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Abstract: This paper concentrates on the finite element analysis of thermoe-
lastic stresses, displacements and strains in a thin circular functionally graded
material (FGM) disk subjected to thermal loads. Further the temperature pro-
files have been modeled with the help of heat conduction equation. The model
has been solved numerically for an Al2O3/Al FGM disk. The numerical re-
sults reveal that these quantities are significantly influenced by temperature
distribution.
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1. Introduction

The finite element method is well addressed and needs less computation in
addition to high accuracy in literature, Reddy [1] and Hutton [2]. Some re-
searchers [3-8] have performed the finite element analysis of circular plates,
bladed disc, circular disk, circular and annular plates, annular disks. Yong-
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dong et al. [9] and Zhong and Yu [10] carried out the stress analysis of FGM
beams of rectangular cross section due to mechanical loads. Mote [11] used
the Rayleigh-Ritz technique to investigate the free vibration characteristics of
centrally clamped, variable thickness axisymmetric disks with axisymmetric in-
plane stress distributions. Mote [12] studied the vibrations of non-axisymmetric
disks using the finite element technique. Nigh and Olson [13] employed finite
element method for rotating disks in body-fixed or a space-fixed co-ordinate
system. Stress distribution in rotating composite structures of FGM solid disks
have been studied by Zenkour [14]. An analysis of the thermal stress behavior
of FGM hollow circular cylinders have been carried out by Liew et al. [15].
Finite element analysis of thermoelastic contact problem in functionally graded
axisymmetric brake disks has been performed by Shahzamanian et al. [16].
Afsar and Go [17] studied thermoelastic field in a rotating FGM circular disk
with the help of finite element method by considering uniform exponential and
parabolic profiles of temperature variations. In the present paper finite element
technique is used to evaluate the components of stress, strain and displacement
in a rotating FGM circular disk. The thermal variations have been modeled
from the heat conduction equation in case of uniform and steady state temper-
ature distributions. The case of FGM non-heat conducting circular disk has
also been considered in which the prevailing conditions are isentropic and the
thermal field is expressed by a temperature relation in terms of strains in the
disk. The results have been found in close agreement with those available in
literature and consistent with physical situations.

2. Mathematical Model

We consider a circular disk with a concentric circular hole as shown in Fig. 1.
The disk is assumed to be rotating with angular frequency ω. The origin of the
polar co-ordinate system r − θ is assumed to be located at the center of the
disk and hole. The disk is considered to be composed of two distinct material
phases A and B whose distribution varies continuously along the radial direction
only. This makes the problem axisymmetric and hence the field quantities are
independent of θ so that ∂

∂θ
= 0.

Because the material distribution and properties of the FGM disk are func-
tions of r only, therefore it is assumed that the Young’s modulus E, coefficient
of thermal expansion α and density ρ of the disk vary exponentially according
as:

E = E0e
βr, α = α0e

γr, ρ = ρ0e
µr. (1)
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As the inner surface of the FGM disk consists of material A and outer
surface of material B, therefore the constants in equation (1) are determined as
[17]

E0 = EAe
βr, α0 = αAe

γr, ρ0 = ρAe
µr, (2)

β =
1

a− b
ln(EA/EB), γ =

1

a− b
ln(αA/αB), µ =

1

a− b
ln(µA/µB). (3)

Here, the subscripts A and B of a variable are used to denote the properties
of the constituent materials A and B, respectively. The disk has a small con-
stant thickness and hence the instant analysis is carried out under plane stress
conditions.

3. Boundary Conditions

The FGM disk considered in the present study is subjected to a temperature
gradient field. The inner surface of the disk is assumed to be fixed to a shaft
so that isothermal conditions prevail on it. The outer surface of the disk is free
from any mechanical load and maintained at uniform temperature gradient.
Thus, the boundary conditions of the problem are given by:

(i) r = a, ur = 0, T = 0,

(ii) r = b, σr = 0,
dT

dr
= T0, (4)

where ur and σr denote displacement and stress along the radial direction.

4. Formulation of the Problem

The materials of the disk experience a stress due to incompatible eigenstrain
when subjected to a temperature gradient field. The disk being isotropic leads
to a thermal eigenstrain at a point which remains same in all directions and is
given by

ε∗= α(r)T (r), (5)

where T (r) is the change in temperatures at any distance r. Thus the compo-
nents of the total strain are given by

εr = er + ε∗, εθ = eθ + ε∗, (6)
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where εr and εθ are the radial and circumferential components of the total strain
and er and eθ are the radial and circumferential components of the elastic strain.
Due to symmetry considerations, the shear strains do not play any role. The
Hooke’s law provides us

εr =
1

E
(σr − νσθ) + ε∗, εθ =

1

E
(σθ − νσr) + ε∗ (7)

where σr and σθ are the radial and circumferential stress components, respec-
tively. Here ν is the Poisson ratio of the material. The two-dimensional equi-
librium equations in polar co-ordinate for a rotating disk are given by

∂σr
∂r

+
1

r

∂τrθ
∂θ

+
σr − σθ

r
+ ρω2r = 0, (8)

∂τrθ
∂r

+
1

r

∂σθ
∂θ

+
2τrθ
r

= 0, (9)

where last term in the first equation corresponds to the inertia force due to
rotation of the disk. Because of symmetry, the second equilibrium equation of
system of equation (8) is identically satisfied and the first equilibrium reduces
to

d

dr
(rσr)− σθ + ρω2r2 = 0. (10)

Upon substituting F = rσr in equations (10) and (7), we get

σθ =
dF

dr
+ ρω2r2 (11)

εr =
1

E

(

F

r
− ν

dF

dr

)

−
νρ

E
ω2r2 + ε∗ (12)

εθ =
1

E

(

dF

dr
−

νF

r

)

+
ρ

E
ω2r2 + ε∗. (13)

The two strain components are related by

εr =
d

dr
(rεθ).

Using equation (11) in equation (12), we obtain

d2F

dr2
+

(

1

r
− β

)

dF

dr
+

1

r

(

βν −
1

r

)

F
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= ρω2r (βr − µr − ν − 3)− Eα

(

γT +
dT

dr

)

. (14)

The heat conduction equation for a dynamic coupled thermoelastic solid is
given by [Dhaliwal and Singh [18]]

K

(

∂2

∂r2
+

1

r

∂

∂r

)

T − ρCe
∂T

∂t
=

EαT0(ėr + ėθ)

1− ν
, (15)

where K is the thermal conductivity, Ce -Specific heat at constant strain and
T0 being uniform reference temperature. The equations (13) and (14) are the
governing second order differential equation which provides us the function F
and hence the components of stress.

5. Temperature Field

We shall consider following three cases of thermal variations in the FGM disk:
Case I: Disk having uniform temperature distribution. In this case, we have

T (r) = T0,
dT

dr
= 0. (16)

Case II: Disk at steady state temperature distribution. In this case ∂
∂t

∼= 0,
so that the heat conduction equation (14) takes the form

(

d2

dr2
+

1

r

d

dr

)

T = 0.

Upon solving this equation with the help of thermal conditions (4), we
obtain

T (r) = bT0 log(r/a),
dT

dr
=

bT0

r
. (17)

Case III: Non-heat conducting (isentropic) disk. In this case thermal con-
ductivity K = 0 so that equation (14) leads to the temperature relation given
by

T =
−T0Eα

ρCe(1− ν)
(er + eθ) . (18)

Here the prevailing thermo-dynamical conditions in the FGM circular disk
are of constant entropy (isentropic) and it is assumed that initially the disk is
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at uniform temperature T0. Upon substituting the values of er and eθ from
equations (11) into equation (17) and rearranging the terms, we get

T (r) =
−T0α

ρCe

(

dF

dr
+

1

r
F + ρω2r2

)

, (19)

dT

dr
= A

(

−
d2F

dr2
+B

dF

dr
+C

F

r
+Dρω2r2

)

, (20)

where

2A =
T0α

ρCe
, B =

(µr − γr − 1)

r
,

C =
(µr − γr + 1)

r
, D = −(2 + γr).

(21)

These temperature distributions given by equations (15), (16) and (18)
holds in the domain a ≤ r ≤ b.

6. Finite Element Formulation

Substituting the values of T and dT
dr

from equations (16) and (18)-(20) in equa-
tion (13) and following a standard finite element discretization approach, the
domain of the disk is divided radially into N number of elements of equal size
and consequently the equation (13) can be transformed to the following system
of simultaneous algebraic equations for Cases I, II and III:

2
∑

j=1

Ke
ijF

e
j = Le

i ; i = 1, 2, e = 1, 2, ..., N. (22)

The quantities Ke
ij and F e

j in respective cases are given by: Case I and II:

Ke
ij =

∫ re+1

re

dφe
i

dr

dφe
j

dr
dr−

∫ re+1

re

(

1

r
− β

)

φe
i

dφe
j

dr
dr−

∫ re+1

re

1

r

(

βν −
1

r

)

φe
iφ

e
jdr,

Le
i =

∫ re+1

re

φe
if(r)dr + φe

i (re+1)
dφe

j

dr
(re+1)− φe

i (re)
dφe

j

dr
(re).

Case I:

P =
1

r
− β, Q =

(

βν −
1

r

)

,

R = µr + ν + 3− βr, S = −EαγT0.
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Case II:

P =
1

r
− β, Q =

(

βν −
1

r

)

,

R = µr + ν + 3− βr, S = −bEαT0

(

1

r
+ γ log

r

a

)

. (23)

Case III:

P =

(

Ceρ(1− rβ) + ET0α
2(µr − 2γr − 1)

r(Ceρ− Eα2)T0

)

,

Q =

(

Ceρ(βνr − 1) + ET0α
2(µr − 2γr − 1)

r(Ceρ− Eα2)T0

)

,

R = −[Eα(2 + 2γr) + (βr − µr − ν − 3)],

S = 0, (24)

f(r) = EαγT0 − ρω2r(βr − µr − ν − 3), for Case I.

f(r) = Eα(γbT0 log
r

a
+

bT0

r
)− ρω2r(βr − µr − ν − 3), for Case II. (25)

φe
1 =

re+1 − r

re+1 − re
, φe

2 =
r − re

re+1 − re
. (26)

Here the superscript e indicates the element number used to discretize the
domain of the disk.

Case III: In this case the quantities Ke
ij and Le

i are given by

Ke
ij =

∫ re+1

re

dφe
i

dr

dφe
j

dr
dr −

∫ re+1

re

Pφe
i

dφe
j

dr
dr −

∫ re+1

re

Q
1

r
φe
iφ

e
jdr, (27)

Le
i =

∫ re+1

re

φe
if(r)dr + φe

i (re+1)
dφe

j

dr
(re+1)− φe

i (re)
dφe

j

dr
(re), (28)

where f(r) = Rρω2r and φe
1,φ

e
2 are defined in equation (27). The solution in

each case gives the values of F e
j at different nodal points of the disk, which

further used to calculate the components of stress, strain and displacement
from the relations given below:

σr =
1

r

2
∑

j=1

F e
j φ

e
j , σθ =

2
∑

j=1

F e
j

dφe
j

dr
+ ρω2r2,
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εr =
1

E

2
∑

j=1

[

F e
j φ

e
j

r
− νF e

j

dφe
j

dr

]

−
νρω2r2

E
+ ε∗,

εθ =
1

E

2
∑

j=1

[

F e
j

dφe
j

dr
−

ν

r
F e
j φ

e
j

]

+
νρω2r2

E
+ ε∗,

ur =
r

E

2
∑

j=1

[

F e
j

dφe
j

dr
−

ν

r
F e
j φ

e
j

]

+
νρω2r3

E
+ rε∗. (29)

This completes the finite element formulation of the problem. For uniform
temperature distribution (Case I) the analysis agrees with Afsar and Go [17].

7. Numerical Results and Discussion

In this section, some numerical results of different components of stress, strain
and displacement have been computed for an Al2O3/Al FGM disk in which the
ingredient materials Al and Al2O3 correspond to the materials A and B, respec-
tively. The mechanical and thermal properties of these ingredient materials are
that of Afsar [17].

The value of Poisson’s ratio has been taken ν = 0.3 which remains constant
throughout the material. Here we have taken a = 15mm and b = 150mm.
The element size is chosen as 1mm in numerical calculations of all the results
presented in this section. The angular speed ω = 1rad/s and the ratio of the
outer radius to the inner radius b/a = 10. Variations of different components
of stress, strain and displacement for Case I, Case II and non-conducting cou-
pled disk (Case III) versus (r − a)/(b − a) have been presented in Figures 2-
6. Figure 2 shows the variations of radial stress distribution for Case I, Case
II and Case III temperature distributions versus (r − a)/(b − a). It is noticed
that the radial stress initially decreases to attain its minimum value in each
case which then increases in a steady manner in Case II and III in contrast to
that in Case I where it is subjected to a sharp increase for (r−a)/(b−a) ≥ 0.8
to become zero at the boundary. The magnitude of radial stress component
attains lowest value for uniform temperature variation (Case I) as compared
to that of Case II and III. Thus, if the inner surface of the disk is maintained
at low temperature by cooling processes during cutting or grinding, the radial
stress can be controlled to the minimum. Figure 3 reveals that the circum-
ferential stress in a circular FGM disk for uniform temperature (Case I) and
Cases II and III of variable temperatures increases initially before it becomes
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steady and finally observes increasing trend to attain its maximum value at
the boundary. The profiles of this quantity are noticed to be fashioned in a
similar manner in each case except some crossover points in Cases II and III
and difference in its magnitude. Figures 4 and 5 illustrate the distribution of
radial and circumferential strains, respectively. It is observed that the radial
strain component is maximum at the inner surface of the disk and its magni-
tude gradually decreases towards the outer surface of the disk. The uniform
temperature (Case I) yields the minimum radial strain as compared to that in
Case II and Case III. The circumferential strain component attains the max-
imum value for non-conducting disk (Case III) and minimum for the uniform
temperature distribution (Case I). However, the circumferential strain is zero
at the inner surface of the disk in each case. Figure 6 presents the variations of
displacement in Case I to III of temperature variation. It obviously satisfies the
initial and boundary conditions. The displacement gradually increases from its
zero value at the inner surface to the maximum value at the outer surface of the
disk in all the considered cases of thermal variations. The comparison of the
profiles of various considered quantities exhibit more or less the similar type of
behavior and trend of variations as that of Afsar and Go [17] though these get
smoothened and refined in the present cases.

8. Conclusions

It is concluded that the stress, strain and displacement of FGM circular disk
for fixed angular velocity get significantly modified due to uniform temperature
variation, logarithmic thermal changes and non-heat conducting (isentropic)
conditions. The circumferential stress is observed to be compressive in the
inner region of the disk and tensile over the outer region. Significant changes
have been noticed in the profiles of radial and circumferential stresses, strain
and displacement with increasing ratio of difference between radial component
and inner radius of disk to difference between outer and inner radii of disk. It
is concluded that the thermoelastic field in an FGM disk can be modeled and
optimized by controlling thermal variations, radial thickness and temperature
difference at inner and outer surfaces of the disk. This study may be useful in
designing with an FGM circular cutter or grinding disk for proper and reliable
thermoelastic characteristics in service.
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Figure 1: Geometry of Problem

Figure 2: Radial Stress versus (r − a)/(b − a) for various cases of tem-
perature distribution.
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Figure 3: Circumferential Stress versus (r− a)/(b− a) for various cases
of temperature distribution.

Figure 4: Radial Strain versus (r − a)/(b− a) for various cases of tem-
perature distribution.
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Figure 5: Circumferential Strain versus (r−a)/(b−a) for various cases
of temperature distribution.

Figure 6: Displacement versus (r − a)/(b− a) for various cases of tem-
perature distribution.
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