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Abstract:  Stress-induced birefringence in single mode 
polarization maintaining optical fibers has been 
investigated using the finite element method. The modal 
birefringence caused by external forces in the Panda and 
the Side Tunnel fibers are calculated. It is found that the 
modal birefringence is directly proportional to the radial 
distance from the fiber center. As expected, the modal 
birefringence vanishes with the variation in the 
magnitude of the applied external loads. 
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1. INTRODUCTION 

Polarization maintaining (PM) optical fibers are of great 
importance in optical coherent communications and 
some optical fiber sensor applications[1]. The fibers that 
preserve the state of polarization of the guided light can 
be achieved by destroying the circular symmetry of the 
refractive index distribution in the core region. 
However, the birefringence properties of this kind of 
fiber are  much more limited when compared with what 
can be achieved with stress induced birefringence. 
Recently, a variety of structures has been proposed for 
the polarization maintaining fibers with stress induced 
birefringence, most of which are designed to maintain a 
differential stress in the fiber core region[1]. There are 
many such successful fiber structure designs, such as 
Panda, Bow Tie, Side Tunnel and Side Pit fibers[1]. 
Shih[2] described a new fiber manufacturing technique 
called preform deformation. Using this technique, a new 
kind of PM fiber with a circular core, an elliptical stress 
applying cladding, and an elliptical jacket can be made. 
This has been studied experimentally by D. Marcuse et 
al.[3]. In our work, full advantage of the finite element 
method is taken to develop a numerical study of the 
birefringence due to the effects of external stresses in 
both Side Pit and the Side Tunnel fibers. The 
birefringence PM fibers manufactured through preform 
deformation are analyzed. From the calculated stress 
distribution in the fiber, the refractive index tensor 
change is obtained. 

The finite element method is an approximate 
treatment of physical problems, defined, for example, 
by differential equations with boundary conditions, or 

by variation principles. Compared to other approximate 
methods it is successful when the domain of the 
problem has a complicated shape or when the function 
involved behaves differently in different parts of the 
domain. The domain is represented approximately by a 
collection of finite numbers of connected subdomains of 
simple shape (e.g., triangles), called finite elements.  

The finite element method will to be applied in this 
paper for the determination of the stress distribution and 
the modal birefringence, due to the effects of external 
forces acting on the fiber cross section, for the Panda 
and the Side Tunnel type fibers. The fiber cross section 
is first divided into “elements”. In this research, a 
triangular element is used. A linear system of equations 
can be established according to the principles of the 
finite element method, and then the stress distribution 
and, further, the refractive index tensor distribution may 
be calculated in each element. The details of the use of 
the finite element method can be found in the 
literature[4-5]. 

2.  FORMULATION OF THE PROBLEM BY 
THE FINITE ELEMENT METHOD 

2.1 Matrix Solution Techniques 
Solving the waveguide problem by the finite element 
method, the key factor affecting storage requirements 
and computational efforts is the choice of the algorithm 
to solve the matrix equation. The advantage of higher-
order basis functions for the fields is that they give a 
more accurate solution. But it involves an increased 
programming effort, particularly when considering 
anisotropic materials, in the finite element, and penalty 
functions[6]. Another advantage of the higher order 
polynomials (for given matrix order) is that it increases 
the density of the matrix. It should be noted the tradeoff 
optimum choice between low and high order 
polynomials depends on the matrix algorithm used. 

2.2 Principle of Minimum Potential Energy 
The basic principle of the finite element method is that a 
continuum (the total structure) can be modeled 
analytically by its subdivision into regions. 

The principle of minimum potential energy can be 
used following Ref. [1]. Among all displacements of 
admissible form, those that satisfy the equilibrium 
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conditions make the potential energy assume a 
stationary (minimum) value. The total potential energy 
of a structure can be expressed as a strain energy, U, 
plus the potential energy, V, of the applied loads, i.e., 

  U V  (1) 

The strain energy U of a complete structure consisting 
of N elements is simply the sum of the N element strain 
energies 
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where the superscript t is the operator to traznspose the 
vector or the matrix,  and {ue}, [Ke], and {fT

e} are the 
vector of nodal points displacements, the stiffness 
matrix, and the initial force vector in the eth element, 
respectively. Equation (2) is rearranged to construct the 
global equation as: 

        U u K u u ft t
T 

1
2

, (3) 

where {u}, [K], and {fT} denote the global nodal point 
displacement vector, the global stiffness matrix and the 
global initial force vector, respectively. 
     The potential energy, V, due to external load is 
expressed by: 

   V u ft
L  ,                                                (4) 

where {fL} is the global load vector acting on each 
nodal point. Inserting expressions for U and V from Eq. 
(3) and Eq. (4) into Eq. (1), one can get:  
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Applying to this the necessary condition for minimum 
energy, i.e., 

        
 u

K u f fT L    0 , (6)  

      K u f fT L   (7) 

This equation gives the displacement at all nodal points 
of the fiber under external forces. Once the global nodal 
point displacement vector, {u}, is determined, stress in 
each element is given by[1]: 

          e e e e
o
eD B u   .  (8) 

with e = 1,2,3...N, where [De], [Be], and{o} are the 
material stiffness matrix, the matrix relating nodal 
displacements to strain field, and the initial strain vector 
in the eth element, respectively. 

3. DERIVATION OF STRAIN ENERGY 

As in the case of optical fibers, when the dimension of 
the structure in one direction (the z-direction) is very 
large in comparison with the other two transverse 
directions (x- and y-) and the applied forces act in the x-

y plane and do not vary in the z-direction, the problem 
becomes a “plane strain problem”[1]. 

In the plane strain problem, the longitudinal strain z 
is zero, as are the shear strains �yz and �zx. Introducing 
the condition on z into the relevant strain-stress 
equation we get: 
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where x,  y and x, y denote the normal stresses and 
strains, respectively, and xy,  and xy are the shear stress 
and strain, respectively, E is the elastic modulus,  is 
Poisson’s ratio,  is the thermal expansion coefficient, 
and T is the temperature change (negative on cooling). 
These equations are expressed in the form: 

        oD  ,            (12) 

where {}and {} denote the stress and strain vectors, 
respectively,  defined as: 

 























x

y

xy

, (13) 
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 0 denotes the initial strain, where: 
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and [D] is the material stiffness matrix given by[1]: 
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The strain energy in plain strain is given by[1]: 

      U dxdy
S

t
o   L

2
 , (17) 

where L is the length of the optical fiber and the integral 
is carried out over any region S under consideration. In 



IIUM Engineering Journal, Vol. 1, No. 1, January 2000 M. H. Ali et al. 

 9

this paper a two-dimensional triangular element is used 
to determine the variation of stresses in optical fibers. 
The formulation of this element is well developed and 
described in many references [6]. The eth element 
stiffness matrix and initial force vector are:  
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L is the fiber length and [ke] and {fT
e} denote the 

element stiffness matrix and the element initial force 
vector, respectively. 

4. ACCURACY OF THE FINITE ELEMENT 
ANALYSIS 

Before conducting the stress analysis of noncircular 
core fibers, the accuracy of the finite element analysis 
itself is first investigated. 

We can estimate the amount of error by comparing 
the finite element solution with the analytical solutions 
that show the same behavior. 
      1. Thermal stress: This is the problem of thermal 
stress developing in long concentric cylinders of 
different materials, which are joined together at some 
initial temperature and their temperature is then 
changed. This has been treated by B.M. Azizur et al[7]. 

Stress distributions in the cylinder are given as: 
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where a and b are respectively  the inner and outer radii 
of the concentric cylinder, E, , and T are elastic 
modules, Poisson’s ratio and temperature change in the 
medium, and 1 and 2 are the thermal expansion 
coefficients of the mediums 1 and 2, respectively.  
     2- Stress by loads: Stress distributions on the x-axis 
induced by the force Wo  acting on the cylinder along the 
vertical y- axis direction of the cylinder are expressed 
as: 
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      3- Stress fields by finite element analysis: 
One-quarter of the entire cross section is covered by 
elements, since the optical fiber under consideration has 
two symmetry lines, one along the x-axis and the other 
along the y-axis. Typically, we used 140 elements and 
93 nodal points in this section. The error in the results 
obtained by the finite element analysis is less than 4 
percent of the analytical results[1].  

5. RESULTS AND DISCUSSION 

A computer program coded in MATLAB is used for the 
analysis of the birefringence properties of optical fibers 
using the finite element method. 

The structure of the Side Tunnel and Panda fibers is 
shown in Figs. 1 and 2. The fiber parameters used in 
this study are shown in Table 1. 

Taking into consideration that, in the Side Tunnel 
fiber, d is the distance from the nearest edge of SAZ to 
the core center and all the refractive indices n1, n2, and 
n3 have no effect on the strain. 

Fig. 1 Side Tunnel fiber 

Fig. 2 Panda fiber 

Figure 3 shows the stress distribution x and y on 
the x-axis of the Panda type fiber when force is applied 
along the y-axis. It can be observed from the curve that 
stresses 

Table I Parameters of the Panda and the Side Tunnel fibers 
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n

d2 

b 

d1 
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 Side Tunnel 
fiber 

Panda fiber 

2a (m) 5 ~ 10 10 
2b (m) 125 120 
1 (o C -1) 
2 (o C -1) 
3 (o C -1) 

7.6  10 -6 

5.4  10 -7 

3.66  10 -3 

2.125  10  -6 

5.4   10 -7 
1.45  10 -6 

d/c 
a/d 

0.15 
2.0 ~ 4.0 

- 
- 

E (kg /mm2) 7830 7830 
 0.186 0.186 

2c (m) - 30 
d1 (m) - 20 
d2 (m) - 35 

 
are nearly constant in the core region of the fiber. For 
the clad region between the core region and the SAZ 
region, the first clad region, stresses decrease gradually. 
Reaching the SAZ, it is observed that the stresses nearly 
equal zero. The behavior of the stresses in the core and 
the first clad region can be explained by the resultant 
stresses because external and internal stresses existing at 
these regions are not equal and the net stress varies 
uniformly as we proceed along the fiber cross section. 
After this region, the stresses are nearly equal resulting 
in a nearly zero stress. 
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Fig. 3  Stress distribution on the x-
axis when force is applied along y-
axis in the Panda fiber.

 
Figure 4 shows the stress distribution on the y-axis 

when force is applied along the x-axis in the Panda 
fiber. One can observe the same behavior as in Fig. 3. 
As we reach the clad region, one observes that stresses 
decrease gradually. The decrement of the stresses along 
the y-axis can be explained by the decrement of the 
external stresses because the area is affected by the 
external normal force along the axis that increases when 
proceeding along the axis. The applied load, Wo, in both 
Figs. 3 and 4 is 0.5 kg/cm. 

Based on Ref. [8] and stresses shown in Fig. 3, the 
stress-induced modal birefringence in the Panda type 
fiber when force is applied along the x-axis direction is 
shown in Fig. 5. It is observed from the figure that the 
modal birefringence is directly proportional to the radial 
distance from the fiber center. This is due to the effect of 
the stresses at this region.  The value of the 
birefringence also depends on the magnitude of the 
external applied forces. Similarly, the stress-induced 
modal birefringence when force is applied along the y-
axis is shown in Fig. 6. The figure shows nearly the 
same behavior as in Fig. 5. It is clear that the 
birefringence at this applied load equals zero at the core 
region.  

Changing the applied load, Wo, the stress difference, 
x - y, is calculated when the force is applied in x- and 
y- directions, respectively. From this difference, the 
stress-induced modal birefringence is obtained. 
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Fig. 4 Stress distribution on the y-
axis when force is applied along x-
axis in the Panda fiber.
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Fig. 5 Modal birefringence in the
Panda fiber when force is applied
along x-axis.
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The stress difference in the Panda fiber when force 
is applied along x-axis is shown in Fig. 7, from which 
it is noted that the stress difference decreases with the 
applied loads on the fiber. This means that the stress 
along the y-axis is greater than the stress along the x-
axis. Figure 8 shows the modal birefringence in the 
Panda fiber when force is applied along the x-axis.  It 
is clear that the modal birefringence decreases with the 
applied loads on the fiber.  
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Fig. 7 Stress difference in the Panda fiber when force is 

applied along the x-axis. 
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Fig. 8 Modal birefringence in the Panda fiber
when force is applied along x-axis.
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Fig. 9 Stress distribution in the Panda fiber
when force is applied along y-axis.

 
 

Figure 9 shows the stress distribution in the Panda 
fiber when force is applied along the y-axis. A direct 
proportionality between the applied loads, Wo, and the 
stress difference is noticed. Figure 10 shows the modal 
birefringence in the Panda fiber when force is applied 
along the y-axis, where an increase is noticed in the 
modal birefringence with the applied loads. From these 
results it is expected that we can control the magnitude 
of the birefringence in the fiber by controlling the 
external loads acting on the fiber. 

 

Figures 11 and 12 show the stress distribution for the 
Side Tunnel fiber on the x-axis and the y-axis 
directions. The two figures show nearly the same 
behavior and the same order of magnitude as the Panda 
fiber. This is expected since the two fibers are different 
only in the position of the SAZs and the parameters 
This is repeated for the modal birefringence, Fig. 13 and 
14. As the force is applied along the y-direction in the 
fiber, one observes that the modal birefringence 
vanishes nearly at the limit of the fiber. It is also 
expected that the modal birefringence will vanish as the 
magnitude of the external applied loads, oW , is varied.     
Similar to the Panda fiber, the behavior of the Side 
Tunnel fiber is shown in Figs. 15 to 18. 
 

Fig. 10  Modal birefringence in the Panda
fiber when force is applied along y-axis.
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Fig.11 Stress distribution for the Side
Tunnel fiber on the x-axis when force is
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Fig. 12 Stress distribution for the Side
Tunnel fiber on the y-axis when force is
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Fig. 13  Modal birefringence in the Side
Tunnel fiber when force is applied along the
x-axis.
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Fig. 14  Modal birefringence in the Side
Tunnel fiber when force is applied along the
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Fig. 15 Stress difference in the Side Tunnel
fiber when force is applied along x-axis.
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Tunnel fiber when force is applied along x-
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Fig. 17 Stress difference in the Side Tunnel
fiber when force is applied along y-axis.
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 Fig. 18   Modal birefringence in the Side 
Tunnel fiber when force is applied along 
the y-axis.

 

 

 
 
 
 
 

6. CONCLUSION 

The finite element method has been applied for both the 
Side Tunnel and Panda fibers to obtain variation in 
stresses and modal birefringence. 

It is found that the modal birefringence is directly 
proportional to radial distance from the fiber center. It is 
also found that as the force is applied, the modal 
birefringence vanishes nearly at the core limits of the 
fiber. 
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