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STRESS ANALYSIS IN VISCO-ELASTIC BODIES*

BY
E. H. LEE
Brown University

Abstract. The analysis of stress and strain in linear visco-elastic bodies is considered
when the loading is quasi-static so that inertia forces due to the deformation are negli-
gible. It is shown that removal of the time variable by applying the Laplace transform
enables the solution to be obtained in terms of an associated elastic problem. Thus the
extensive literature in the theory of elasticity can be utilized in visco-elastic analysis.
The operation of the transform on the prescribed boundary tractions and displacements
and body forces may completely modify the spatial distribution in the associated
problem. For proportional loading, in which the space and time variations of the pre-
scribed quantities separate, the spatial distribution is maintained in the associated
problem. A convenient method of treating a common case of non-proportional loading,
moving surface tractions, is demonstrated. This work is compared with related approaches
to this problem in the literature of visco-elastic stress analysis.

1. Introduction. We are concerned with quasi-static problems in which inertia
forces due to the deformation are negligible. Inertia forces due to effectively rigid body
motion such as centrifugal forces come within the scope of the analysis. We shall consider
materials satisfying the general isotropic linear visco-elastic law:

Ps;; = Qe.; , (1a)
Plg,; = Qlfu ) (lb)
where P, Q, P’ and Q' are linear operators of the form > % a,D", and D is the time de-
rivative d/0t. The coefficients a, and the numbers m are in general different for each
operator, although certain restrictions on the m’s are required to determine observed
physical characteristics. o,; and e,; are the stress and strain tensors, the latter considered

to be infinitesimal, and s;; and e,; are respectively their deviators defined in the usual
way:

— 1 —_ 1
Si; = 0 — 3005 , € = €; — 3€u0;; , (2)

where §;; is the Kronecker delta 6,; = 1,7 = j; 6,; = 0,7 # j.
Equations (1) are a generalisation for combined stresses of the well-known visco-
elastic law,

Po = Qe, 3)

relating stress and strain when only one component of each tensor is needed, as for
.example in simple tension (see Alfrey [1]t). In developing the most general linear isotropic
relation, operator equations of the type (3) can be written between the deviators and
the first invariants of o,; and ,; as detailed in (1). This is analogous to the expression of
the general isotropic elastic relation in terms of the two constants, shear modulus and
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bulk modulus. (1) is equivalent to the relations used by Read [2], and is more general
than that prescribed by Tsien (3] according to the same premises.

We adopt the form (1), which corresponds to a discrete spectrum of relaxation times,
in preference to the hereditary integral method of specifying visco-elastic behaviour,
which gives a continuous spectrum, because of simplicity and since we are particularly
interested in stress analysis for short loading times. In such a restricted range visco-
elastic behaviour can be represented with tolerable accuracy by relations of the form
(1) with only a few terms in each operator. This is equivalent to representation by a
simple model of dashpots and springs. Methods of determining such simple models to
cover a limited frequency range will be described elsewhere. The hereditary mtegra.l
representation equivalent to (1) has been used by Volterra [4].

2. The equivalent elastic problem. As shown in Fig. 1 we consider bodies subjected

to prescribed body forces f;(z; , f) per unit volume, tractions T';(z; , t) on the surface S
or surface displacements u.(z; , ?), including combinations of these in the groupings in
which they occur also in elasticity theory. In order to determine a complete solution we

- must obtain the stresses ¢,;(z: , ¢) and the displacements u,(z; , t) throughout the body
V to satisfy the stress-strain relations (1), and the equilibrium equations:

o5, = fu(xe , 1), ” @

where as usual the subscript after the comma indicates differentiation with respect to
the corresponding space coordinate. The strain tensor is given in terms of the displace-
ment by

€; = 3w + u;l). (5)

The displacement must be compatible with the prescribed surface displacement,
and the stresses with the prescribed surface tractions according to:

T.' = 04N; on S, (6)

where n; is the outward normal.

We now remove the time dependence by operating with the La,place transform on
all these equations (see for example Carslaw and Jaeger [5]). The transform is denoted
by a star on the corresponding function. We will consider problems in which the bodies
are initially undisturbed since this is the common situation, but the Laplace transform
technique is also well suited to problems with non-zero initial conditions. With zero
initial conditions an operator in D merely becomes the same function of the transform
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parameter p, so that the required equations become

P(p)st;, = Q(p)e¥; , (7a)
P'(p)et; = Q' (p)ek: (7b)
o¥.i = [, D), ®
e = 3ur; +ur), 9
T*(z; ,p) = o¥n,; , (10)

(7)-(10) represents a stress analysis problem for an elastic body of the same shape as the
visco-elastic body with elastic constants a function of the parameter p. The prescribed
surface tractions 7*(z; , p), body force f*(z;, p) and boundary displacement u*(x; , p)
are also functions of p. When the stresses ¢*(z; , p) have been determined, inversion of
the Laplace transform gives the desired stresses o¢;(z, , f) for the visco-elastic problem,
and similarly for other variables. Thus we can utilize the extensive literature of the
theory of elasticity to evaluate visco-elastic stress analysis problems.

Although the body shape for the associated elastic problem is the same, the prescribed
distribution of surface tractions, displacements, and body forces may be quite different
since the Laplace transform ¢*(z; , p) will in general have an entirely different space
distribution than ¢(z. , t). Thus the associated elastic problem is not in general simply
related to the visco-elastic problem. There is however a common type of problem, which
we shall call proportional loading, in which the space and time dependence of prescribed
quantities separates out with a common time dependence. Thus

Ti(x; , t) = Ti(z)f(),
fila; , ) = fiz)f(), an
ui(x; , 1) = ui(z;)f(1).

In this case the Laplace transform simply changes f(f) to f*(p) leaving the space
dependence unchanged. Since f*(p) then merely appears as a multiplying factor, the
associated elastic problem contains the same spatial distribution of prescribed quantities
as the visco-elastic problem. This represents a considerable simplification since the
associated elastic problem can be solved for T7 , f/ and u! prescribed, and these are
independent of p. The analysis being linear, if the loading falls into groups of proportional
loading and prescribed displacements each with different time dependence, they can be
considered separately and superposed. An important class of problems which does not
fall in this category is associated with moving loads. A particular method of treating
these is detailed below.

3. A simple example. Let us consider the problem shown in Fig. 2 of a vertical
point force P(t) acting normally at a fixed point on the surface of a semi-infinite visco-

Fi1G. 2
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elastic body. The point of action is the origin of cylindrical coordinates (r, 6, z), with
the body occupying the space z > 0. Since only one point force is specified this is a case
of proportional loading, and the associated elastic problem is that of a semi-infinite
elastic body with a normal point load of magnitude P*(p). The solution to this elastic
problem is given by Timoshenko ([6], p. 331), and to demonstrate the method we will
consider the stress component ¢* which is given by

of = 12%:: {(1 - 21’)[;5 - ;zs o + z”)"”:l — 320" + zz)'m} (12)

where » is the Poisson’s ratio of the elastic body. Transforming the notation of (7) to
more familiar elastic constants

Qp)/P(p) = 2G, (13)
where G is the shear modulus, and

Q'(/P'(p) = 3K, (14)

where K is the bulk modulus, since o is three times the average hydrostatic tension.
We can express Poisson’s ratio in terms of K and G (see [6] p. 10) according to the
relation

3G

l—2v=m. (15)‘

Thus, in the notation of (7), (12) becomes

* _ P*(p) { 3Q(p)/P(p) _1_ _ 22 nN-1/2 | _ .2 2 2\ -5/2
7= "o \2QD/P D) + 1QD)/PD)] [r? 2O+ ] Sralr +2) }( |
16

For a prescribed material, with known operators P, @, P’ and @', the inverse of (16)
gives the radial stress in the visco-elastic problem. Suppose, for example, that in shear
the material behaves as a delayed elastic Voigt material, but is perfectly elastic under
hydrostatic pressure. (1) would then read

8 = (AD + B)eii ) (179')
o = Ce; I} (l7b)

where A, B and C are constants of the material. Suppose that a constant load P, is
suddenly applied at ¢ = 0, and maintained. Then P(f) = P, , ¢ > 0, and P*(p) = P,/p, the
transform of the Heaviside step function (see [5] p. 4). Thus (16) becomes:

oF = %{23(:1?‘4: _|B_)B [_1_ _ 7% (rz + zz)-l/z:l _ 31_22(7,2 + 22)—5/2}. (18)

r2
This can be inverted directly by partial fractions to give:

P 3 1 z 2y —1
o= Dol g B 20 e -0+ ByAl 5 - B0+ 77

— 3r2(r* + zz)'m}, t>0. (19)
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Thus for the visco-elastic problem with a constant force applied, the stress consists
of two terms, one remaining constant, and the other dying out exponentially with time.
There is thus a relaxation influence between the shear and the hydrostatic response of
the material.

For more complicated materials, Q/P and Q’/P’ will still be rational functions of
(p), so that this method of inversion can be used, although the manipulation will be more
cumbersome.

For more complicated P(f), it might be worthwhile to separate the inversion of
P*(p) and of the function of p arising from the material properties, since these appear as a
product. The inversion can then be expressed as a convolution integral (see [5] p. 7) for
general P(t). Thus for the material considered in the examples, (18) can be inverted in
this way, with the special value P,/p replaced by P(p), to give:

1 ! 20
g, = g{fo 3[6(0, 7) — e [—(@C + B)T/A.]H(T)]P(t — 7)dr
(20)

X [;; - 7%  + 22)_”?] — P(1)3r%2(r* + zz)'m},

where §(0, 7) is the Dirac delta function, and H(r) the Heaviside step function. For the
special case P(f) = P, , the integral is simply evaluated to give (19).

4. Moving loads. A common type of loading which falls outside the category of
proportional loading is that due to moving surface tractions. Such a situation is often
produced mechanically or by the pressure system in a moving fluid. It can be handled
directly as described in the previous section by taking the Laplace transform of the
moving surface tractions, but an alternative method is described which may be more
convenient.

Instead of taking the transform of the prescribed boundary conditions and body
forces to determine the associated elastic problem, and then solving this, the prescribed
visco-elastic problem could first be solved assuming it to be elastic, and the transform
of the resulting stresses would be the desired solution of the associated elastic problem.
However the surface tractions vary in time, at each instant the solution of a quasi-static
elastic problem is simply the solution of the problem with the current tractions held
constant. This is of course not true for a visco-elastic problem in which the history of
loading has an influence, as was demonstrated by the example of the previous section.
Thus, the solution of the elastic problem for the series of instantaneous distributions of
surface tractions gives the sequence of stress values at each point, and the transform of
these values gives the required solution of the associated elastic problem. The elastic
constants are the functions of the transform parameter p associated with the trans-
formed stress-strain relation (7), but since they are not time dependent this adds no
complication to the determination of the transform of the stresses. On inverting to
obtain the stress for the visco-elastic problem, the fact that these elastic constants are
functions of p modifies the reverse process.

To illustrate the method, let us consider the problem, shown in Fig. 3, of a point
load P(f) moving along the x axis on the surface of a semi-infinite visco-elastic body.
The motion of the force is prescribed by the displacement from the origin £(¢), and the
force is first applied at £ = 0, t = 0 with the body initially undisturbed. At each instant
the solution of the elastic problem with the same loading is that used in the previous
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section, it merely being necessary to change the origin of coordinates. To obtain a simple
example for illustrative purposes, let us consider the stress component o, at the point
(z, 0, ) directly under the path of the load. At any instant the stress o; in the elastic
problem with this point force loading is given by (12), with r replaced by [t — £(8)],

Fi1c. 3

since the directions of z and r are the same at the point in question, and the radius of
the point (z, 0, 2) relative to cylindrical coordinates based on the load axis is [x — £(?)].
Thus:

S e _ 1_3@ _ 1 _ 2 52 2y -1/2
9 = o {(1 2”)[(22 —8' (@ - p? {z — 8" +2% :I

(21)
- 3@ — %l -9+ z’}‘m},

where v is the Poisson’s ratio of the elastic material. o*(z, 2, p) of the associated elastic
solution is the Laplace transform of this, with 1 — 2» replaced by the transform of the
equivalent visco-elastic operator [3Q(p)/P(p)l/[2Q'(»)/P'(») + Q(p)/P(P)], as in
Eq. (16). In carrying out the transform the ¢ appearing in the prescribed £(f) must be
.included. The stress o.(z, 2, t) in the original visco-elastic problem is now obtained by
taking the inverse of ¢* which contains the transform parameter p both from the trans-
form of o; (21) and from the visco-elastic operators. The transform of (21) may be
quite complicated depending on the particular forms of P(f) and £(¢). However since the
elastic constant » appears only as a multiplying factor there is no need to carry out the
transform of o7 , since the inverse transform can be effected using the product rule in
terms of a convolution integral (see [5], p. 7). This gives for the stress component o, at
the point (z, 0, z) for the particular visco-elastic material considered in the previous
section the value: '

oty ) = 24 [ 3050, ) — 2€ exp [—(2C + B)r/AJH(DIP(t — 7)
27 o A

1 z 2 2)-1/2
* [[x—é(t— T)]2_ [Z—E(t— 1)12 {[x_S(t_ T)] +z} / ]dT (22)

— PUOBLz — tOFellz — KOT + ).

In many cases it may be much easier to complete the solution in this form, in place
of carrying out the Laplace transform of T';(z; , t) to obtain ¢X(z:p). In using the method
of the present section, the need for determining this quantity is avoided.

Although this alternative method is particularly well suited to a problem with
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moving tractions which apart from this motion are otherwise unchanged in form, it can
also be used for the general case T;(z; , t). In this case a series of elastic solutions would
be needed, with the space distribution of traction that obtaining in the visco-elastic
problem at each instant.

5. Discussion. The analysis given in this paper was developed as an extension of
the work of Alfrey [7] and Tsien [3]. Alfrey showed that for an incompressible visco-elastic
medium with prescribed surface tractions the stress is the same as that for an elastic
body. This result is obtainable from the present analysis by taking P’/Q’ equal to zero.
Tsien showed the same to be true for a compressible visco-elastic body under proportional
loading, but he had assumed a restrictive relation between the operators P, @, P’ and Q'
such that the equivalent Poisson’s ratio reduced to a constant rather than a rate de-
pendent operator. The example of Sec. 3 shows that in the general case the stress field
changes under constant tractions, so that it cannot be equal to the solution of an invariant
elastic problem.

In the work of Alfrey and Tsien only a single pair of operators P, Q appeared, and
it was possible simply to separate the time and space operators in the differential equa-
tions, and to obtain the elastic solution from the space operators. For the general isotropic
medium four rate operators P, Q, P’, @’ arise, and the Laplace transform assists in
separating out the time dependence. The first application of a method of this type
which I have seen was the use of Heaviside’s operational calculus for the stress analysis
of certain visco-elastic bodies by Jeffreys [8]. More recently Read [2] has used the Fourier
transform to discuss the general dynamic problem. He obtains an associated elastic
problem similar to that developed in Sec. 2 of the present report, but from the standpoint
of application this result is extremely restricted in the dynamic case, since the inertia
forces lead to body forces in the associated elastic problem which are proportional to
displacements. Solutions of this type of problem are not common in the elasticity litera-
ture. For the quasi-static case the principle of the present paper is closely related to
Read’s, but his illustration of the use of the operator method is restricted to the case of
proportional loading. For the usual type of problem in which loads are applied with or
without an initial disturbance in the medium, it is felt that the Laplace transform is
more convenient to use than the Fourier transform. The examples given in this report
indicate the convenient form in which solutions are derived.

Papers by Mindlin [9] and Graffi [10, 11] are concerned with the special situation
when the visco-elastic stress field is identical with an elastic field. The former studies
this question from the standpoint of photo-elastic testing. Special solutions in which the
space and time variables separate have been considered by Volterra [4]. The example of
Sec. 3 shows that this condition does not obtain for a constant fixed force, and so is
quite limited for applications. Another particular group of problems which has received
considerable attention is when the time dependence is entirely represented by a factor
¢'“*. When this is factored out, an equation in space coordinates only is obtained. The
relation of this type of problem to both elastic and compressible-viscous fluid theory is
stated by Oestreicher [12], and an example is given.

This assessment of the literature suggests that the generality of the analysis pre-
sented in this paper is needed for many problems of visco-elastic stress analysis, and
that the use of the Laplace transform is a convenient means of treating such problems.
The ease with which solutions can be evaluated depends on the way in which the elastic
constants appear in the solution of the associated elastic problem. Much is known about
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this, for example, as stated by Read [2], that they do not appear in the expressions for
stress in the plane problem with prescribed surface tractions, if the tractions on internal
boundaries are in equilibrium. In most elementary solutions they appear in a simple
form so that the use of these solutions in visco-elastic analysis leads to comparatively
simple evaluations.

LN
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