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Abstract:   Objective: Stress is a significant risk factor for various diseases such as hypertension, heart attack, stroke, and even 

sudden death. Stress can also lead to psychological and behavioral disorders. Heart rate variability (HRV) can reflect changes in 

stress levels while other physiological factors, like blood pressure, are within acceptable ranges. Electroencephalogram (EEG) is 

a vital technique for studying brain activities and provides useful data regarding changes in mental status. This study incorporates 

EEG and a detailed HRV analysis to have a better understanding and analysis of stress. Investigating the correlation between EEG 

and HRV under stress conditions is valuable since they provide complementary information regarding stress. Methods: 

Simultaneous electrocardiogram (ECG) and EEG recordings were obtained from fifteen subjects. HRV /EEG features were 

analyzed and compared in rest, stress, and meditation conditions. A one-way ANOVA and correlation coefficient were used for 

statistical analysis to explore the correlation between HRV features and features extracted from EEG. Results: The HRV features 

LF (low frequency), HF (high frequency), LF/HF, and rMSSD (root mean square of the successive differences) correlated with 

EEG features, including alpha power band in the left hemisphere and alpha band power asymmetry. Conclusion: This study 

demonstrated five significant relationships between EEG and HRV features associated with stress. The ability to use stress-related 

EEG features in combination with correlated HRV features could help improve detecting stress and monitoring the progress of 

stress treatments/therapies. The outcomes of this study could enhance the efficiency of stress management technologies such as 

meditation studies and bio-feedback training. 

 
Index Terms Stress, EEG, ECG, HRV, Meditation  

 

Clinical and Translational Impact Statement— The findings pave the way for a clinical/home use device which would improve 

detection, management and treatment of stress and related medical conditions including mental, cardiovascular, and neurological 

diseases.

I.  INTRODUCTION 

     Stress is a process that burdens a person's adaptive 

capacity and leads to both psychological and biological 

changes, which are potential risks for diseases [1]. These 

diseases might include hypertension, coronary artery disease, 

cardiac arrest, stroke, and mental disorders such as 

depression and anxiety [2]. The stress condition could be 

classified into short-term acute stress and long-term chronic 

stress types. Finally, the parasympathetic nervous system 

(PSNS) returns the body to normalcy [3].  
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   The stress reaction can be measured and evaluated in terms 

of perceptual, behavioral, and physical responses. For 

measuring an individual's perceptual level of stress, self-

report questionnaires are commonly used [4]. Several 

physical and physiological features sensitive to stress have 

been studied in the past. For example, the salivary cortisol 

test is routinely used as a biomarker test [5]. Also, the HR, 

BP, Galvanic skin response (GSR), and respiratory sinus 

arrhythmia (RSA) are expanded during stress while skin 

temperature (ST) is decreased during stress [6], [7]. The 

ECG records the electrical changes on the skin that appear 

because of the depolarization of the heart muscle [8]. Heart 

Rate Variability (HRV) is computed from RR time intervals 

(the time difference between two ECG R peaks) [9].  
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   The sympathetic nervous system (SNS) is responsible for 

increases, whereas the PSNS is responsible for decreases in 

the heart rate (HR). The HR is continuously modified due to 

the interactions between the PSNS and the SNS. Therefore, 

the HR is a measure of the autonomic nervous system (ANS) 

and a marker for assessment of the balance between the SNS 

and the PSNS. For example, when the SNS dominates, the 

HR is increased, and when the PSNS dominates, the HR is 

reduced [9]. It has been shown that a low HRV suggests that 

the body is under stress, and high HRV means the body has 

a strong ability to tolerate stress [10]. The HRV measures 

investigated in this study are summarized in Table 1. The 

neuroimaging modalities such as EEG [11], functional 

magnetic resonance imaging (fMRI) [12], and positron 

emission tomography (PET) [13] examine the functional 

changes in brain activity. However, EEG is the most 

convenient modality to analyze the cortical response to stress 

due to its low-cost and practical use. Additionally, since EEG 

has a high temporal resolution, it provides useful information 

to analyze variability in a mental state [14]. EEG also serves 

as a useful tool for neurofeedback-based rehabilitation. The 

10–20 system shown in Figure 1 is the standard electrode 

location method used to collect EEG data and is the standard 

for most current databases [15]. Based on that system, each 

electrode placement site is represented by a letter to classify 

the lobe. Also, even numbers indicate the right side and odd 

numbers indicate the left side of the brain.  

  

                Figure 1 The 10-20 Electrode Placements  

 

  The EEG signal amplitude is in the microvolt range. The 

raw EEG time series data are transformed into the frequency 

data and classified into five frequency bands: delta band 

(0.2–4 Hz), theta band (4–8 Hz), alpha band (8–13 Hz), beta 

band (13–30 Hz), and gamma band (> 30 Hz). There have 

been several EEG based studies that analyze stress. For 

example, one study has shown that the right hemisphere of 

the brain becomes dominant in comparison to the left 

hemisphere of the brain with the onset of stress, and the right 

hemisphere is more associated with the processing of 

negative emotions [16]. These differences are illustrated by 

an emotional processing model in which the frontal cortex 

performs a key role [17]. Alpha power asymmetry is defined 

as the functional difference between the left and the right 

hemispheres; it measures the difference in EEG band power 

between the measurements from the homologous electrodes 

located on these hemispheres [18]. It has been shown that 

alpha power asymmetry and inter-hemispheric asymmetry 

indicate mental stress [19]. Previous research has focused on 

different EEG features, including frequency band power, the 

ratio of power spectral densities of alpha and beta bands, and 

cross-correlation between band powers [20]. It has been 

reported that EEG activity is well correlated with mental 

stress in terms of reduction in alpha power [21] and an 

increase in beta power [22]. In this study, EEG recording 

from the four electrodes F3, F4, Fp1, Fp2 were investigated 

with Fz as the reference electrode as shown in Figure 1. The 

EEG measures evaluated in this study are listed in Table 2. 

A previous study has reported that meditation leads to 

increased power of alpha waves [23]. Therefore, we also 

included a meditation session after the stress-inducing period. 

The goal was to include a sequence of rest, stress, and 

meditation sessions and to compare the resultant HRV and 

EEG measurements. There are many studies that use either 

EEG or ECG for stress assessment [24]. However, there are 

only three previous studies that combined ECG and EEG for 

stress assessment [25], [26], [27]. In the first study, they used 

only one HRV feature and found that there was a significant 

negative correlation between SDNN (the standard deviation 

of NN intervals) and relatively high beta power [25]. The 

second study focused on building a brain device with HRV 

and EEG recording from three electrodes. Only one electrode 

was used on the forehead for stress assessment [26]. This 

study concluded that stress level detection accuracy was 

significantly higher using support vector machine algorithms 

when EEG features were used in combination with ECG 

features [26].  However, we recorded data from frontal lobe 

and five frontal pole electrodes as these areas are known to 

be the major sites in terms of response to stressors, as 

mentioned before. The third study [27] does not involve 

HRV analysis other than the mean and standard deviation of 

heart rate data, and it used only one EEG feature (theta 

Fz/alpha Pz) for stress assessment. In this study, six HRV 

features and ten EEG features were extracted and evaluated 

(Table 1 and Table 2). We increased the number of features 

for EEG to discover unforeseen relationships between stress 

and the frontal brain area. In addition, we used short time 

meditation after a stress-inducing condition to evaluate its 

effect on the four mentioned electrodes. The alpha band 

power and beta band power were calculated from each 

electrode and for both hemispheres. The alpha asymmetry 

was also tested from left to right hemisphere for (F3, F4) and 

(Fp1, Fp2) electrodes. 

II.  METHODS AND PROCEDURES 

   This study proposes to examine EEG, and HRV features 

simultaneously and their roles in the determination of stress 

levels. Fifteen healthy volunteers participated in the study. 

The Stroop Color-Word Test (SCWT) technique was 

employed to induce a level of stress. The Stroop Color and 

Word Test have long been an approved test in 

neuropsychological assessment. It measures cognitive 

processing and provides quantifiable diagnostic knowledge 

on brain dysfunction. The SCWT is developed on the 

concept that individuals can read words much faster than 

they can recognize and name colors. The test is quick, and its 

easy administration, validity, and reliability make it a highly 

useful tool [28].  EEG and HRV were measured 

simultaneously during rest, stress, and meditation sessions.  
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TABLE 1 
HRV FEATURE CALCULATIONS IN TIME AND FREQUENCY 

DOMAIN 

 

TABLE 2 

EEG FEATURES  

 

 

 𝑁 : Number of 𝑅𝑅 intervals, 𝑅𝑅𝑖  : Interval between two heartbeats, 𝑚𝑅𝑅 : Mean of RR  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 
 

 

 

Feature Equation Unit Description  

 

SDNN 
√ 1

𝑁 − 1
∑(𝑅𝑅𝑖 − 𝑚𝑅𝑅)2

𝑁

𝑖=1

 

 
ms 

 
Standard deviation of all normal RR (NN) intervals 

[29] 

 

rMSSD 
√   

1

𝑁
∑(𝑅𝑅𝑖+1 − 𝑅𝑅𝑖)2

𝑁−1

𝑖=1

 

  

 

ms 

 

Square root of the mean squared differences of 

successive RR intervals [29] 

pNN50 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝑁𝑁 > 50)

𝑁
∗ 100 

 

% 

Percentage of adjacent NN intervals that differ from 

each other by more than 50 ms in a 5-min epoch [29]  

 

LF 
 

Summation of power from 0.04 to 0.15 Hz 

 

ms2 

 

Low frequency power of HRV [30]  

 

HF 
 

Summation of power from 0.15 to 0.40 Hz  
 

ms2 

 

High frequency power of HRV [30]  

 

LF/HF  

 

LF/HF Ratio 

 

- 

 

Ratio of low to high frequency power of HRV [30] 

Feature Equation 

 

Unit  

 

 

Description 

 

 

LAPF3 

 
𝑆𝑢𝑚 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑓𝑟𝑜𝑚 8 𝑡𝑜 13 𝐻𝑧 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟
∗ 100 

 

% 

 

Normalized left hemisphere alpha 

band power (F3) 

 
RAPF4 

 
𝑆𝑢𝑚 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑓𝑟𝑜𝑚 8 𝑡𝑜 13 𝐻𝑧 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟
∗ 100 

 
% 

 
Normalized right hemisphere alpha 

 band power (F4) 

 
LAPFP1 

 
 

𝑆𝑢𝑚 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑓𝑟𝑜𝑚 8 𝑡𝑜 13 𝐻𝑧

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟
∗ 100 

 

% 

 
 

Normalized left hemisphere alpha 

band power (Fp1) 

RAPFP2 

 

𝑆𝑢𝑚 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑓𝑟𝑜𝑚 8 𝑡𝑜 13 𝐻𝑧

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟
∗ 100 

 

% Normalized right hemisphere 

alpha band power (Fp2) 

LBPF3 𝑆𝑢𝑚 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑓𝑟𝑜𝑚 13 𝑡𝑜 30 𝐻𝑧

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟
∗ 100 

 

% Normalized left hemisphere beta 

band power (F3) 

RBPF4 𝑆𝑢𝑚 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑓𝑟𝑜𝑚 13 𝑡𝑜 30 𝐻𝑧

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟
∗ 100 

 

% Normalized right hemisphere beta 
band power (F4) 

 

LBPFp1 
 

 

 
𝑆𝑢𝑚 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑓𝑟𝑜𝑚 13 𝑡𝑜 30 𝐻𝑧

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟
∗ 100 

 

 

% 

 

Normalized left hemisphere beta 
band power (Fp1) 

 

RBPFp2 

 

𝑆𝑢𝑚 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑓𝑟𝑜𝑚 13 𝑡𝑜 30 𝐻𝑧

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟
∗ 100 

 

% 

 

Normalized right hemisphere beta 

band power (Fp2) 
 

APA1 

 

𝐸𝐸𝐺 𝑏𝑎𝑛𝑑 𝑝𝑜𝑤𝑒𝑟𝑅 –  𝐸𝐸𝐺 𝑏𝑎𝑛𝑑 𝑝𝑜𝑤𝑒𝑟𝐿

𝐸𝐸𝐺 𝑏𝑎𝑛𝑑 𝑝𝑜𝑤𝑒𝑟𝑅 +  𝐸𝐸𝐺 𝑏𝑎𝑛𝑑 𝑝𝑜𝑤𝑒𝑟𝐿
 

 

 

- 
 

Alpha band power asymmetry 

(F3, F4) 

APA2 𝐸𝐸𝐺 𝑏𝑎𝑛𝑑 𝑝𝑜𝑤𝑒𝑟𝑅 –  𝐸𝐸𝐺 𝑏𝑎𝑛𝑑 𝑝𝑜𝑤𝑒𝑟𝐿

𝐸𝐸𝐺 𝑏𝑎𝑛𝑑 𝑝𝑜𝑤𝑒𝑟𝑅 +  𝐸𝐸𝐺 𝑏𝑎𝑛𝑑 𝑝𝑜𝑤𝑒𝑟𝐿
 

- 

 
 

Alpha band power asymmetry 

(Fp1, Fp2) 



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JTEHM.2021.3106803, IEEE Journal
of Translational Engineering in Health and Medicine

 

 

EEG measurements were performed using a DSI-24 dry 

electrode EEG headset (DSI-24, Wearable Sensing, San 

Diego, CA, USA). The DSI-24 is a wireless EEG headset 

that contains 21 sensors at positions corresponding to the 10-

20 international system, and the EEG signals were acquired 

using DSI-streamer (Wearable Sensing, San Diego, CA, 

USA) at a sampling rate of 300 Hz [31]. 

   The ECG  was acquired using a wireless data acquisition 

system named BioRadio 150 (BioRadio Great Lakes Neuro 

Technologies, OH, USA) during the three conditions at 960 

samples/s [32].  The BioRadio is a 12-channel system that 

displays and records physiological signals, including the 

ECG. Three single-use dynamic ECG electrodes, (PB-50-

060, Myovision, Seattle, USA) were placed as follows: One 

was placed about 2 inches below the left underarm; the 

second electrode was placed approximately 2 inches below 

the right underarm. These two locations were selected 

instead of the arms to reduce motion artifacts. The ground 

electrode was placed on the right side of the abdominal 

cavity, above the iliac crest to minimize power line noise 

from interfering with the ECG signal. Lead I ECG was used 

for computing the R-R intervals.  

A. Subjects 

A total number of 15 EEG and ECG recordings were 

obtained from 15 right-handed participants. There were 

seven female and eight male subjects with mean ages of 19.7 

± 1.5 years and 21.3 ± 3.4 years, respectively. A signed 

consent form was obtained from all the subjects. A digital 

questionnaire (PSS) that provided general medical and 

anthropometric information was completed by each person. 

All the testing procedures with human subjects and the 

recording sites were approved on August 26, 2018 by the 

Office of Compliance and Risk Management Institutional 

Review Board (IRB Approval Number: 18-125) at Florida 

Institute of Technology, Melbourne, FL, USA. 

B. Study Design and Human Subject Protocol 

Physiological and anthropometrical features such as weight, 

height, age, and sex were gathered from the questionnaire 

that the subjects filled out. The participants had their EEG 

signals and HRV recorded for a total duration of 15 minutes. 

The test began with 5 minutes of 'rest session', and then 5 

minutes' of stress session' (which is induced by the elaborate 

Stroop Color-Word Test). Finally, 5 minutes of 'meditation 

session' was performed (where they were watching and 

listening to soothing ocean waves video and breathing 

slowly). We used this video because recent studies show that 

the beach can be a healing treatment for a patient who is 

suffering from stress. 

C. Data Analysis 

For the EEG signal preprocessing stage, the raw EEG data 

were separated into three sections: (1) rest (2) stress, and (3) 

meditation. Band-pass filtering (1–35 Hz) was applied to 

remove physiological and non-physiological artifacts. The 

EEG analysis was performed using MATLAB (ver. R2017a, 

MathWorks, MA, USA). Table 2 lists the name, description, 

and equation of each feature extracted from the EEG. The 

EEG data computation starts by selecting the data from the 

four electrodes: two electrodes in the left-hemisphere (F3, 

Fp1), and two electrodes in the right-hemisphere (F4, Fp2) 

in reference to electrode Fz. For power spectral density 

(PSD) estimation, the Welch’s method, a nonparametric 

method which is a modified approach of Fast Fourier 

Transform (FFT) algorithm [33] was used to classify the 

signals based on frequency into five frequency bands: Delta 

(0.2 – 3 Hz), Theta (3 - 8 Hz), Alpha (8 – 13 Hz), Beta (13 – 

30 Hz) and Gamma from 30 Hz and up. The alpha band 

power asymmetry between the left and right hemisphere was 

calculated using the equation in Table 2. The HRV frequency 

and time-domain analyses were performed using Kubios 

HRV software (ver. 2.2, Kubios, Eastern Finland).  

   For ECG signal preprocessing stage, the Pan-Tompkins 

algorithm was used for QRS detection, R-peak identification, 

and the HRV analysis [30]. The HRV was interpolated at 4 

Hz, and a cubic spline interpolation was used to improve the 

time resolution of the detection [31].  

   The ECG signals come with noise, including baseline 

wanders, powerline interference, electromyographic (EMG) 

noise, and electrode motion artifact noise. To reduce noise, 

the cutoff frequencies of the high-pass filter and low-pass 

filter were set to 0.5 Hz and 70 Hz, respectively. 

   The HRV signals were classified based on their frequency 

ranges and separated into low frequency (LF), high 

frequency (HF), and LF/HF ratios were calculated based on 

those.  

D. Statistical Analysis 

  One-way ANOVA and Pearson's correlation coefficient 

were used as two statistical approaches in this study. All 

groups of datasets were checked for 

homoscedasticity/heteroscedasticity condition using 

Levene’s Absolute Deviation test. ANOVA was used for all 

significant difference tests since three groups (rest, stress, 

and meditation) were compared with each other. The 

significance level was set at 5% Type I Error level for all the 

statistical tests. Post-hoc analysis for pairwise comparisons 

was performed using the Tukey-Kramer test which is the 

default test for ANOVA in MATLAB. Pearson's correlation 

was used to determine the significance of the correlation 

between EEG and ECG-derived features. All statistical 

analyses were performed using MATLAB R2017a software.  

III.  RESULTS   

Levene’s Absolute Deviation test results showed that only 

one feature (LBPFp1) was statistically significant for 

heteroscedasticity (p-value: 0.045) indicating unequal 

variance and all the rest of the datasets demonstrated 

homoscedasticity condition. Based on the Levene’s Absolute 

Deviation test results, Welch correction was applied for one 

feature (LBFp1). Using Welch’s correction, the p-value for 

LBFp1 was calculated. Welch correction indicated that the 

differences in LBPFp1 values among the three groups were 

statistically insignificant (p = 0.6317). The stress-related 

features obtained from HRV, and their trends over different 

conditions are shown in Table 3. The results shown in Table 

3 and Table 4 are expressed as the mean ± the standard error 
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Figure 2 A) Bar graph that compares the LF values for rest, 
stress and meditation sessions B) Bar graph that compares 
the HF values for rest, stress and meditation sessions C) 
Bar graph that compares the LF/HF values for rest, stress 
and meditation sessions. The error bars refer to the SEMs. 

of the mean (SEM). ANOVA analysis showed that there 

were no significant differences (p>0.05) among any of the 

conditions in any of the time domain features (SDNN, 

pNN50, and rMSSD) even though the trends were as 

expected. However, there were significant differences among 

all the frequency domain features considered in this study.    

 
TABLE 3 

EFFECTS OF STRESS AND MEDITATION ON HRV FEATURES 
(SAMPLE SIZE = 15) 

∆ Significant difference between the rest and stress 

*Significant difference between the rest and meditation 

 

LF under stress (p=0.007) and meditation (p<0.001) were 

significantly different from the 'rest' session. HF under stress 

(p=0.006) and meditation (p<0.001) were significantly 

different from the 'rest' session. LF/HF under no-stress was 

significantly different from the meditation session (p<0.003) 

as shown in Figure 2. The error bars in Figure 2 show the 

SEMs for LF, HF, and LF/HF during rest, stress, and 

meditation.  

 

 

 

 

 

 

   

  The stress-related features computed from the EEG and 

their trends over different sessions are shown in Table 4. The 

EEG results from F3, F4, Fp1 and Fp2 show an increase in 

normalized left hemisphere alpha band power (F3, Fp1), 

normalized right hemisphere alpha band power (F4, Fp2), 

normalized left hemisphere beta band power (F3,Fp1), and 

normalized right hemisphere beta band power (F4, Fp2) with 

the onset of stress.   

  In addition, alpha band power asymmetry (F3, F4), and 

alpha band power asymmetry (Fp1, Fp2) amplified during 

stress. The short time meditation results show various trends 

among the frontal brain lobes. The alpha band power 

asymmetry (F3, F4), and alpha band power asymmetry (Fp1, 

Fp2) were less negative in meditation situation. The other 

EEG features showed decreasing trend in meditation 

sessions. 

 
TABLE 4 

EFFECTS OF STRESS AND MEDITATION ON EEG FEATURES  

(SAMPLE SIZE = 15) 

 

  Using Pearson's correlation coefficients, five correlations 

were computed between the HRV and EEG features in the 

stress condition, as shown in Table 5. 

 
TABLE 5 

HRV AND EEG CORRELATION RESULTS DURING STRESS 
(SAMPLE SIZE = 15) 

 

 

 

  

 

 

 

 

 

 

 
 

 

  The results showed that there was a negative correlation 

between LF/HF and LAPF3, a positive correlation between 

HF and LAPFp1 as shown in Figure 3, a positive correlation 

between HF and LAPF3, a negative correlation between LF 

and LAPFp1 as shown in Figure 4 and between rMSSD and 

APA1 as shown in Figure 5.  

Feature 
Rest 

Mean± SEM 

 

Stress 
Mean ± SEM 

 

 

     Trend 

 

Meditation 
Mean ± SEM 

Trend 

SDNN 

 

rMSSD 

 

pNN50 

 
LF 

 

HF 

 

LF/HF 

 

    

   68.96 (±8.32) 

 

   64.12 (±10.5) 

 

   17.89 (±4.25) 

 
   50.79 (±3.18) 

 

   48.86 (±3.16) 

 

   1.18 (±0.18) 

 

 

66.86 (±5.70) 

 

61.59 (±9.23) 

 

13.85 (±3.05) 

 
64.5 (±2.93) ∆ 

 

34.29 (±2.92) ∆ 

 

2.18 (±0.26) 
 

  ↓ 

 

  ↓ 

 

  ↓ 
 

 ↑ 

 

  ↓ 

 

 ↑ 

 

80.46 (±6.10) 

 

67.51 (±9.08) 

 

15.52 (±3.17) 

 
 62.57 (±2.51) * 

 

39.71 (±2.80) * 

 

 1.68 (±0.15) * 

 

↑ 

 

↑ 

 

↑ 

 
↓ 

 

↑ 

 

↓ 

 

Feature 
Rest 

Mean± SEM 

 

Stress 
Mean ± SEM 

 

 
     

Trend 

 

Meditation 
Mean ± SEM 

Trend 

LAPF3 

 

RAPF4 

 

0.26 (±0.09) 

 

0.23 (±0.08) 
 

 

   0.37 (±0.09) 

 

0.27 (±0.09) 
 

 

↑ 

 

↑ 

 

 

0.20 (±0.12) 

 

0.26 (±0.09) 
 

 

↓ 

 

↓ 
 

LAPFP1 

 

RAPFP2 

 

LBPF3 

 
RBPF4 

 

LBPFp1 

 

RBPFp2 

 

APA1 
 

APA2 

   0.34 (±0.08) 

 

   0.40 (±0.10) 

 

   1.11 (±0.38) 

 
   1.30 (±0.47) 

 

   1.60 (±0.38) 

 

   2.00 (±0.49) 

 

-0.02 (±0.09) 
 

   -0.01(±0.11) 

0.60 (±0.23) 

 

0.48 (±0.14) 

 

2.15 (±0.54) 

 
1.50 (±0.46) 

 

2.64 (±0.99) 

 

2.56 (±0.81) 

 

-0.13 (±0.10) 
 

 -0.06 (±0.08) 

↑ 

 

↑ 

 

↑ 

 

↑ 

 

↑ 

 

↑ 

 

↓ 

 

↓ 

0.48 (±0.17) 

 

0.43 (±0.23) 

 

1.52 (±0.35) 

 
1.45 (±0.45) 

 

1.93 (0.57) 

 

2.22 (±1.07) 

 

-0.12 (±0.10) 
 

-0.01 (±0.10) 

↓ 

 

↓ 

 

↓ 

 
↓ 

 

↓ 

 

↓ 

 

↑ 
 

↑ 

HRV 
Feature 

  EEG 
Feature 

 

r 

 

 

p 

  

   LF/HF 
 

     HF 

 

    LAPF3 
    

LAPFp1  

 

        

-0.30     
     

 0.53 

 

 

0.00001 
 

0.04 

 
    HF 

 

    LF 
 

 rMSSD 

LAPF3 

 

  LAPFp1 
 

    APA1 

 

 0.25 

 

-0.54 

 

    -0.60 

0.008 

 

0.04 
 

0.006 
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Figure 3 Relationship between High Frequency and Left 
Hemisphere Alpha Band Power (Fp1) (r = 0.53, p<0.05). 
 

 
Figure 4 Relationship between Low Frequency and Left 
Hemisphere Alpha Band Power (Fp1) (r =-0.54, p<0.05). 
 

 

 

Figure 5 Relationship between the rMSSD and APA1 (based 
on F3 and F4 electrodes) (r =-0.60, p<0.05). 

IV.  DISCUSSION 

   In this study, a comprehensive set of comparisons was 

performed between the extracted parameters from the ECG 

and the EEG signals. The goal of these comparisons was to 

examine the correlation between the response of the 

autonomic nervous system (HRV) and the response of the 

brain (EEG) to stress and meditation.   

As discussed in the introduction section, there are only 

three previous studies that combined ECG and EEG for short-

term stress assessment. The first study used only one HRV 

feature and found a significant negative correlation between 

SDNN and relatively high beta power [25]. The second study 

used only three electrodes with one electrode on the forehead 

for stress assessment and concluded that stress level detection 

accuracy using a machine learning algorithm (support vector 

machine) was significantly higher when EEG features were 

used in combination with HRV features [26].  We recorded 

data from frontal lobe and five frontal pole electrodes as these 

areas are known to be the major sites in terms of response to 

stressors, as mentioned before. The third study [27] included 

HRV analysis with only the mean and standard deviation of 

heart rate data, and it used only one EEG feature (theta 

Fz/alpha Pz) for stress assessment. These studies did not 

include meditation sessions either.  

   This present study demonstrated that there are five 

considerable relationships among EEG and HRV features 

associated with stress. The four HRV frequency domain 

features (LF, HF, LF/HF and rMSSD) correlated with left 

alpha and beta bands during stress sessions and rMSSD 

correlated with alpha power asymmetry. Those results 

confirmed that cardiac stimulation during stress was 

followed with cortical activation. In addition to confirming 

the results of previous studies, our results suggest that stress 

may be reliably assessed by frequency-domain features and 

relative left alpha EEG power at anterior frontal sites. 

Indeed, these correlations could be used as markers for 

diseases associated with stress. 

    The results showed that the HRV time-domain features 

(SDNN, rMSSD, and pNN50) decreased under the 'stress' 

condition compared to the 'rest' condition indicating 

sympathetic activation. Conversely, the short time 

meditation session showed the opposite direction in those 

HRV time features as expected.  

   The frequency domain features with stress showed an 

increase in the LF and LF/HF which represented sympathetic 

activation and a decrease in HF which indicated lowered 

parasympathetic activation. The results were similar to the 

findings in a previous review of HRV analysis and mental 

stress [24]. The short time meditation showed an increase in 

HF, and a decrease in LF and LF/HF in comparison to the 

stress condition suggesting a parasympathetic activation and 

a sympathetic reduction.  

   The frontal activity is heavily involved in the emotional 

stress regulation [16],[32]. During rest, the frontal alpha 

amplitude symmetry is associated with lower stress. With the 

onset of stress, alpha power asymmetry becomes more 

evident. As indicated, both APA1 and APA2 were more 

negative during stress than at rest and meditation which 

demonstrate that the right alpha power was reduced 

considerably more than the left alpha power during stress 

situation. These results are in line with the physiological 

expectations that increased cortical activity in the right 

hemisphere is associated with processing of negative 

emotions such as stress [16],[32],[33].  

     One of the limitations of this study might be the number 

of subjects; however, this study provides a profound 

preliminary data analysis. Data from a larger sample size 

might lead to a more robust statistical analysis and it might 

reveal or de-emphasize other correlations. In addition, 

mental stress might increase with duration, but in terms of 
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HRV analysis, all the previous studies were performed for 

either 5-minutes (short-term) or 24-hour (long-term) [10]. 

Long-term stress analysis might reveal different dynamics; 

for example, long-term stress is a better predictor of 

depressive symptoms as compared to short-term stress [39]. 

A general problem with EEG can be the low spatial 

resolution on the scalp and a reduced signal-to-noise ratio. 

Thus, relatively large amounts of subjects will improve our 

findings. For our future study, we plan to build a wearable 

device with ECG and EEG measurements to monitor and 

manage people suffering from stress.  

 

V.   CONCLUSION 
 
Investigating the correlation between EEG and HRV 

under stress conditions is significant since they provide 

complementary information regarding stress. The ability and 

outcomes of EEG and ECG might allow for improved 

diagnosis and monitoring of the progress of treatment/ 

therapy, performance, learning, and decision making in 

people that suffer from stress. Another contribution of this 

study can be stress management with the HRV and EEG data 

as inputs for treatment applications, including meditation 

studies, bio-feedback training, attention disorder, attention 

deficit hyperactivity disorder, depression, and anxiety 

disorders. 
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