
Geophys. J .  R. ustr. SOC. (1970) 21, 65-78. 

Stress and Deflection in the Lithosphere near Lake Kariba-I 

D. I. Gough and W. I. Gough 

(Received 1970 March 26) 

Summary 

Calculations of incremental stress and deflection in the crust have been 
made as part of a study of load-induced seismic activity at Lake Kariba. 
A general method is described for computing any desired stress com- 
ponents anywhere in an elastic half-space near a load of any shape on its 
surface. The program also computes the elastic depression and the 
gravitational energy converted to stored elastic strain energy. The static 
incremental stress and depression in the lithosphere near Lake Kariba 
are discussed with the aid of vertical sections and maps. The maximum 
shear stress under the deepest part of the lake rises to 2.12 bars, and the 
downward normal stress to 6.68 bars. The maximum depression in the 
Sanyati Basin is 23.5 cm. Computed depression differences along the 
Makuti-Kariba road are shown to be in excellent agreement with results 
of repeated precise levelling. The deflection is therefore mainly elastic 
and Young's modulus is near 0.85megabars for the lithosphere in the 
area. Some evidence is available which suggests vertical movements of 
blocks on fault planes, no doubt associated with the earthquakes. 
Extended relevelling should give results of great scientific and engineering 
value. Stress differences produced by the lake in the upper mantle are 
too small to produce flow there, so that inelastic depression of the crust 
toward isostatic compensation of the load is not to be expected. 

1. Introduction 

Considerable seisniic activity followed the filling, in 1963, of the world's largest 
artificial lake on the Zambezi River upstream from a dam at Kariba, Rhodesia. 
This induced seismicity is discussed in an accompanying paper (Gough & Gough 
1970) hereafter referred to as Paper 11. Evidence is there offered that the seismicity 
is a result of re-activation of existing faults in the rift valley which contains the lake. 
It is further argued that the activity has occurred through addition of small stresses 
caused by the load to larger initial stresses, and not through the effects of fluid 
pressure. As part of the investigation a study has been made of the incremental 
stress, elastic vertical depression and release of gravitational potential energy brought 
about by the filling of Lake Kariba. This study is reported in the present paper. 

One of us has given a method of calculating incremental stress under a two- 
dimensional artificial' lake (Gough 1969). This method could have been applied to 
sections through the crust under central parts of Lake Kariba. To allow evaluation 
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66 D. I. Cough and W. I. Cough 

of stresses near the deep end of the lake, and in particular estimation of the volume 
of rock stressed above a chosen value, a general three-dimensional method has been 
evolved. 

2. Batbymetry of Lake Kariba 

A detailed bathymetric chart of the lake on a scale of 1 : 100,000, published by 
the Surveyor General of Rhodesia, has been used for estimation of mean water 
depths in squares as described in Section 3. Fig. 1 gives the general form of the 
lake by means of the shoreline and contours, smoothed from the 1 : 100,OOO chart, 
at depths 40 and 70 metres. Depth is taken from the normal maximum water level, 
484.6m (159Ofeet) above sea level. The lake level has risen to a peak value of 
487.5 m (at the time of maximum seismicity) and drops to between 480 and 483 m 
annually during the dry season. The area of maximum load, near the north shore 
and westward from Kariba Dam, is known as the Sanyati Basin. A narrow waist 
in the lake divides an upper basin from a lower basin of which the Sanyati Basin 
forms the maximum development. 

The numbered lines in Fig. 1 give the positions of vertical planes in the crust in 
which stress and deflection have been computed. 
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Fro. 1 .  Simplified bathymetry of Lake Kariba, shown by the shoreline and con- 
tours at depths 40 and 70 metres. Numbered lines show sections in which stress 

and deflection have been computed. 
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Stress and deflection near Lake Kariba-I 67 

3. Calculation of stress and deflection 

The distribution of total stress near an artificial lake cannot be determined because 
the initial stress is unknown. This paper is concerned with the stress increment 
caused by the lake. Except when failure is actually occurring, this added stress 
will be essentially that in an elastic, homogeneous and isotropic medium. Further 
the sphericity of the Earth has little effect on the stress pattern. Vertical pressures 
at the ends of the lake converge by only about 2”, and in any case the stress contri- 
bution of parts of the lake 200 km from a given point is very small. 

In the two-dimensional case most of the integration can be performed analytically 
and the computation is rapid (Gough 1969). In three dimensions with a lake of 
irregular shape numerical integration is necessary. The lake is divided into small 
squares of side a by two sets of orthogonal straight lines, one set conveniently east- 
west and the other north-south. The mean water depth h in each square is estimated, 
and the water pressure on the floor of the square is replaced by a vertical force 
P = pga2 h acting at the centre of the square. The lake is thus replaced by a two- 
dimensional array of forces F at spacing a, acting normally to the bounding plane 
of an elastic half-space. 

Clearly the approximation of the lake load by the array of forces will be poor 
at depths less than the distance a which separates these point forces. In the present 
work the top row of field points has been taken at depth 4 4 3 .  This minimum depth 
may be rather small, but no important errors are introduced because the top row 
of values is used to continue contours from below in the vertical section, and effects 
of individual point forces would be obvious. No such effects are seen. 

Take axes x eastward, y northward in the plane boundary and z downward. 
Let F act downward at the origin. The distance from the origin to a point P(x ,  y, z) 
is R = J(x’+y2+zz) and r = J(x2+y’ )  is the horizontal projection of R. The 
stress at P is then given by three normal stresses and one shear stress: 

F 1 +-+-I Z Z 

(-7 r 2 R  R3 
ae = - (1 -2v) 

271 

3F rz’ rrz = - - - 
271 R S  

where v is Poisson’s ratio and the azimuthal angle 8 = arctan (y/x) is measured from 
east through north (Timoshenko & Goodier 1951, p. 364). For convenience in 
adding the contributions of many forces F ,  axes are rotated by means of the relations 

a, = be sin’ 8 +a, cos’ e 
a,, = a, sin’ 8 + ag cosz 8 

0, = b, 

T~~ = (a, - a@) sin 8 cos 6’ 

Tx, = z,, cose 

T,,, = z,, sine. 
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The vertical deflection Ad at P due to F is given by 

= 0 (3) 

where E is Young’s modulus (Timoshenko & Goodier 1951). Contributions by all 
the forces are added to give d at P due to the lake. Finally an estimate of the gravi- 
tational potential energy E,  released by the depression is computed. Suppose the 
field points are arranged in n, equally spaced north-south vertical planes separated 
by equal distances Ax, within each plane in n, rows Az  apart and in each row at ny 
points spaced Ay apart. Then E,  for the whole volume of rock 

n, ny n, Ax By Az 

represented by the field points can be approximated by 

E , = p g A x A y A z Z d , ,  n (8) 

with n = n,nynz. Equation (8) could be generalized for variable spaces between 
field points but to small advantage. It holds with arbitrary displacements in the 
y direction of arrays of field points in successive y z  planes, because parallelograms 
on a common base and of equal height have equal areas. Such displacements would 
be chosen to follow the lake; linear displacements sufficed at Kariba. Deflections 

At a given field point P the stress due to the whole lake is approximated by adding 
contributions from all the forces F to each of the six stress components ox, o,,, a,, 
zxy, z,, and rYz; the coinputation proceeds by way of equations (1) and (2) for each 
force F in turn. Next the principal stresses ol, 02, o3 at P are computed; they are 
eigenvalues of o such that 

and the corresponding eigenvectors are the direction cosines l , ,  m,, n, of o1 and 
similarly for o2 and o3 (Jaeger 1956). 

Various stress parameters could be chosen for output. We choose the downward 
normal stress oz, the maximum shear stress given by 

zmaa = 3(o1-63) (4) 

and the attitudes of the two orthogonal planes across which z,,, acts at P .  For 
brevity these will be called the z,,, planes. The downward normals to them have 
azimuths 

A ,  = arctan ( (1 ,  +Z3)/(m, +m3)} 
A2 = arctan((Z,-Z,)/(m,-m,)} (5 )  

clockwise from north (i.e. from y through x )  and the planes are inclined to the hori- 
zontal by 

(6) 

( J[(zi +kd2+(mi +md21 

[ J[(li -Id2+ (mi -md2] 

I, = arctan 
*l +*3 

I 2  = arctan *, -*3 
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Stress and deflection near Lake Kariba-I 69 

dl and d ,  at the two uppermost rows of field points are extrapolated to give an esti- 
mate of the contribution E,' of depression of the top layer of thickness t 

with m = n,n,. 
Having computed u,, z,,,, Al,  A,, I,, Z2, d and AEB for the first field point, the 

program stores the first seven parameters in seven arrays, accumulates AE, and 
proceeds to the next field point. For Lake Kariba, which strikes mainly east-west 
where it is deep, the field points were chosen in north-south vertical ( y z )  planes, 
each of which gives each parameter over a vertical section through the rock roughly 
transverse to the overlying lake. The lake was divided into 1302 nearly square 
rectangles 2.22 x 2.30 km. With 1302 point forces and an array n,, = 51 by n, = 24 
of field points, one north-south section required 14 minutes in an IBM360-67 
system. Twenty-six sections have been used in the study of the full lake. Some 
of the profiles were also run after reducing the mean water depths in all squares by 
a decrement Ah; disregarding all squares in which h - Ah < 0 one very easily secures 
the stress distribution when the lake stood Ah below its full level. To study the 
development of stress as the lake filled, runs were made for nine lake levels in all. 
The results are discussed in Paper I1 in relation to the seismicity. The time per run 
was reduced as Ah increased and the number of point forces fell, but in all some 
16 hours in the computer were required for the results reported in this paper and 
in Paper 11. A method of calculation of a less brute-force type would be desirable 
but we have not succeeded in finding one. The Boussinesq method does not appear 
suited to the initial parameters available. 

Each parameter except E ,  was printed out in the form of a map of the section 
given by each y z  plane, by means of letters and symbols available in the printer. 
The method is described by McCracken (1965) and its application has been discussed 
by Gough (1969). 

Parameters assumed in the elastic half-space are 0.27 for Poisson's ratio in all 
computations, 0.85 megabar for Young's modulus (Birch 1966) in the computation 
of vertical deflection, and 2.7 g for the density in computing the gravitational 
energy released. 

4. Incremental stress under the full lake 
Stress parameters have been computed in the vertical planes indicated by the 

lines numbered 1-26 in Fig. 1. Fig. 2 shows the downward normal stress a, and maxi- 
mum shear stress T,,, in two north-south planes, P-16 across the Sanyati Basin 
where the stresses are largest, and P-21 across the eastern extremity of the lake. 
Fig. 3 shows a, and z,,, in planes P-3 and P-10, which cross the upper basin and 
the western part of the lower basin respectively. The frame of each drawing measures 
45 km north-south, north on the right, and 37.5 km vertically. The load is at the 
top of each frame and as explained in Section 3, calculations were not made at 
depths less than 3 km because they would be inaccurate. 

At the planes P-10 (Fig. 3 lower) and P-16 (Fig. 2 upper) the lake approximates 
a two-dimensional one of triangular section. Comparison of these figures with 
Fig. 3 of Gough (1969) will show a general resemblance. The two-dimensional 
case is helpful in extrapolating the present results in the top 3 km layer, left blank 
in Figs 2 and 3. The a, contours clearly continue up to the surface and the z,,, 
contours close beneath the surface, as they must since shear stress vanishes at the 
lake floor. The largest value of z,,, in plane P-16 must approximate the maximum 
for the lake, at 2-12 bars. This value occurs at about 5 km depth under the Sanyati 
Basin. 
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70 D. I. Gough and W. I. Gough 

The section P-21 at the eastern extreme of the lake shows that both cz and T,,,~, 
fall rapidly outside the limits of the load; the maximum values noted under the 
lower parts of Fig. 2 should be compared with those for section P-16. A narrow 
maximum in a, occurs under an arm of the lake. The maximum of zmax goes to mid- 
crustal depths and broadens as the lake is left. In the upper basin the section P-3 
shows very asymmetric distributions of cz and T,,~ (Fig. 3 upper). Local maxima 
in both parameters occur under the river bed, south of the profile centre. In the 
northern part of the section, because of the curvature of the lake, the deeper water 
to the north-east contributes, especially to z,,, and, as in plane P-21, mainly at 
depth; the effect is that the deeper contours swing to the north and produce the 
asymmetric patterns. The contours are broadened because P-3 is far from normal 
to the lake strike. Although the maximum values of cz (4.15 bars) and T,,, (1.80 bars) 
in plane P-3 are not much lower than those in planes P-10 and P-16 in the lower 
basin, the large stresses are confined to very small areas in P-3, as the contours show. 

In the two-dimensional case the orthogonal planes across which zmax acts (zmax 
planes) all have strike parallel to the lake axis and can be represented in a single 
diagram with the magnitude of the shear stress (Gough 1969). In the three-dimen- 
sional case this is not convenient, and instead the T, ,~  planes are indicated, in Fig. 4, 

P-16 C Z  100=6.68 bars 100=2.12 bars P- I6 Tmax 

P-21 0-2 100=0.91 bar P-21 7m.x 100=0.54 bar 

FIG. 2. Downward normal stress (left) and maximum shear stress (right) in two 
north-south vertical planes. North is at the right. The frames are 45 km N-S by 

37.5 deep. Profile numbers refer to Fig. I .  
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Stress and deflection near Lake Kariba-I 71 

P-3 c r  100-4.15 bars 

P-I0 4 2  100=5,73 bars 

I I 

P-3 Tmar loO=l.80 bars 

\ 
100=1.82 bars P-I0 Tmar 

FIG. 3. Downward normal stress (left) and maximum shear stress (right) in two 
north-south vertical planes. North is at the right. The frames are 45 km N-S by 

37.5 krn deep. Profile numbers refer to Fig. 1 .  

at points on six profiles in the horizontal plane at depth 13 km, together with contours 
of the magnitude of zmax at this depth. The contours are controlled by values in all 
section planes shown in Fig. 1. The depth 13 km was chosen to avoid local deflections 
of the zmax planes by small scale irregularities in the lake depth, while still showing 
over 80 per cent of the maximum value of z,,, in the sections through the heavily- 
loaded basins. It will be seen that there are separate closed l-bar contours under 
the upper and lower basins, even at 13km depth. Where the load approaches a 
two-dimensional form, in particular along the lines 15-16-17, 11-10-12 and 5-6-7 
(Figs 1 and 4), the strikes of the two z,,, planes at each point nearly coincide. This 
shows that the intersection of the two planes is nearly horizontal. The strike closely 
parallels that of the lake. Along any north-south profile the two planes swing about 
their nearly horizontal line of intersection. Where z,,, has its maximum value the 
z,,, planes dip at +45", and rotate very rapidly as one moves north or south from 
the centre. The rapid rotation is an effect of the small widths of the deep basins. 

The most westerly and easterly profiles show large angles between the strikes of 
pairs of T,,, planes, except near the load. At the end points of these profiles nz, 
which falls rapidly as the lake is left, will no longer be the largest principal stress, and 
the z,,, planes indicate largest and least principal stresses in nearly horizontal planes. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/21/1/65/729625 by guest on 21 August 2022



72 D. I. Cough and W. I. Cough 

The information given in Fig. 4 on the attitudes of T,,, planes forms about one 
per cent of the total data of this kind in the output from the computer. The paper 
as a whole gives a similarly small sample of the information yielded by the program. 

~ .I 

I-, I I I 
27' 28O 2 9" 

FIG. 4. Maximum shear stress at depth 13 km under Lake Kariba. Contours show 
magnitude in bars: strike-dip symbols show attitudes of pairs of planes across 
which 7,,,*= acts. 

5. Downward elastic deflection of the crust near the full lake 

The deflection in four vertical section planes is shown in Fig. 5 :  the section-plane 
numbers refer to Fig. 1. Each frame in Fig. 5 measures 75 km south to north (north 
on the right) by 60.5 km in depth. These figures therefore have greater extent in 
width and depth than those of Figs 2 and 3 in the ratio 513. A striking feature of 
Fig. 5 is the slow decrease in deflection with distance from the load. Whereas only 
small stresses penetrate through the crust (Figs 2 and 3) deflections of several cm 
occur deep in the upper mantle. For a point force equation (7) shows that d is 
inversely proportional to distance both at the surface and vertically below the point 
of application of the force, though with different multiplicative constants. 

The sections P-5 and P-17 in Fig. 5 show the depression under the upper basin 
and the Sanyati Basin respectively. Sections P-17 and P-16 (Fig. 2) are coplanar. 
The maximum deflection in P-17 must approximate that for the lake, at 23.5cm. 
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Stress and deflection near Lake Kariba-I 13 

P-2 100 = 12.0 crn 

P- 17 100=23.5 crn 

P-5 100s 19.7 cm 

P-22 100- 10.3 cm 

FIG. 5. Downward elastic deflection in four north-south vertical planes under 
Lake Kariba. Profile numbers refer to Fig. 1 .  Arrows show location of largest 

deflection. North is at the right. Frames are 75 km N-S and 60.5 km deep. 

The maxima noted in Fig. 5 are at depth 3.0 km; at the surface the value will be 
slightly greater. Towards the upstream end of the lake deflections are considerable, 
because of the slow decrease with distance, and at P-2 (Fig. 1) the maximum deflec- 
tion is half that in the deepest basin (Fig. 5).  The same asymmetry appears in the 
deflection on P-2 as in the shear stress at P-3 (Figs 5 and 3) and is associated with 
the curvature of the lake. Section P-22 (Fig. 5) has been located to show how the 
deflection is distributed at distances up to 70 km from the load. In this plane, at the 
eastern end of the lake, another section-map south of this one (P-20, Fig. 1) showed 
almost perfect symmetry about the lake axis. 

Where the contours in Fig. 5 are nearly straight and vertical, the rock is simply 
displaced with little or no vertical strain. In these four sections, which are represen- 
tative of all those studied, it is notable that there is simple displacement without 
strain above planes dipping outward at 45" from each lake edge. The rock which is 
strained and contains elastic strain energy is thus virtually all below these 45" planes. 
A minor point of interest is the small but real increase of the depression with depth 
in the rock near the surface away from the load. This implies a small tensile vertical 
stress. While crz is always a compression (equation (I)), it increases as z2 for large 
r and small z and a small element of rock is extended. 
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, 29' 

27' 2 8 O  290 

FIG. 6.  Calculated downward elastic deflection at depth 3 km under Lake Kariba. 
Deflections at the surface are slightly larger within the lake. Unit: 1 cm. The 

dots mark values read from computer output. 

7 O  

B' 

Data from all 26 sections have been compiled to yield a contour map of vertical 
deflection (Fig. 6). It shows the depression at a horizontal plane 3 km deep. That 
at the surface would be very slightly greater within the lakeshore. The maximum 
elastic deflection is 23-5 cm in the Sanyati Basin and the 20 cm contour includes the 
deep water of the lower basin. In the upper basin the maximum appears to be 
slightly over 20 cm but does not fall in a section plane. The computed depression is 
shown along transverse (A-B) and longitudinal (L-Makuti) profiles of the lake. 
The steepest tilts occur close to the north shore near the dam, that is close to the 
deep Sanyati Basin, and amount to about 6.8 in lo6 (1-4 seconds). 

Before closure of the dam, precise levelling was carried round most of the future 
shoreline and across the future lake-floor along four lines. This levelling was required 
for construction of fishing harbours and clearing of bush between the future shoreline 
and the 30m depth contour to allow trawl-fishing. The lake levelled routes were 
linked along four access roads to the primary levelling route along the main road 
Salisbury-Makuti-Chirundu-Monze-Livingstone-Wankie (Fig. 7). This compre- 
hensive levelling project was carried out by the Department of Trigonometric and 
Topographic Surveys of the then Federal Government of Rhodesia and Nyasaland, 
and by subcontractors to that department. Further details have been published by 
Sleigh, Worrall & Shaw (1969). All routes, except the part of the primary levelling 
route indicated in Fig. 7, were levelled before the lake began to form. 
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I I 1 1 
26'E 27* 2s' 29- 

FIG. 7. Precise levelling routes near Lake Kariba. All routes except the indicated 
part of the primary route were completed before the dam was closed. 

The Federal Survey Department started relevelling the road from Kariba to 
Makuti (Fig. 1) in October 1963, but had not completed the distance when the work 
was overtaken by the breakup of the Federation on December 31 of that year. This 
road was relevelled in 1968 by the Department of the Surveyor General of Rhodesia 
(Sleigh et ul. 1969). Some of the benchmarks had been destroyed by construction 
of a new road, but sufficient were re-occupied to give a good picture of the changes. 
The differences between the 1957 and 1968 levels, relative to Makuti, were plotted by 
Sleigh et al. against the benchmark positions projected on a straight line (their 
Figs 3 and 5) .  In Fig. 8 the black dots show the 1957-1968 differences given in 
Table 2a, Sleigh et ul. (1969), projected as in their paper on a straight profile. 

The 1963 relevelling started at Kariba fundamental benchmark GlFl  on October 
10, after the intense seismic disturbance of September 1963. Political events termi- 
nated the work at benchmark 35, since destroyed. As Sleigh et al. (1969) have 
shown, the 1963 profile fits very well to that of 1968 if benchmark 39 (Fig. 8) is given 
the same level in both. There is however one interesting difference. Benchmark 
GlFl ,  the fundamental Kariba mark, shows an apparent uplift of 2.9 cm between 
October 10, 1963 and 1968. This is almost certainly significant in terms of the 
precision of the work. Smaller uplifts of doubtful significance are shown by bench- 
marks 74 (1.2 cm) and 75 (1.0 cm) near Kariba. In contrast, five benchmarks out of 
six between 44 and 71 show subsidence since 1963, three of them by more than 1 cm 
(marks 44, 66 and 68) (Sleigh et al. 1969, Table 2b). While the significance of the 
changes, other than that at GlFl ,  cannot be established, the pattern of the differences 
is suggestive of uplift of a block including Kariba and subsidence of a block further 
east. While such movements cannot have been associated with the seismic activity 
of September 1963, which antedated the 1963 relevelling, many tremors occurred 
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between October 1963 and 1968, including one of magnitude 5.5  (Paper 11, Fig. 5(b)) 
The comparison of the 1963 and 1968 relevellings shows the great value of the 1963 
work, which was undertaken under conditions of great discouragement by a Depart- 
ment under sentence of dissolution. 

Calculated elastic deflections, estimated by plotting the benchmarks on the large- 
scale original of Fig. 6, are shown by open circles in Fig. 8. They do not lie on a 
smooth curve because the road is not straight. In general, the agreement is remarkably 
good. Between Makuti (21F4) and Kariba (GlF1) both measurement and calcula- 
tion give 12.7 cm. The precise agreement is of course fortuitous; more significantly, 
the mean difference for the 27 benchmarks other than Makuti (observed-calculated) 
is -0-24f0-17cm. 

Bench marks 
9 4 7674 67 47 40 .- 

* w 7 7 7 5  7271 68 66 44 41 39 32 292726 2019 16 I3 109 
1111 I I  1 1 1 1  I I I 1  1 I I 1  

FIG. 8. Measured (dots) and calculated (circles) deflections along route from 
Kariba (left) to Makuti (right), relative to Makuti. 

Several conclusions follow. First, the real deflection is essentially elastic, with 
superposed disturbance at some benchmarks. Second, the value of Young’s modulus 
(0.85 megabars) assumed in our calculations is representative for the lithosphere in 
this part of the ancient African shield. This estimate was taken from Birch’s Table 
7-16 (Birch 1966) which gives values computed from elastic wave velocities at 
4 kilobars pressure, by selecting values for acidic crustal rocks. It was not adjusted 
to fit the data of Sleigh et al. Third, Fig. 6 probably gives a valid representation of 
vertical deflection in the region of Lake Kariba. 

The departures from elastic depression are interesting. Those near the lake 
(benchmarks 44 to 72, Fig. 8) could be related to movements on faults involved in 
the seismic activity. It is most regrettable that the road-building provides an alterna- 
tive and leaves the question unanswerable. The inelastic displacements suggested 
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Stress and deflection near Lake Kariba-I 77 

by Fig. 8, as well as the comparison between the 1963 and 1968 relevellings, suggest 
that there is a real possibility, by repeating levelling along other routes, of detecting 
and measuring large strains associated with the earthquakes. In particular a repetition 
of the levelling network around and across the east end of the lake would have 
good prospects of detecting motion on faults (Fig. 7 and Paper 11, Fig. 3) and should 
provide extremely interesting results, both as earth science and as highly practical 
information for dam engineers. 

6. Energy conversion 

The gravitational energy released as the lake depresses the crust through d ( x ,  y, z )  

is stored as elastic energy in the lithosphere. Much of E, is stored over a vast volume, 
in rock under very low incremental stress, as can be seen from Figs 5, 2 and 3. If 
one substitutes for d from (7) in (10) the resulting integral for E, due to a single 
point force is non-convergent, so that there is no finite ' total value ' of E,. Physically 
this implies the unreality of an elastic half-space with uniform gravitational field of 
semi-infinite extent normal to the bounding plane. The quantity of practical interest 
is the finite energy E, which is stored in regions where stress is considerable and 
where some of EB may be available for conversion to seismic energy. This part of 
E, can be estimated, with a suitable three-dimensional array of field points, by 
means of equations (8) and (9). Such estimates are considered in Paper I1 in relation 
to the induced seismicity. Even if one takes only the top few kilometres of crust 
immediately under the lake, E, is much larger than the potential energy +mgAk 
stored because of depression of the lake water itself, and the latter can be neglected. 

7. Isostatic adjustment 

Lake Kariba is too small a load to depress the crust inelastically so as to restore 
isostatic compensation. Such adjustment would require flow, and therefore failure, 
of upper mantle material. Jeffreys (1952) has pointed out that existing mountain 
ranges could not be supported by a strong crust floating on a fluid mantle, because 
they would produce stress differences in the crust exceeding its strength. Such 
major topographic features require strength of order 100 bars in the upper mantle 
near the M-discontinuity. Stacey (1969) discusses strength in the upper mantle by 
assuming solid-state creep processes controlled by activation energies. Assuming 
linear dependences of the creep strength on pressure and on temperature, he uses 
the best estimates of the radial distributions of p and T to show that the creep strength 
has a minimum at depth 150-300 kni, in agreement with current seismic velocity 
models. This analysis supports a mantle strength of at least 30 bars at depths less 
than 50 km. Reference to Fig. 2 (upper right) shows that under the Sanyati Basin 
at the base of the crust (roughly the bottom of the diagram) rmaX reaches 0.75 bars, 
so the stress difference in the upper mantle will not exceed 1.5 bars. The stress 
difference probably nowhere exceeds 10 per cent of the strength of the mantle. The 
lake will therefore produce neither flow in the mantle nor isostatic adjustment. 
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