Pr[ExptEA(k) = �b] − Pr[ExptA(k) = �b]| is negligible, where the ex-

periments ExptA(k) and ExptEA(k) are defined as follows:

ExptA(k): ExptEA(k):
(σ, τ1)← S1(1k) (σ, τ1, τ2)← E1(1k)

(�x, �tr , �b)← (〈
S ′′(τ1) ,A1

〉
, (�x, �tr , (�b, �w))← (〈

S ′′(τ1) ,A1
〉
,〈

A2, V
〉)

[σ]

〈
A2, E2(τ2)

〉)
[σ]

Let Q be the set of transcripts Let Q be the set of transcripts
of machines in S ′′(τ1) . of machines in S ′′(τ1) .

For all i , For all i ,
if ∃tr ′ ∈ Q, tr [i] �� tr ′ if (x[i], w[i]) ∈ R or ∃tr ′ ∈ Q, tr [i] �� tr ′

then b[i] ← 0 then b[i] ← 0
Return �b Return �b

where S ′′(τ) runs as follows on common reference string σ , common input x and
private input w: S ′′(τ) runs S2(τ) on common reference string σ and common
input x .

Lemma 5.3. Let � = (D,P,V,S = (S1,S2), E = (E1, E2)) be an NMZK protocol
for a relation R. Then � is an unbounded extraction NMZK protocol for R.

Proof. First notice that since V and E2(τ2) have exactly the same behavior, there will
be an exact correspondence of vectors returned in the two experiments, except that in
some cases some bits that were 1 in ExptA(k) would be 0 in ExptEA(k). Let βA(k) =∑

�b∈{0,1}∗ |Pr[ExptEA(k) = �b]−Pr[ExptA(k) = �b]|. Now we perform a hybrid argument.

Let ExptE, j
A (k) be the same as ExptEA(k) except that for the first condition ((x[i], w[i]) ∈

194 J. A. Garay, P. MacKenzie, and K. Yang

R), “For all i” is replaced with “For all i ≤ j .” Let � denote the maximum number of
sessions of E2(τ2) started byA2, and notice that � is polynomial in k. Then ExptE,0A (k) is
the same as ExptA(k) and ExptE,�A (k) is the same as ExptEA(k). By a telescoping argument,

�∑

j=1

∑

�b∈{0,1}∗
|Pr[ExptE, j

A (k) = �b] − Pr[ExptE, j−1
A (k) = �b]| ≥ βA(k).

Now let ExptE, j,1
A (k) be the same as ExptEA(k) except that for the first condition

((x[i], w[i]) ∈ R), “For all i” is replaced with “For i = j .” Because V and E2(τ2)

have exactly the same behavior, and thus the output for any machine not equal to j in
ExptE, j−1

A (k) and ExptE, j
A (k) would be the same, it is easy to verify that

�∑

j=1

∑

v∈{0,1}∗
|Pr[ExptE, j,1

A (k) = v] − Pr[ExptA(k) = v]|

=
�∑

j=1

∑

�b∈{0,1}∗
|Pr[ExptE, j

A (k) = �b] − Pr[ExptE, j−1
A (k) = �b]|

≥ βA(k).

Now consider a new adversary A′ = (A1,A′
2) that chooses j ∈ {1, . . . , �} randomly,

where A′
2 runs A2 but simulates V in all but the j th session. In the j th session it

calls the one-time wrapper given to it. From the definition of NMZK, |Pr[ExptEA′(k) =
1] − Pr[ExptA′(k) = 1]| ≤ α(k), and by the analysis above,22

|Pr[ExptEA′(k) = 1] − Pr[ExptA′(k) = 1]|
= 1

2 |Pr[ExptEA′(k) = 1] − Pr[ExptA′(k) = 1]|
+ |Pr[ExptEA′(k) = 0] − Pr[ExptA′(k) = 0]|

= 1

2�

�∑

j=1

∑

b∈{0,1}
|Pr[ExptEA′(k) = b|A′ chooses j]

− Pr[ExptA′(k) = b]|A′ chooses j |

= 1

2�

�∑

j=1

∑

v∈{0,1}∗
|Pr[ExptE, j,1

A (k) = v] − Pr[ExptA(k) = v]|

≥ βA(k)

�
,

so βA(k) ≤ 2� · α(k). The theorem follows.

We say a protocol �̂ is a UCZK protocol for R if it securely realizes functionality F̂ R
ZK

in the FDCRS-hybrid model, for some D.

22 Note that we use the fact that |
∑

k Vk | =
∑

k |Vk | when all Vk have the same sign.

Strengthening Zero-Knowledge Protocols Using Signatures 195

Corollary 5.4. Let � be protocol NMR
[vk,σ ′](x) from Fig. 2 with the addition of the

common input x and aux = (ssid, Pi , Pj) in the first message. Then the augmented
protocol �̂ is a UCZK protocol for R, assuming static corruptions.

5.3. UCZK: Adaptive Corruptions

To deal with adaptive corruption, we apply a technique proposed by Damgård [18] and
Jarecki and Lysyanskaya [37] in which a trapdoor commitment is used to commit to
the first message of a �-protocol, and then this commitment is opened when send-
ing the third message. Informally, a trapdoor commitment is a commitment scheme
with the additional property that there is a secret trapdoor such that knowing the trap-
door allows a committer to decommit to an arbitrary value. More precisely, TC =
(TCgen,TCcom,TCver,TCkeyver,TCfake) is a trapdoor commitment scheme if it sat-
isfies the properties of completeness, binding, perfect secrecy, and trapdoorness. The first
three properties are the same as in any unconditionally hiding commitment scheme. The
trapdoor property says (informally) that TCgen(1k) outputs a secret key (the trapdoor)
along with the public key, and that using this secret key and a commitment/decommit-
ment pair (c, d) associated with a value v (i.e., (c, d)← TCcom(pk, v)), the function
TCfake can for any value v′ output a decommitment d ′ that is a valid decommitment of
c resulting in v′ (i.e., TCver(pk, c, v′, d ′) = 1).

However, this technique alone does not seem to yield a UCZK protocol for adaptive
corruption. There are two problems remaining. First, it does not yield a non-rewinding
witness extractor, which is needed for UCZK. Second, in the setting of UCZK, an ideal
adversaryS might use the trapdoor to “cheat,” i.e., to decommit to arbitrary values, while
at the same time it still needs the binding property for the real-life adversaryA. A “plain”
trapdoor commitment scheme does not provide such a guarantee.

We solve these two problems by (1) using an �-protocol in the place of the �-
protocol; recall that�-protocols allow for non-rewinding extractors, and (2) introducing
a stronger type of trapdoor commitment scheme, which we call a simulation-sound trap-
door commitment (SSTC) scheme.23 Roughly speaking, an SSTC scheme is a trapdoor
commitment scheme with an extra input id to the commitment protocol, which guar-
antees that a commitment made by the adversary using input id is binding, even if the
adversary has seen any commitment using input id opened (using a simulator that knows
a trapdoor) once to any arbitrary value, and, moreover, any commitment using id′ = id
opened (again using the simulator) an unbounded number of times to any arbitrary val-
ues. Such a trapdoor commitment scheme enables an ideal adversary to “cheat” while
maintaining the binding property for the real-life adversary. We shall see that when we
apply these two solutions, the protocol becomes universally composable with respect to
adaptive corruption.24

23 Universally composable commitments [11], [13] would also suffice, and can be constructed using trapdoor
permutations. However, this construction is not as efficient as the SSTC scheme in this paper.

24 As a technical note, we comment that on the face, this construction does not use the technique of adding
a proof of knowledge of signature, as in previous constructions. However, such a technique will be used in the
construction of the SSTC schemes.

196 J. A. Garay, P. MacKenzie, and K. Yang

Here we formally define an SSTC scheme, building on the formalization for trapdoor
commitment schemes by Reyzin [52].

Definition 5.5 (Simulation-Sound Trapdoor Commitment (SSTC) Scheme). TC =
(TCgen,TCcom,TCver,TCkeyver,TCfake) is an SSTC scheme if TCgen, TCcom,
TCver, TCkeyver, and TCfake are probabilistic polynomial-time algorithms such that

Completeness. For all id, all k > 0, and for all values v,

Pr[(pk, sk)
R← TCgen(1k); (c, d)

R← TCcom(pk, v, id):

TCkeyver(pk, 1k) = TCver(pk, c, v, id, d) = 1] = 1.

Simulation-Sound Binding. For all non-uniform probabilistic polynomial-time ad-
versaries A, there is a negligible function α(k) such that for all k > 0,

Pr[(pk, sk)
R← TCgen(1k); (c, id, v1, v2, d1, d2)

R← 〈S(sk),A〉(pk):

(TCver(pk, c, v1, id, d1) = TCver(pk, c, v2, id, d2) = 1)

∧(v1 = v2) ∧ id ∈ Q] ≤ α(k),

where S(sk) operates as follows, with Q initially set to ∅:
• On input (commit, v, id):

compute (c, d)← TCcom(pk, v, id), store (c, v, id, d), and return c.
• On input (decommit, c, v′):

if for some v, id, d a tuple (c, v, id, d) is stored, compute d ′ ← TCfake(pk, sk, c,
v, id, d, v′). If some previous (decommit, c, ∗) has been input, add id to Q.
Return d ′.

Hiding. For all k > 0 and all pk such that TCkeyver(pk, 1k) = 1, for all id, and for
all v1, v2 of equal length, the following probability distributions are identical:

{(c1, d1)
R← TCcom(pk, v1, id): c1} and {(c2, d2)

R← TCcom(pk, v2, id): c2}.

Trapdoor Property. For all k > 0 and all (pk, sk) generated with non-zero prob-
ability by TCgen(1k), for all id, and for all v1, v2 of equal length, the following
probability distributions are identical:

{(c, d1)
R← TCcom(pk, v1, id); d ′

2
R← TCfake(pk, sk, c, v1, id, d1, v2) : (c, d ′

2)}

and

{(c, d2)
R← TCcom(pk, v2, id) : (c, d2)}.

(In particular, faked commitments are correct.)

We remark that an SSTC scheme is similar to an ID-based trapdoor commitment
scheme as defined in [5], but where multiple adaptively chosen IDs may be used. Also,
building on this paper, a simpler definition of an SSTC scheme (that also can be used to
construct UCZK proofs secure against adaptive corruptions) is given in [45].

Strengthening Zero-Knowledge Protocols Using Signatures 197

prover verifier

(x, aux, a)← a�(x, aux, w, r, σ)

(a∗, d∗)← TCcom(pk∗, a, aux)
x, aux, a∗

✲
c

R← {0, 1}k

✛ c

z ← z�(x, aux, w, r, c, σ)

erase(r, w)
z, a, d∗

✲ TCkeyver(pk∗, 1k)

TCver(pk∗, a∗, a, aux, d∗)
verify�(x, aux, a, c, z, σ)

Fig. 5. UCR
[pk∗,σ](x; aux): A UCZK protocol for R with common reference string (pk∗, σ) drawn from

Dpk(TC)×Dσ (�R), common input x , and auxiliary input aux where � = �R
σ (x; aux).

Now, let� be an augmentable NMZK protocol with common input x , auxiliary input
aux, prover random bits r , and common reference string σ . As for �-protocols, we use
the notation a�(·), z�(·), and verify�(·) to denote the algorithms for computing the two
messages of the prover, and for verifying the proof, respectively. Using this notation, the
protocol UCR

[pk∗,σ](x; aux) is shown in Fig. 5.

Theorem 5.6. Let � be an �-protocol �R
[pk∗,σ](x; aux), where aux = (ssid, Pi , Pj).

Then the augmented protocol �̂ securely realizes functionality F̂ R
ZK in the FDCRS-hybrid

model where erasing is allowed, assuming adaptive corruptions.

Proof. Let A be an adversary that operates against protocol �̂ in the FDCRS-hybrid
model. We construct an ideal process adversary S such that no environment Z can tell
whether it is interacting with A and �̂ in the FDCRS-hybrid model, or with S in the ideal
process for F̂ R

ZK.
For simplicity, we assume only one copy of F̂ R

ZK is accessed by Z . Obviously we
could duplicate the actions of S for each copy of F̂ R

ZK (differentiated by the sid value).
Formally, let� be an�-protocol with simulator S� and extractor E� = (E�,1, E�,2).
At the beginning of the ideal process, the ideal adversaryS generates (σ, τ)←E�,1(1k),

generates (pk∗, sk∗)
R← TCgen(1k), uses (pk∗, σ) as the common reference string for

FDCRS, and stores sk∗ and τ .
During the ideal process, S runs a simulated copy ofA. Messages received fromZ are

forwarded to the simulatedA, and messages sent by the simulatedA to its environment
are forwarded to Z .

If S receives a message (ZK-PROOF, sid, ssid, Pi , Pj , x) from F̂ R
ZK, i.e., Pi is uncor-

rupted and has given a witness w to F̂ R
ZK such that (x, w) ∈ R, then S simulates Pi in

�̂. In particular, S sets the prover data field in the first message of Pi by generating a
commitment (as in the actual prover protocol) to an arbitrary string â with appropriate
length (say, â = 0l , where l is the size of field “a” in the output of a�(·)). More precisely,
S invokes (â∗, d̂∗)← TCcom(pk∗, â, aux) and sends (x, aux, â∗) to Pj as the first mes-
sage. After receiving the challenge (as the second message) c from Pj , S invokes the
simulator S� and obtains (a, c, z) = M�(x, σ, c). Then S fakes a decommitment for

198 J. A. Garay, P. MacKenzie, and K. Yang

a by invoking d∗ = TCfake(pk∗, sk∗, â∗, â, aux, d̂∗, a), and sends (z, a, d∗) to Pj as
the final message. If Pi is corrupted before receiving a challenge, then the witness w is
revealed. In this case, S invokes the actual first-message function a� to produce the first
message a, instead of using the simulator S�. Again, S fakes a decommitment in this
case.

If Pj is also uncorrupted, then S simulates Pj in �̂, setting the verifier data field in the
message of Pj (in particular, the random challenge) using the actual verifier protocol.
In this case, when the simulated Pj receives the final message from the simulated Pi , S
forwards (ZK-PROOF, sid, ssid, Pi , Pj , x) to the actual uncorrupted Pj .

If A, controlling a corrupted party Pi , starts an interaction as a prover with an un-
corrupted party Pj using ssid, then S learns common input x (since it is included in the
first message) and simulates Pj (as the verifier) in �̂. More precisely, it fills the verifier
data field with a random challenge c, receives as the final message (z, a, d∗) from A,
and verifies the messages. At the end of the interaction, if all the verifications pass, the
extractor E�,2(x, τ, (a, c, z)) will be invoked and output a witness w. If R(x, w) = 1,
S sends (zk-prover, sid, ssid, Pi , Pj , x, w) to F̂ R

ZK; otherwise, it sends nothing. Then it
forwards any response from F̂ R

ZK to Pj .
Now we show that

HYB
FDCRS

�̂,A,Z
c≈ IDEALF̂ R

ZK,S,Z
,

which implies our theorem.
First we define a new experiment MixA,Z(k). Intuitively, this new experiment is a

“mixture” of the hybrid model and the ideal process, in that an uncorrupted party acting
as a prover is handled as in the ideal process (i.e., S will use the trapdoor to simulate a
proof), but an uncorrupted party acting as a verifier is handled as in the hybrid model (i.e.,
no extraction takes place). More precisely, the new experiment runs simulated copies of
Z and A. Messages received from Z are forwarded to the simulated A, and messages
sent by the simulatedA to its environment are forwarded toZ . E�,1(1k) is run to produce

(σ, τ), then (pk∗, sk∗)
R← TCgen(1k) are generated. Just as in the case of IDEALF̂ R

ZK,S,Z
,

(pk∗, σ) is used as the common reference string for FDCRS, and sk∗ and τ are stored. If
an uncorrupted party Pi receives input (zk-prover, sid, ssid, Pi , Pj , x, w) from Z with
(x, w) ∈ R, it sets the prover data field of its messages in the same way as S above.
Corruptions are handled in the same way as S above. An uncorrupted party Pj responds
to a prover as in the actual verifier protocol in �̂. The output of each experiment (hybrid
model, ideal process, and MixA,Z(k)) is the output of Z .

Let MIXA,Z denote the distribution ensemble of random variables describing the

outputs of MixA,Z(k). First, we can show that HYB
FDCRS

�̂,A,Z
c≈ MIXA,Z . In fact, it comes

from the fact that the SSTC scheme is perfectly hiding and a straightforward hybrid
reduction to the simulator S� of the �-protocol �.25

Now we must show that MIXA,Z
c≈ IDEALF̂ R

ZK,S,Z
, which will finish the proof to

our theorem. This will follow similar to the proof of Theorem 5.1, but also using the
simulation-sound binding property of the trapdoor commitment scheme.

25 Note that if a corruption occurs between the first and second messages to the wrapper machine for the
simulation, it will be just as if the simulation never received the second message.

Strengthening Zero-Knowledge Protocols Using Signatures 199

Let p = Pr[IDEALF̂ R
ZK,S,Z

(k)] and p′ = Pr[MixA,Z(k)]. Similar to the proof of The-
orem 5.1, the only difference between MixA,Z(k) and S comes from when the extractor
in S outputs an incorrect witness for a session started byA, and thus Z receives an out-
put message (indicating a correct proof) in MixA,Z(k) but not when interacting with S.
(Note that the transcripts of corrupted prover/uncorrupted verifier sessions will never be
the same as transcripts of uncorrupted prover/corrupted verifier sessions because of the
auxiliary data aux.) Let �b be the vector corresponding to simulated verifier or extractor
sessions, with b = 1 corresponding to whether Z receives an output message. Let ρ be
the statistical difference between the distribution of vectors �b resulting from MixA,Z(k)
and vectors �b resulting from S. (Note that ρ ≥ |p − p′′|.) Let u be an upper bound on
the number of verifier sessions. Then the average probability of a difference in a given
bit position is at least ρ/u.

To complete the proof, we simply need to show thatρ is negligible. Let C be the number
of times Z sends zk-prover messages to the parties. Now we construct an adversary B
that breaks the SSTC scheme TC with probability 1

2 ((ρ/u)
2 − 2−k) and with at most 2C

calls to the commitment-revealing oracle. Therefore, it will follow that ρ is negligible.
We describe the adversary B. Let B take a public key pk of TC along with a TC

simulator. First B chooses a random � ∈ {1, . . . , u}, and then it runs as S, except for
(1) changing the common reference string from (∗, σ) to (pk, σ), and (2) using the
TC simulator to fake commitments. Also, before sending a challenge (as the second
message) in session �, B forks the experiment and continues independently in each
sub-experiment (thus giving random independent challenges to A). Then B examines
the output (x, tr1, b1) and (x, tr2, b2) in each sub-experiment. If b1 = b2 = 1 and x ∈ L R

(call this a successful sub-experiment), and also the challenges in each sub-experiment
are distinct, then we know that A has decommitted differently in two sub-experiments.
This is because of the property of the �-protocol; if A had decommitted in the same
way, then there exist two accepting conversations with the same first-message, and then
a witness should be extracted, indicating that x ∈ L R . However, now B has obtained
two different decommitments, successfully breaking TC. By Lemma A.1, a successful
sub-experiment occurs with probability at least (ρ/u)2 − 2−k , and thus either B will
break the SSTC scheme TC with probability 1

2 ((ρ/u)
2 − 2−k), as claimed above.

6. Efficient Instantiations

Here we briefly describe some efficient instantiations of our constructions. First, we
discuss two efficient signature schemes (namely, the Cramer–Shoup signature scheme
and the DSA signature scheme) and two associated efficient �-protocols that can be
plugged into our constructions of SSZK, NMZK, and UCZK protocols. Second, we
construct an efficient SSTC scheme based on DSA that can be used in our construction
of a UCZK protocol. Third, we give an example of an efficient �-protocol for the
discrete logarithm relation, thus implying efficient NMZK and UCZK protocols for
discrete logarithms. Finally, we describe a generalized definition of �-protocols, which
can replace�-protocols in an appropriately generalized definition of NMZK protocols.26

26 We note that this generalization is not applicable to UCZK protocols.

200 J. A. Garay, P. MacKenzie, and K. Yang

Then we present a very efficient27 generalized �-protocol for proving knowledge of
the plaintext of an ElGamal ciphertext, thus implying an efficient NMZK protocol for
ElGamal plaintext knowledge.

6.1. Signature Schemes

First we note that for our constructions we can use a more general version of the
�-protocol for proving knowledge of signatures, as follows. Consider the binary re-
lation Rvk = {(m, s)} for a signature scheme SIG. We say a polynomial-time com-
putable function f is a partial knowledge function of SIG, if there exists a probabilis-
tic polynomial-time machine M such that for every m and vk, {s1: s1 ← M(m, vk)}
and {s1: s ← sig sign(vk,m); s1 ← f (m, vk, s)} have the same distribution. Intuitively,
a partial knowledge function carries part of the information about the signature, yet
can be efficiently sampled without even knowing one.28 For a signature scheme SIG
with partial knowledge function f , the relation R′

vk = {((m, s1), s): (m, s) ∈ Rvk ∧
s1 = f (m, vk, s)} can replace Rvk in the constructions for SSR

[vk], NMR
[vk,σ ′](x), and

UCR
[pk∗,vk,σ ′](x), with P sending a randomly sampled s1 (partial knowledge) before run-

ning the �-protocol �R(x) ∨ �R′
vk (vk ′, s1). We say R′

vk is a partial signature relation
for SIG.

Here we show that the Cramer–Shoup signature scheme [17] and the DSA signature
scheme [41] both admit efficient�-protocols for proving knowledge of signatures using
this more general definition, and thus can be plugged into our constructions.

The Cramer–Shoup signature scheme. Cramer and Shoup [17] presented an efficient
signature scheme that is existentially unforgeable against adaptive chosen-message at-
tacks under the Strong RSA Assumption, formally defined in Appendix 6.4. In addition to
the main security parameter k, they use a secondary security parameter k ′ for public key
modulus size:29 The value k ′ is dependent on k and is set so that known attacks on public
key systems with modulus size k ′ are at least as hard as known attacks on hash functions
and other brute-force attacks on systems with main security parameter k. Here we de-
scribe their scheme, which we denote SIGCS = (sig genCS, sig signCS, sig verifyCS):30

• sig genCS(1k):
p, q

R← SAFEPRIME(1k ′/2); N ← pq; x, h
R← QRN ; e′

R← PRIME(1k+1);
H

R← HASH(1k); sk ← 〈p, q〉; vk ← 〈N , h, x, e′, H〉;
return (sk, vk).

• sig signCS(sk,m):
y′ R← QRN ; x ′ ← (y′)e

′ · h−H(m) mod N ; e
R← PRIME(1k+1)\{e′};

27 In particular, this protocol is more efficient than the best (strict) �-protocol that we have found.
28 We comment that there alway exist trivial partial knowledge functions, e.g., the constant function. Nat-

urally we are only interested in ones that allows efficient ZK proofs.
29 For today’s technology, reasonable values may be k = 256 and k′ = 1024.
30 Some technical notations: a prime number p is a safe prime if (p − 1)/2 is also a prime number.

SAFEPRIME(1n) is the set of all n-bit safe prime numbers; PRIME(1n) is the set of all n-bit prime numbers;
Q RN is the set of all quadratic residues in Z∗N , and HASH(1n) is a set of efficient hash functions that maps
strings of arbitrary length to an n-bit string.

Strengthening Zero-Knowledge Protocols Using Signatures 201

y ← (xh−H(x ′))e
−1 modϕ(N) mod N ;

return 〈e, y, y′〉;
• sig verifyCS(vk,m, 〈e, y, y′〉):

if e is not an odd k + 1 bit number, or e = e′, return 0;
x ′ ← (y′)e

′ · h−H(m) mod N ;
if x ≡ yehH(x ′) mod N return 1, else return 0.

As a technical note, instead of an expected polynomial-time algorithm for prime gen-
eration, we assume a probabilistic strict polynomial-time algorithm that has a negligible
probability of failing. This has no effect on the following security result.

Theorem 6.1 [17]. The Cramer–Shoup signature scheme is secure against adaptive
chosen-message attack, under the Strong RSA assumption and the assumption that H is
collision-resistant.

Note that from a public key vk, a message m, and a signature 〈e, y, y′〉 on m, one
can extract the pair (e, y′). Also note that for a randomly generated signature, this pair
(e, y′) is random, i.e., e is a random k-bit prime not equal to e′, y′ is a random element of
QRN ,31 and they are independent. Therefore, function f (m, vk, 〈e, y, y′〉) = (e, y′) is
a partial knowledge function for Cramer–Shoup. Furthermore, given vk, m, and (e, y′),
one can compute x ′ ← (y′)e

′ · h−H(m) mod N , and then y is simply a root of a known
element, i.e., y is the eth root of x ·hH(x ′) mod N . Guillou and Quisquater [36] presented
a �-protocol for proving knowledge of roots that has the special soundness property.
Their protocol can be directly adopted here for proving the partial signature relation R′

vk .

DSA. The Digital Signature Algorithm [41] was proposed by NIST in April 1991, and
in May 1994 was adopted as a standard digital signature scheme in the U.S. [28]. It
is a variant of the ElGamal signature scheme [24], and is defined as follows, with two
security parameters k and k ′ as in the Cramer–Shoup signature scheme:32

• sig genDSA(1k):
q ← PRIME(1k); p

R← PRIME(1k ′
), where q|(p−1); g

R← Z
∗
p, where order(g) = q;

x
R← Zq ; y ← gx mod p; sk ← 〈g, p, q, x〉; vk ← 〈g, p, q, y〉;

return (sk, vk).
• sig signDSA(sk,m):
v

R← Zq ; r ← gv mod p; s ← v−1(H(m)+ xr) mod q;
return 〈r mod q, s〉.

• sig verifyDSA(vk,m, 〈r ′, s〉):
If 0 < r ′ < q , 0 < s < q , and r ′ ≡ ((gH(m)yr ′)s

−1 modq mod p) mod q, return 1,
else return 0.

31 We assume that e′ is not a factor of ϕ(N), which is false with only negligible probability.
32 In the DSA standard, k, k′, and H are fixed in the following way: k = 160, k′ is set to a multiple of

64 between 512 and 1024, inclusive, and hash function H is defined as SHA-1 [27]. However, we use these
parameters as if they could be varied according to the security level desired.

202 J. A. Garay, P. MacKenzie, and K. Yang

The security of DSA intuitively rests on the hardness of computing discrete logarithms,
but there is no known security reduction that proves this. However, it is often simply
assumed that DSA is existentially unforgeable against adaptive chosen-message attack.

Note that from a public key vk, a message m, and a signature 〈r ′, s〉, one can efficiently
compute a value r ← gH(m)s−1

yr ′s−1
mod p. Also note that for a randomly generated

signature, the value r is a random element generated by g. Therefore, f (m, vk, 〈r ′, s〉) =
r is a partial knowledge function for DSA. Furthermore, given vk, m, and r , s is simply
a discrete log base r of the known element gH(m)yr mod p. Schnorr [55] presents a �-
protocol for proving knowledge of a discrete log, which satisfies the special soundness
property. This protocol can be used to prove the partial signature relation R′

vk .

6.2. SSTC Scheme

Here we present an efficient SSTC scheme TC based on DSA. First, though, we describe
a slightly simpler scheme TC′ for weak SSTCs, when id is always the empty string (and
thus, in essence, no double reveal queries to the trapdoor commitment simulator are
allowed). We can implement this simpler scheme over elements from a group (G,+) by
using a technique similar to that in [19] that involves two trapdoor commitment schemes
TC0 and TC1 that commit to elements in G. The trapdoor in TC′ is the trapdoor of one
of TC0 or TC1 along with a bit indicating which. To commit to a message m, generate
random m0 ∈ G, set m1 ← m − m0, and commit to m0 and m1 using TC0 and TC1,
respectively, i.e., generating commitment (c0, c1). To open a commitment (c0, c1), open
each commitment, say to (m0,m1). Then m = m0 + m1 is the decommitted value. To
open a commitment of (c0, c1), say of (m0,m1), to an arbitrary value m ′ using trapdoor
(b, skb), i.e., trapdoor skb of TCb, open commitment c1−b normally, and use skb to open
commitment cb to m ′ − m1−b. (A proof that this satisfies the weak simulation-sound
binding property follows closely from [19].) This scheme does not satisfy the full notion
of simulation-sound binding, since after revealing a commitment in two different ways
(even one with an arbitrary id), the adversary can determine which trapdoor is used, and
this would cause the proof from [19] to fail.33

Our scheme TC that satisfies simulation-sound binding uses the same technique as
above of being built over two commitment schemes TC0 and TC1, but each of those will
be built over DSA as follows. Given a DSA public key (g, p, q, y), a commitment to
a message m using id is generated as follows. First compute α

R← Zq , g′ ← gα mod p,
and h = gH(id)yg′

mod p. (Note that s is the discrete log of h over g′ if and only if
(g′ mod q, s) is a DSA signature for id.) Then use a Pedersen commitment [49] over
bases (g′, h) to commit to m, i.e., choose β

R← Zq and compute commitment (g′, c)
where c ← (g′)mhβ . To open this commitment, output (m, β).

To show the simulation-sound binding property, we show that if an adversary can
break this property, we can break DSA as follows. (We assume that DSA is existen-
tially unforgeable against a adaptive chosen-message attack.) Given a DSA key vk0 and

33 One could use this scheme with weak simulation soundness in our UCZK adaptive protocol, but it would
require the common reference string to contain one trapdoor commitment public key for each party.

Strengthening Zero-Knowledge Protocols Using Signatures 203

signature oracle, we generate another DSA key pair (vk1, sk1), choose a bit b, and say
(vkb, vk1−b) is the public key for our commitment scheme.

Now say we know which id the adversary is going to use in its commitment with
double opening. To commit to a value v using id, we compute an actual signature for
id using sk1, and then commit to some value using that signature. Then we use the
knowledge of the signature to decommit to an arbitrary value m. (Note that we can do
this, since knowledge of the DSA signature implies knowledge of the discrete log used
in the Pedersen commitment, which further allows equivocation of the commitment.)
To commit to a value v using id′ = id, we choose a bit b′ to decide which scheme to
compute a signature (and thus which scheme will be used to equivocate on commitments,
as discussed above). If b′ = 0, we compute a signature using the DSA signature oracle
on id′, and if b′ = 1 we compute a signature using sk1.

Now the adversary’s view is independent of b, and thus if the adversary gives a double
opening with id, then with probability at least 1

2 , there will be different openings (m0, β0)

and (m ′
0, β

′
0) of (g′

0, c0), so (g′
0 mod q, (β ′

0 −β0)/(m0 −m ′
0) mod q) is a signature (with

respect to the public key vk0) on id, breaking DSA. Note that if we do not know which
id will be used by the adversary, we would have to guess this, reducing the probability
of breaking DSA by a polynomial factor (at most proportional to the running time of the
adversary).

6.3. An Efficient �-Protocol

We describe an efficient�-protocol for proving knowledge of a discrete logarithm. This
protocol is based on the Decisional Composite Residuosity assumption and the Strong
RSA assumption, formally defined in Appendix 6.4.

Let (g, p, q) be public parameters, where q and p are primes with q|(p − 1), and
g ∈ Z∗

p with order(g) = q . Let R be the discrete logarithm relation: R = {(y, x): y ≡
gx mod p}. Our�-protocol for R is constructed as follows: The common reference string
consists of two parts: (1) a Paillier public key pk = 〈N , h〉 where N is an RSA modulus
and h ∈ Z∗

N 2 with N |order(h), and (2) a triple 〈Ñ , h1, h2〉 where Ñ = (2P̃ +1)(2Q̃+1)

is an RSA modulus where P̃ and Q̃ are prime, and h1 and h2 are generators in Z∗
P̃ Q̃

.
The prover and the verifier share a common input y, while the prover also knows x ,
such that gx = y. In the first message, the prover sends an encryption of x using the
Paillier encryption key pk. Then a �-protocol is used to prove that the plaintext in the
Paillier encryption is indeed the discrete log of y. A technical difficulty is that the discrete
logarithm and the Paillier encryption work in different moduli. To overcome this we use
the known technique of adding a commitment to x using two generators (h1, h2) over a
third modulus Ñ of unknown factorization [7]–[9], [29], [43]. The detailed construction
is presented in Appendix 6.4.

6.4. An Efficient Generalized �-Protocol

For an NP relation R = {(x, w)} and a polynomial-time computable function f , let
Rf = {(x, f (w)) : (x, w) ∈ R}. (Note that Rf may not itself be an NP relation.)
Then we define an f -extracting �-protocol for R as an �-protocol for R except that

204 J. A. Garay, P. MacKenzie, and K. Yang

the extractor E2 outputs f (w), instead of w. Similarly, we can define an f -extracting
NMZK protocol in which the extractor E2 outputs f (w), instead of w, and the ex-
traction condition is changed appropriately.34 It is easy to see that if we replace the
�-protocol in our construction of NMZK protocols with an f -extracting �-protocol,
our construction yields an f -extracting NMZK protocol. Note that the prover in both
�-protocols and NMZK protocols still receives the “full” witness w. Also note that if f
is the identity function, we have the normal definitions of an �-protocol and an NMZK
protocol.

One application of these generalized definitions is in proving plaintext knowledge.
See [39] for some applications of proof of plaintext knowledge. Consider a semantically
secure encryption scheme. This scheme naturally induces a relation R = {(e, (x, r))},
where e is the encryption of plaintext x using random bits r . Then consider a function f
defined as x ← f (x, r). It is easy to see that an f -extracting �-protocol for R is essen-
tially a proof of plaintext knowledge, so we call this function f a plaintext knowledge
function.

We now present a very efficient f -extracting �-protocol for ElGamal encryption,
where f is a plaintext knowledge function. Let (g, p, q) be public parameters, where q
and p are primes with q|(p − 1), and g ∈ Z∗

p with order(g) = q. Then the ElGamal
encryption scheme can be formally defined as follows, with the message space being the
subgroup generated by g:

• enc genEG(g, p, q):
x

R← Zq ; y ← gx mod p; sk ← x ; pk ← y;
return (sk, pk).

• encryptEG(vk,m):
r

R← Zq ; a ← gr mod p; b ← myr mod p;
return (a, b).

• decryptEG(sk, (a, b)):
return b/ax

The relation for the ElGamal system is R = {((a, b), (m, r)): (a ≡ gr mod p)∧(b ≡
myr mod p)}, and f is defined such that m ← f (m, r). The f -restricted �-protocol is
constructed as follows. The common reference string is a new public key y′ for the
ElGamal system, which is generated by running (x ′, y′)← enc genEG(g, p, q) using
fresh random bits. The corresponding decryption key x ′ is discarded. The prover takes
(a, b) = (gr ,myr), which is an encryption of a message m (using random bits r), and
then constructs a new encryption using the encryption key in the common reference string
(a′, b′)← (gr ′ ,m(y′)r

′
), where r ′ R← Zq . The prover then sends (a′, b′) to the verifier,

and performs a �-protocol proving that the two ElGamal encryptions have the same
plaintext. The�-protocol proceeds as follows. The prover picksw,w′ ← Zq , computes
d ← gw, d ′ ← gw

′
, and e ← yw/(y′)w

′
, and outputs (d, d ′, e) as the first message. On

challenge c, the prover computes s ← rc + w mod q and s ′ ← r ′c + w′ mod q, and

34 Note that the resulting NMZK protocols cannot necessarily be used to construct UCZK protocols (even
with static corruptions), since UCZK protocols are, by definition, proofs of knowledge.

Strengthening Zero-Knowledge Protocols Using Signatures 205

outputs (s, s ′) as the third message. Finally the verifier verifies that gs = acd, gs ′ =
(a′)cd ′, and ys/(y′)s

′ = (b/b′)ce.
SHVZK is satisfied since given input (a, b) ∈ L R and a challenge c, a simula-

tor can generate an encryption (a′, b′) of an arbitrary value, and then use the perfect
SHVZK property of the �-protocol to generate an accepting conversation. By the se-
mantic security of ElGamal, the output of the simulator is computationally indistinguish-
able from that of an actual prover. Now we show the f -extraction property is satisfied.
Let E1(1k) generate a fresh ElGamal key pair (sk ′, vk ′)← enc genEG(g, p, q), putting
vk ′ in the common reference string, and passing the decryption key sk ′ to E2, which
then interacts with the prover and obtains an accepting transcript tr . Finally E2 outputs
m ′ ← decryptEG(sk ′, (a′, b′))where (a′, b′) is the encryption in the transcript tr . By the
weak soundness property of the �-protocol, the probability that m ′ is not the plaintext
in the encryption (a, b) is at most 2−k (assuming k-bit challenges).

Acknowledgements

We thank the anonymous referees for their many useful comments and suggestions.

Appendix A. The Exclusive Collision Lemma

We prove the lemma used in the proof of Theorem 3.1.

Lemma A.1 (The Exclusive Collision Lemma). Let A be a random variable and let
Ba be a random variable whose distribution is parameterized by a value a in the support
of A. For every a in the support of A, and for every b1 and b2 in the support of Ba ,
let Colla(b1, b2) be a predicate defining a collision. Let q be the maximum (over all
a in the support of A) probability of a collision of two independent random variables
B1

a and B2
a , i.e., q = maxa{Prob[Colla(B1

a , B2
a)]}. Let ϕ(a, b) be a predicate, and let

p = Prob[ϕ(A, BA)]. Let ϕ′(a, b1, b2) = ϕ(a, b1) ∧ ϕ(a, b2) ∧ (¬Colla(b1, b2)). Then
we have Prob[ϕ′(A, B1

A, B2
A)] ≥ p2 −q, where B1

A and B2
A are independent conditioned

on A.

Proof. We define a new predicate ϕ′′(a, b1, b2) = ϕ(a, b1) ∧ ϕ(a, b2), which is es-
sentially predicate ϕ′ without the requirement that ¬Colla(b1, b2). For every a in the
support of A, let pa = Prob[ϕ(a, Ba)]. Let pA be the function of random variable
A taking value pa when A = a. Then we have p = Prob[ϕ(A, BA)] = E[pA] and
Prob[ϕ′′(A, B1

A, B2
A)] = E[(pA)

2] ≥ (E[pA])2 = p2. (The inequality holds because
E[(pA)

2] − (E[pA])2 is the variance of pA, and the variance is always positive.)
Finally we have

Prob[ϕ′(A, B1
A, B2

A)] ≥ Prob[ϕ′′(A, B1
A, B2

A)] − Prob[CollA(B
1
A, B2

A)] ≥ p2 − q.

We remark that, using a tighter analysis, the lower bound on Prob[ϕ′(A, B1
A, B2

A)] in
Lemma A.1 can be improved to p2 − pq.

206 J. A. Garay, P. MacKenzie, and K. Yang

Appendix B. Number-Theoretic Assumptions

We review some of the number-theoretic assumptions used in this paper.

The Strong RSA assumption. The Strong RSA assumption is a generalization of the
standard RSA assumption which (informally) states that given an RSA modulus N and an
exponent e, it is computationally infeasible to find the eth root of a random x . Informally,
the Strong RSA assumption states that it is infeasible to find an arbitrary non-trivial root
of a random x .

More formally, we say that p is a safe prime if both p and (p−1)/2 are prime. Then let
RSA-Gen(1k) be a probabilistic polynomial-time algorithm that generates two random
k/2-bit safe primes p and q, and outputs N ← pq.

Assumption B.1 (Strong-RSA). For any non-uniform probabilistic polynomial-size
circuit A, the following probability is negligible in k:

Pr[N ← RSA-Gen(1k); x ← Z
∗
N ; (y, e)←A(1k, x, N) : ye ≡ x mod N ∧ e ≥ 2].

The Strong RSA assumption was introduced by Barić and Pfitzmann [4], and has
been used in several applications (see [29], [30], and [17]). It is a stronger assumption
than the “standard” RSA assumption, yet no method is known for breaking it other than
factoring N .

The Paillier cryptosystem and the decision composite residuosity assumption. The
Paillier encryption scheme [48] is defined as follows, where λ(N) is the Carmichael
function of N , and L is a function that takes input elements from the set {u < N 2|u ≡
1 mod N } and returns L(u) = (u − 1)/N . This definition differs from that in [48] only in
that we define the message space for public key pk = 〈N , g〉 as [−(N −1)/2, (N −1)/2]
(versus ZN in [48]), and we restrict h to be 1 + N . The security of this cryptosystem
relies on the decision composite residuosity assumption, DCRA.

For key generation, choose random k/2-bit primes p, q, set N = pq, and set
h ← 1 + N . The public key is 〈N , h〉 and the private key is 〈N , h, λ(N)〉. To en-
crypt a message m with public key 〈N , h〉, select a random α ∈ Z

∗
N and compute

c ← gmαN mod N 2. To decrypt a ciphertext c with secret key 〈N , h, λ(N)〉, com-
pute m = (L(cλ(N) mod N 2)/L(gλ(N)) mod N 2) mod N , and the decryption is m if
m ≤ (N − 1)/2, and otherwise the decryption is m − N . Paillier [48] shows that both
cλ(N) mod N 2 and gλ(N) mod N 2 are elements of the form (1 + N)d ≡N 2 1 + d N , and
thus the L function can be easily computed for decryption.

Appendix C. An Efficient Ω-Protocol for Proving Knowledge of Discrete Log

The detailed construction of the�-protocol for proving knowledge of the discrete loga-
rithm is given in Fig. 6.

Strengthening Zero-Knowledge Protocols Using Signatures 207

prover verifier

α, β
R← Z

∗
N

r
R← Zq3

a
R← Zq Ñ

b
R← Zq3 Ñ

y′ ← gr mod p
e ← hxαN mod N 2

e′ ← hrβN mod N 2

s ← (h1)
x (h2)

a mod Ñ
s′ ← (h1)

r (h2)
b mod Ñ

y′, e, e′, s, s′✲
c

R← Zq

✛ c

z1 ← cx + r
z2 ← αcβ mod N

z3 ← ca + b
z1, z2, z3✲

z1
?∈ Zq3

yc y′
?≡ gz1 mod p

ece′
?≡ hz1 (z2)

N mod N 2

scs′
?≡ (h1)

z1 hz2
2 mod Ñ

Fig. 6. �-protocol for the discrete log relation {(y, x) : y ≡ gx mod p}. The common reference string is a
Paillier public key and a Strong RSA modulus along with two generators ((N , h), (Ñ , h1, h2)).

References

[1] B. Barak. How to go beyond the black-box simulation barrier. In Proc. 42nd IEEE Symp. on Foundations
of Computer Science, pp. 106–115, 2001.

[2] B. Barak. Constant-round coin-tossing with a man in the middle or realizing the shared random string
model. In Proc. 43rd IEEE Symp. on Foundations of Computer Science, pp. 345–355, 2002

[3] B. Barak and Y. Lindell. Strict polynomial-time in simulation and extraction. In Proc. 34th ACM Symp.
on Theory of Computing, pp. 484–493, 2002.

[4] N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes without trees. In
Advances in Cryptology – EUROCRYPT ’97 (LNCS 1233), pp. 480–494, 1997.

[5] M. Bellare, M. Fischlin, S. Goldwasser, and S. Micali. Identification protocols secure against reset attacks.
In Advances in Cryptology – EUROCRYPT 2001 (LNCS 2045), pp. 495–511, 2001.

[6] D. Boneh. The decision Diffie–Hellman problem. In Proc. Third Algorithmic Number Theory Symp.
(LNCS 1423), pp. 48–63, 1998.

[7] F. Boudot. Efficient proofs that a committed number lies in an interval. In Advances in Cryptology –
EUROCRYPT 2000 (LNCS 1807), pp. 431–444, 2000.

[8] F. Boudot and J. Traoré. Efficient publicly verifiable secret sharing schemes with fast or delayed recovery.
In Information and Communication Security, Second International Conference, ICICS ’99, pp. 87–102.

[9] J. Camenisch and M. Michels. Separability and efficiency for generic group signature schemes. In
Advances in Cryptology – CRYPTO ’99 (LNCS 1666), pages 414–430, 1999.

[10] R. Canetti. Universally composable security: a new paradigm for cryptographic protocols. In Proc. 42nd
IEEE Symp. on Foundations of Computer Science, pp. 136–145, 2001.

208 J. A. Garay, P. MacKenzie, and K. Yang

[11] R. Canetti and M. Fischlin. Universally composable commitments. In Advances in Cryptology – CRYPTO
2001 (LNCS 2139), pp. 19–40, 2001.

[12] R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Concurrent zero-knowledge requires �̃(log n) rounds. In
Proc. 33rd ACM Symp. on Theory of Computing, pp. 570–579, 2001.

[13] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party computation. In
Proc. 34th ACM Symp. on Theory of Computing, pp. 494–503, 2002. Full version in ePrint archive,
Report 2002/140. http://eprint.iacr.org/, 2002.

[14] R. Canetti and T. Rabin. Universal composition with joint state. In Advances in Cryptology –
CRYPTO 2003 (LNCS 2729), pages 265–281, 2003.

[15] S. A. Cook. The complexity of theorem-proving procedures. In Proc. 3rd IEEE Symp. on Foundations
of Computer Science, pp. 151–158, 1971.

[16] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and simplified design of
witness hiding protocols. In Advances in Cryptology – CRYPTO ’94 (LNCS 839), pages 174–187, 1994.

[17] R. Cramer and V. Shoup. Signature scheme based on the strong RSA assumption. In ACM Trans. Inform.
Syst. Security 3(3):161–185, 2000.

[18] I. Damgård. Efficient concurrent zero-knowledge in the auxiliary string model. In Advances in Cryptology
– EUROCRYPT 2000 (LNCS 1807), pp. 418–430, 2000.

[19] I. Damgård and J. Nielsen. Perfect hiding and perfect binding universally composable commitment
schemes with constant expansion factor. In Advances in Cryptology – CRYPTO 2002 (LNCS 2442),
pp. 581–596, 2002. Full version in ePrint Archive, Report 2001/091. http://eprint.iacr.org/,
2001.

[20] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive zero
knowledge. In Advances in Cryptology – CRYPTO 2001 (LNCS 2139), pp. 566–598, 2001.

[21] A. De Santis and G. Persiano. Zero-knowledge proofs of knowledge without interaction. In Proc. 33rd
IEEE Symp. on Foundations of Computer Science, pp. 427–436, 1992.

[22] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM J. Comput., 30(2):391–437, 2000.
Also in Proc. 23rd ACM Symp. on Theory of Computing, pp. 542–552, 1991.

[23] C. Dwork, M. Naor, and A. Sahai. Concurrent zero-knowledge. In Proc. 30th ACM Symp. on Theory of
Computing, pp. 409–418, 1998.

[24] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans.
Inform. Theory, 31:469–472, 1985.

[25] S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. J. Cryptology, 9(1):35–67
(1996).

[26] U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols. In Proc. 22nd ACM
Symp. on Theory of Computing, pp. 416–426, 1990.

[27] FIPS 180-1. Secure hash standard. Federal Information Processing Standards Publication 180-1, U.S.
Dept. of Commerce/NIST, National Technical Information Service, Springfield, Virginia, 1995.

[28] FIPS 186. Digital signature standard. Federal Information Processing Standards Publication 186, U.S.
Dept. of Commerce/NIST, National Technical Information Service, Springfield, Virginia, 1994.

[29] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial relations.
In Advances in Cryptology – CRYPTO ’97 (LNCS 1294), pp. 16–30, 1997.

[30] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the random oracle. In
Advances in Cryptology – EUROCRYPT ’99 (LNCS 1592), pp. 123–139, 1999.

[31] O. Goldreich and H. Krawczyk. On the composition of zero knowledge proof systems. SIAM J. Comput.,
25(1):169–192, 1996.

[32] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for
protocols with honest majority. In Proc. 19th ACM Symp. on Theory of Computing, pp. 218–229, 1987.

[33] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity or All languages
in NP have zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.

[34] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM
J. Comput., 18(1):186–208, February 1989.

[35] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM J. Comput., 17:281–308, 1988.

[36] L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to security microprocessors
minimizing both transmission and memory. In Advances in Cryptology – EUROCRYPT ’88 (LNCS 330),
pp. 123–128, 1988

Strengthening Zero-Knowledge Protocols Using Signatures 209

[37] S. Jarecki and A. Lysyanskaya. Adaptively secure threshold cryptography: introducing concurrency,
removing erasures. In Advances in Cryptology – EUROCRYPT 2000 (LNCS 1807), pp. 221–242, 2000.

[38] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their applications. In Advances
in Cryptology – EUROCRYPT ’96 (LNCS 1070), pp. 143–154, 1996.

[39] J. Katz. Efficient and non-malleable proofs of plaintext knowledge and applications. In Advances in
Cryptology – EUROCRYPT 2003 (LNCS 2656), pp. 211–228, 2003.

[40] J. Kilian and E. Petrank. Concurrent and resettable zero-knowledge in poly-logarithmic rounds. In Proc.
33rd ACM Symp. on Theory of Computing, pp. 560–569, 2001.

[41] D. W. Kravitz. Digital signature algorithm. U.S. Patent 5,231,668, 27 July 1993.
[42] L. A. Levin. Universal sorting problems. Problemy Peredachi Informatsii, 9:115–116, 1973. In Russian.

Engl. trans.: Probl. Inform. Transm. 9:265–266.
[43] P. MacKenzie and M. Reiter. Two-party generation of DSA signatures. In Advances in Cryptology –

CRYPTO 2001 (LNCS 2139), pp. 137–154, 2001.
[44] P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-authenticated key exchange. In

Advances in Cryptology – CRYPTO 2002 (LNCS 2442), pp. 385–400, 2002.
[45] P. MacKenzie and K. Yang. On simulation-sound trapdoor commitments. In Advances in Cryptology –

EUROCRYPT 2004 (LNCS 3027), pp. 382–400, 2004.
[46] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In

Proc. 22nd ACM Symp. on Theory of Computing, pp. 427–437, 1990.
[47] T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factoring. In Advances in

Cryptology – EUROCRYPT ’98 (LNCS 1403), pp. 380–318, 1998.
[48] P. Paillier. Public-key cryptosystems based on composite degree residue classes. In Advances in Cryp-

tology – EUROCRYPT ’99 (LNCS 1592), pp. 223–238, 1999.
[49] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Advances

in Cryptology – CRYPTO ’91 (LNCS 576), pp. 129–140, 1991.
[50] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. J. Cryptology,

13(3):361–396, 2000.
[51] M. Prabhakaran, A. Rosen, and A. Sahai. Concurrent zero knowledge with logarithmic round-complexity.

ePrint archive, Report 2002/055. http://eprint.iacr.org/, 2002. Also in Proc. 43rd IEEE Symp.
on Foundations of Computer Science, pp. 366–375, 2002.

[52] L. Reyzin. Zero-knowledge with public keys. Ph.D. Thesis, MIT, 2001.
[53] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In Proc. 22nd ACM

Symp. on Theory of Computing, pp. 387–394, 1990.
[54] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In

Proc. 40th IEEE Symp. on Foundations of Computer Science, pp. 543–553, 1999.
[55] C. P. Schnorr. Efficient identification and signatures for smart cards. In Advances in Cryptology –

EUROCRYPT ’89 (LNCS 434), pp. 688–689, 1989.

