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The influence of early life experience and degree of parental-infant attachment on

emotional development in children and adolescents has been comprehensively studied.

Structural and mechanistic insight into the biological foundation and maintenance of

mammalian defensive systems (metabolic, immune, nervous and behavioral) is slowly

advancing through the emerging field of developmental molecular (epi)genetics. Initial

evidence revealed that differential nurture early in life generates stable differences in

offspring hypothalamic-pituitary-adrenal (HPA) regulation, in part, through chromatin

remodeling and changes in DNA methylation of specific genes expressed in the

brain, revealing physical, biochemical and molecular paths for the epidemiological

concept of gene-environment interactions. Herein, a primary molecular mechanism

underpinning the early developmental programming and lifelong maintenance of

defensive (emotional) responses in the offspring is the alteration of chromatin

domains of specific genomic regions from a condensed state (heterochromatin) to a

transcriptionally accessible state (euchromatin). Conversely, DNA methylation promotes

the formation of heterochromatin, which is essential for gene silencing, genomic integrity

and chromosome segregation. Therefore, inter-individual differences in chromatin

modifications and DNA methylation marks hold great potential for assessing the impact

of both early life experience and effectiveness of intervention programs—from guided

psychosocial strategies focused on changing behavior to pharmacological treatments

that target chromatin remodeling and DNA methylation enzymes to dietary approaches

that alter cellular pools of metabolic intermediates and methyl donors to affect

nutrient bioavailability and metabolism. In this review article, we discuss the potential

molecular mechanism(s) of gene regulation associated with chromatin modeling and

programming of endocrine (e.g., HPA and metabolic or cardiovascular) and behavioral

(e.g., fearfulness, vigilance) responses to stress, including alterations in DNA methylation

and the role of DNA repair machinery. From parental history (e.g., drugs, housing,

illness, nutrition, socialization) to maternal-offspring exchanges of nutrition, microbiota,

antibodies and stimulation, the nature of nurture provides not only mechanistic insight

into how experiences propagate from external to internal variables, but also identifies

a composite therapeutic target, chromatin modeling, for gestational/prenatal stress,

adolescent anxiety/depression and adult-onset neuropsychiatric disease.
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INTRODUCTION

Brain development and the emergence of antecedent fear

and anxiety-like behaviors that increase the risk for severe

mood and psychotic disorders—i.e., major depressive disorder

(MDD), schizophrenia (SCZ) and bipolar disorder (BPD)—are

influenced by inherited and non-inherited (i.e., acquired

during life) factors, where environmental experience contributes

to disease onset (Pine and Fox, 2015). Major psychiatric

disease risk is largely attributed to germline mutations, with

heritability estimates ranging from 30% to 80% (Cardno

et al., 1999; Kendler and Prescott, 1999). The discordance

between monozygotic (identical) twins demonstrates that

non-inherited factors, such as environmental perturbations or

somatic mutations, may also drive disease etiology (Petronis,

2010). The latency between exposure and disease emergence

suggests that the environment propagates stable changes that

have the potential to manifest later in life. Identification and

characterization of candidate genes and mechanism(s) by which

early experiences direct key cell neurodevelopmental pathways

are essential to establish appropriate interventions that protect

child neurodevelopment—i.e., the dynamic inter-relationship

between genetic, brain, cognitive, emotional and behavioral

processes across the developmental lifespan.

Inter-individual variations in physical, cognitive and

socioemotional growth have been traditionally examined under

the conceptual framework of gene–environment (G × E)

interactions (Dick et al., 2010; Gershon et al., 2011). Herein,

animal studies have identified genetic sequences that influence

behavior, and human genome-wide association studies (GWAS)

have linked specific genotypic variants—aneuploidy, copy

number variants (CNVs), indels, retrotransposition and single

nucleotide polymorphisms (SNPs)—to certain personality

traits, including psychiatric disorders (Malhotra and Sebat,

2012; Purcell et al., 2014) and anxiety (Murakami et al., 1999;

Binder et al., 2004). However, such relations are unable to

explain the vast majority of the inter-individual variation

in the population (Dick et al., 2010; Gershon et al., 2011).

Cellular variables and alternate molecular mechanisms have

since been examined, including epigenetic programming.

Waddington (1942) introduced the term epigenetics to describe

the mechanisms that are involved in programming identical

genes differently in different organs during embryogenesis.

Although often debated (Henikoff and Greally, 2016),

epigenetics represent mitotic or meiotic heritable patterns

of DNA methylation and chromatin protein modifications

that affect how DNA is packaged, and the stable transmission

of gene expression programs and phenotypes (Wolffe and

Matzke, 1999). Microarray-based and next generation

sequencing platforms have led to methods which provide

high-resolution genome-wide distribution of epigenetic

(collectively called epigenomic) modifications in normal

and diseased states.

Depending on the genomic location, a chromatin

modification could have a range of effects on cellular

function by altering gene expression or transcript splicing,

to further modify chromatin or to reverse an existing chromatin

modification. Considering the highly-networked state of the

brain, a small number of chromatin modifications that affect

cellular function could have far-reaching effects on neuronal

circuitry and behavioral traits. The nature and degree to which

molecules—that either attach (‘‘writers’’) or erase (‘‘erasers’’)

modifications to chromatin or that bind (‘‘readers’’) to a specific

modified site—may contribute to antecedents and emergence

of neuropsychiatric disorders in humans is currently under

investigation (Singh et al., 2016). A long-standing question

has been to determine the mechanistic link between early

environmental experiences and permanent alterations in the

brain and their contribution to disease risk and progression

later in life. Here, we discuss the major molecular (epi)genetic

mechanisms that control stable gene expression (temporal and

spatial) in the brain and generated in response to physiological or

pathological signals, the environment, challenges associated with

studying the contribution of these molecular (epi)genetic

changes to complex behavioral phenotypes, and future

directions for understanding the manifestation of stress in

humans.

DYNAMIC ORGANIZATION OF
CHROMATIN STRUCTURE AND
FUNCTION

Cells in multicellular organisms are structurally and functionally

heterogeneous due to differential gene expression, which

is controlled by dynamic organization of the genome into

chromosome territories and domains of different transcriptional

potential (Allis and Jenuwein, 2016). In the nucleus of

a eukaryotic cell, gene expression is primarily controlled

by chromatin structure (Figure 1). The nucleosome is the

fundamental unit of chromatin consisting of ∼147 base pairs

of DNA wrapped tightly around an octamer of histone proteins

(composed of two H2A-H2B dimers and a H3-H4 tetramer),

termed the nucleosome core. During nucleosome formation, two

H3-H4 dimers are first assembled on DNA, where they form a

subnucleosomal structure called the tetrasome. Two H2A-H2B

dimers are then incorporated into the tetrasome, to form the

mature nucleosome. Histone linker protein H1 associates with

the DNA between nucleosome cores (linker DNA) and functions

in the compaction of chromatin into higher-order structures

that comprise chromosomes (Figure 1). The formation of

specific nucleosome arrays along the genome (referred to

as the ‘‘beads on a string’’) confers different structural and

functional chromatin states—for example, promoter regions of

actively transcribed genes are depleted of nucleosomes, with

nucleosome occupancy progressively increasing into coding

regions. Strong DNA-histone association results from binding

of the negatively charged DNA phosphate backbone with

the many positively charged (basic) amino acids (e.g., lysine,

arginine) of the nucleosomal histones (Figure 1). Genes

associated with this tightly compacted form of DNA, termed

heterochromatin, are transcriptionally silent. Heterochromatin

is thus an assembly that is inhibitory to cellular processes

requiring direct interactions with the genome. Alteration of

chromatin structure, termed ‘‘chromatin remodeling’’, and DNA
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FIGURE 1 | The dynamic (epi)genome: DNA methylation, histone post-translational modifications and chromatin structural organization. Within the

nucleus of eukaryotic cells, chromosomes are composed of DNA coiled around an octamer of histone proteins to form nucleosomes, the basic repeating unit of

chromatin. Histone H1 proteins stabilize the coupling, wrapping and stacking of nucleosomes into a 30 nm solenoid and higher order supercoiled chromatin fiber.

The histone octamers are composed of four pairs of histone (H2A, H2B, H3, and H4) proteins, which have globular domains and N-termini tails that protrude from

the nucleosome (H2A also has a C-terminal tail). Each histone tail can undergo numerous post-translational modifications. The most common forms of mammalian

acetylation and methylation modification of lysine (K) residues are shown. Additionally, mammalian DNA can be chemically modified by methylation and

hydoxymethylation (M) of the five position of the cytosine base of 5′-cytosine-phosphodiester-guanine (CpG) dinucleotides. Chromatin structure directs the activity

(expression) of genes: genes within tightly packed nucleosomes are silenced, whereas genes within relatively spaced nucleosomes are actively transcribed

(expressed). The process of remodeling chromatin into domains of different transcriptional potentials is regulated by reciprocal changes of DNA methylation and

histone modification in response to in response to extrinsic cues and/or changes in intrinsic properties of cells (see text for details).

accessibility from a closed to an active (euchromatin) state, can be

accomplished by: (i) adenosine triphosphate (ATP)-dependent

complexes, which modulate histone-DNA association; and

(ii) covalent modification of the core nucleosomal histones,

which mediate the transcriptional activity (Ronan et al.,

2013). This molecular mechanism is regulated by a variety

of chromatin modifications, including DNA methylation,

non-coding RNAs (micro RNAs, long non-coding RNAs and

others), polycomb-group proteins and post-translational histone

modifications.

This dynamic organization of chromatin structure

prevents chromosome breakage and allows control of gene

expression as well as replication and distribution of DNA

in mitotic and meiotic cell division, thereby regulating

patterns of gene expression and maintenance of cellular

phenotype across generations. However, the extent to which

chromatin organization is passed on through cell division

during development depends heavily on cell type. Chromatin

modifications that occur in early progenitor cells during

embryogenesis are passed on to most cells of the brain and

body. Alternatively, chromatin modifications that occur in

neural progenitors in the neurogenic niche of the adult brain

are transmitted to a few number of cells. Beyond cell identity,

epigenetic mechanisms in single neurons can be modified in

response to a variety of intrinsic (e.g., transcription factors,

retro-transposition, prion-protein-like mechanisms) and

external stimuli (e.g., nutrition, toxicants, drug exposure) to

provide experiential identity through persistent changes in

gene expression, cell function and phenotype, and might even

be inherited transgenerationally (Bailey et al., 2004; Ballas and

Mandel, 2005; Muotri and Gage, 2006). These emerging concepts

have biological relevance not only to cell/tissue homeostasis

during normal development and ageing, but also in the onset of

physical and mental illness.

REGULATION OF CHROMATIN BY
HISTONE MODIFICATIONS

The dynamic structure of chromatin is dependent on the histone

tails of the core histones, which interact with nucleosomal

and linker DNA and therefore not only play critical roles

in gene regulation but also in the formation of higher-order

chromatin (Figure 1). Notably, the N-terminal tails of H2B,

H3 and H4 and C-terminal tail of H2A are accessible to

histone modifying enzymes in the nucleus and can undergo

post-translational modifications, including: lysine acetylation,
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lysine mono-, di-, or tri-methylation and arginine mono- or

di- (asymmetric or symmetric) methylation, serine/threonine

phosphorylation, lysine biotinylation and butyrilation, arginine

citrulation, but also mono-ubiquitination, SUMOylation, poly-

ADP-ribosylation, deamination, carbonylation and proline

isomerization, along with their reversed processes (Zhao

and Garcia, 2015). Additionally, the chromatin fiber can be

modified by the substitution of canonical histones for histone

variants—a process termed nucleosome subunit exchange.

Together with post-translational modifications, histone variants

alter the physical properties of nucleosomes to provide chemical

signposts that serve to recruit specific nuclear proteins through

recognition of the particular modification and non-allelic histone

isoform (for H2A, H2B and H3) involved, as well as the

context and surrounding histone modifications. For example,

the H2A variant H2A.X regulates chromatin structure and

gene expression, while the phosphorylated form (γH2A.X)

helps recruit DNA repair proteins in response to severe

DNA damage—as a result of environmental insult, metabolic

mistake, or programmed process (Suberbielle et al., 2013).

Exchange of histone H2A for variant H2A.Z affects nucleosome

stability and is involved in transcriptional control, chromosome

segregation and gene silencing (Marques et al., 2010). Recent

studies suggest H2A.Z is also necessary for acetylation and

ubiquitination of histones and promotes remodeling of the

local chromatin structure to enable the DNA repair machinery

to access sites of DNA damage (Xu et al., 2012). Thus, each

histone modification can affect chromatin fiber stability and the

capacity to attract protein complexes that either compact the

chromatin even further, or facilitate accessibility of transcription

machinery (Figure 1). The effects of histone modification on

gene activity (expression) depends on the identity, location

and extent of each modification that regulates downstream

processes, such as gene transcription, DNA repair, DNA

replication and programed cell death (apoptosis). Translating the

‘‘histone code’’ and understanding how histone modifications

are regulated could lead to therapies that shut down or

turn on genes in diseases that have aberrant patterns of

gene expression. Consequently, chromatin marks and histone

modifying enzymes have emerged not only as promising

biomarkers for disease diagnosis and prognosis, but also

informative for distinguishing disease subtypes and identifying

suitable treatments (Bock et al., 2016; Libertini et al., 2016a,b;

Rendeiro et al., 2016).

In general, histone deacetylation, biotinylation and

SUMOylation repress gene transcription, while histone

acetylation and phosphorylation act as activators of gene

expression. Depending on the histone residue being modified,

methylation and ubiquitination can either repress or

activate gene transcription. In order to define a precise

functional chromatin environment, histone modifications

often demonstrate interdependence—for example, histone

acetylation, phosphorylation and ubiquitination can all be

regulated by histone methylation (for review see Izzo and

Schneider, 2010). Beyond this, trans-nucleosome cross-talk

between post-translation modifications and histone modifying

enzymes contribute to the establishment and maintenance of

chromatin domains with different transcriptional potentials.

Histone modification enzymes themselves are not sequence

specific and have to be recruited to particular genomic regions

by interactions with transcription factors. Some transcription

factors (e.g., c-Jun, GATA1, NRF1) are uniquely associated

with euchromatin, while others (e.g., ZFN274, KAP1, SETDB1)

are only associated with heterochromatin (Ernst et al., 2011;

Thurman et al., 2012). The relation between transcription

factor function and chromatin state creates a mechanistic

connection through which developmental and environmental

cues might alter chromatin domains and the expression of

specific genes in post-mitotic neurons. The best characterized

histone modifications are histone acetylation/deacetylation

and histone methylation/demethylation, and the enzymes and

molecular mechanisms governing these marks are discussed

below.

HISTONE ACETYLATION—
DEACETYLATION

In the 1960s, Allfrey proposed that histone acetylation was

associated with transcriptional potential (Allfrey and Mirsky,

1964; Allfrey et al., 1964). Subsequent studies have helped

establish the causal relationship between histone modifying

enzymes, histone marks and gene regulation (Figure 1).

Acetylation at lysine (K) residues on the amino-terminal tails

of histone proteins (e.g., H3K9, H3K14, H3K36, H4K8, H4K16)

is mediated by both histone acetyltransferases (HATs) and

histone deacetylases (HDACs), which are recruited by activator

and corepressor proteins, respectively (Kalkhoven, 2004; Wang

et al., 2009). For example, the addition of an acetyl group

(acetylation) on lysine 9 of histone H3 (H3K9Ac) in gene

promoter or enhancer regions by HAT enzymes (e.g., nuclear

type A proteins, GCN5, p300/CBP and TAFII250) is associated

with transcriptionally active euchromatin. Alternatively, removal

of the acetyl group (deacetylation) by HDAC enzymes (e.g.,

nuclear class 1 proteins, HDAC 1, 2, 3 and 8) is associated with

transcriptionally inactive heterochromatin (Grunstein, 1997;

D’Alessio et al., 2007).

Histone acetylation is a process that is dependent on the

enzyme ATP-citrate lyase, which converts glucose-derived citrate

into acetyl-coenzyme A (acetyl-CoA; Takahashi et al., 2006).

HATs transfer an acetyl group from acetyl-CoA to form

ε-N-acetyllysine. Acetyl-CoA is produced by glycolysis and other

catabolic pathways such as the β-oxidation of fatty acids, and

plays a key regulatory role as a substrate for the citric acid

cycle and as a precursor in the synthesis of fatty acids and

steroids. Mitochondrial and nucleocytosolic acetyl-CoA pools

are therefore a rate limiting step, coupling metabolism with

chromatin remodeling and endocrine function (Wallace and

Fan, 2010). In turn, mitochondrial dynamics permit reversible

modulation of gene expression, growth and reproduction

potential in response to changes in energy demand and nutrient

supply (Wallace, 2010)—i.e., for bioenergetic adaptation to

metabolic demands—and may affect a myriad of cellular and

biochemical processes in which acetylation and metabolism

intersect, such as aging and neurodegenerative disease states
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(e.g., Alzheimer’s disease (AD), Parkinson’s disease (PD); Liesa

and Shirihai, 2013). HATs are broadly classified into two

different classes, based on their functional localization: (1) type

A HATs, located in the nucleus and contain a bromodomain,

and (2) cytoplasmic type B HATs, that modify newly synthesized

histones before their assembly into nucleosomes (Sterner and

Berger, 2000; Roth et al., 2001). On the other hand, HDACs

are divided into five main classes based on their sequence

homology and expression patterns. Class I, IIA, IIB and IV

HDACs are Zn-dependent deacetylases, whereas the Class

III HDACs are nicotinamide adenine dinucleotide (NAD)-

dependent deacetylases (Sterner and Berger, 2000; Roth et al.,

2001).

Through animal models, HDAC inhibitors (HDACis) have

been recognized as potentially useful therapeutic interventions

for the cognitive impairments associated with chronic stress,

neurodevelopmental disorders and neurodegeneration (reviewed

in Dietz and Casaccia, 2010; Didonna and Opal, 2015). These

inhibitors include hydroxamates, such as vorinostat (SAHA) and

trichostatin A (TSA); short chain fatty acids, such as sodium

butyrate (SB) and valproic acid (VPA); cyclic tetrapeptides,

such as apicidin or depsipeptide, amides, benzamides, epoxides,

ketones and lactones. Although VPA has long been used as

an anticonvulsant drug for the treatment of migraines, as

well as partial and generalized seizure disorders in individuals

with epilepsy and BPD, the further development of similar

pan HDACis to treat neurobiology and neurological diseases

has been hampered by off-target as well as severe side effects

(Dinarello et al., 2011; Soragni et al., 2011). Similar to therapeutic

strategies to enhance the anticancer efficacy of HDAC inhibitors,

isoform-selective and/or class-selective HDAC inhibition in

combination with other epigenetic modulators and/or other

chemotherapeutic agents may not only reduce these off-target

effects, but also provide a potential strategy to respond to

resistance to current therapies in the treatment of human

neuropathology.

HISTONE METHYLATION—
DEMETHYLATION

Methylation of lysine or arginine residues on amino-terminal

tails of histone proteins (Figure 1) is controlled by the activity

of both histone lysine or arginine methyltransferases (HTMs;

e.g., EZH2, G9a, MLL, Suv39H1/2) and histone lysine or

arginine demethylases (HDMs; e.g., JARID1d, Utx; Greer and

Shi, 2012). Lysine residues can carry either mono-, di- or

trimethyl moieties on their amine group (e.g., H3K4, H3K9,

H3K27, H3K36, H3K79 and H4K20). Alternatively, arginine

residues can house mono- or di-methyl (me2) moieties on their

guanidinyl group, in either symmetric (me2s) or asymmetric

(me2a) configuration. Methylation of histone H3 on lysines

4, 36, 79 (H3K4, H3K36 and H3K79) is generally associated

with poised or active gene transcription, whereas methylation

of histone H3 on lysine 9, 20, 27 (H3K9, H3K20 and H3K27)

are hallmarks of silenced or heterochromatic regions (Ohm

and Baylin, 2007). H4K20 modification is also involved in

recruiting the checkpoint protein CRB2 to sites of DNA

damage, suggesting that HTMs may have many different roles

in the cell. Methylation of histone H3 on arginines 2, 8,

17 and 26 (H3R2, H3R8, H3R17 and H3R26) and H4 on

arginine 3 (H4R3) can be either activatory or repressive for

transcription. The distribution, recognition and regulation of

histone lysine/arginine methylation is of major interest given

their role in the regulation of chromatin and gene expression and

importance in multiple pathways in development and disease,

including metabolic and neurological disorders (Landgrave-

Gómez et al., 2015).

The majority of HMTs have a conserved SET (Suppressor

of variegation, Enhancer of Zeste, Trithorax) catalytic domain

and their activity towards the lysine and arginine residues

can result in mono-, di-, or tri methylation state of the amino

acids. Understanding the specificity of different SET-domain

enzymes and which human diseases can arise from changes in

HMT–binding (reading) domains may provide novel targets for

therapeutic drugs. Methylation of lysine and arginine residues

on the amino-terminal tails of histone proteins is dependent

on the methyl donor S-adenosyl methionine (SAM), SAM

itself is derived in part from dietary methyl group intake—e.g.,

choline, methionine, or methyl-tetrahydrofolate—further

linking metabolism with chromatin remodeling and cellular

physiology.

Histone demethylases, on the other hand, can be classified

into two classes: (1) Lysine Demethylase-1 (KDM1) family,

also known as LSD1, are nuclear flavin adenine dinucleotide

(FAD)-dependent amine oxidases; and (2) the Jumonji C (JmjC)

domain containing demethylases (JHDMs), which are Fe(II)

and α-ketoglutarate-dependent dioxygenase enzymes (Fodor

et al., 2006; Tsukada et al., 2006; Whetstine et al., 2006).

Unlike LSD1 enzymes, the JmjC class of enzymes are able to

demethylate trimethyl- lysine histones (Klose et al., 2006). Given

that LSD1 and JmjC histone demethlyases both require oxygen

to function, the status of histone methylation is influenced by

oxygen concentration. Cells and/or tissues become hypoxic when

the demand for cellular growth and metabolism surpasses that

of the oxygen supply. Hypoxia is an important factor in the

pathology of a number of human diseases, including cancer,

diabetes, ageing and stroke/ischemia. Initial results of current

clinical trials with inhibitors of various lysine methyltransferases

(e.g., DOT1L and EZH2) and demethylases (e.g., LSD1) for

cancer therapy will likely guide the future clinical development

for new histone methylation modifiers and different therapeutic

markers (Morera et al., 2016).

In summary, histone modification enzymes require

common metabolic intermediates (e.g., acetyl CoA, ATP,

biotin, FAD/NAD+ and SAM) and their intranuclear levels

are dependent on the metabolic state of the cell. Changes

in local concentrations of key cellular metabolites can affect

enzyme functions, acting as substrates or inhibitors of covalent

modification to histone tails (Figure 1). Furthermore, levels

and turnover of metabolic intermediates are influenced

by dietary and nutrient intake, metabolic status (hypoxia,

hyperglycemia, redox status, inflammation, oxidative stress), as

well as endocrine unbalance and disease that, in turn, can alter

histone modification enzyme expression levels.
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REGULATION OF CHROMATIN BY DNA
METHYLATION—DEMETHYLATION

DNA methylation is the primary epigenetic mark (often

considered the ‘‘fifth base’’) that regulates the formation of

heterochromatic regions in the genome, with crucial roles in

control of gene expression in both physiological and pathological

conditions. A large proportion of the neuronal genome is under

cytosine methylation regulation (Figure 1). In mammals, DNA

methylation is predominantly found at cytosine residues in

CpG-3′ dinucleotides to form 5-methylcytosine (5mC; Bestor,

1990; Jaenisch and Bird, 2003). The majority (∼75%) of CpG

dinucleotides are methylated. Genomic regions of enriched CpG

content (CpG islands) are associated with ∼60% of human

gene promoters and predominantly hypomethylated. Early in

development, however, ∼4% of these gene promoter regions

become methylated and transcriptionally silenced in a tissue-

specific pattern (Borgel et al., 2010). Conversely, gene body

DNA methylation is coupled to transcriptional activation, as

well as translation elongation efficiency and protein-production

rate (Lister et al., 2009). Silencing of repetitive elements within

the mammalian genome (e.g., LINEs and SINEs including

Alu elements in humans) by DNA methylation prevents

aberrant expression that could cause chromosomal instability,

translocations and gene disruption due to transposition events

(Muotri and Gage, 2006). DNA methylation is also involved in

the silencing of autosomal genes in a parent-of-origin manner,

termed imprinting (Kelsey, 2011). Herein, the methylation

status of the regulatory elements controlling genomic imprinting

(e.g., imprinting control regions (ICRs)) dictates whether the

paternal or maternal allele is expressed. The ‘‘imprintome’’ refers

to the genomic repertoire of these differentially methylated

regions, rather than the genes they regulate (Jirtle, 2009).

A similar gene-dosage reduction is seen in X chromosome

inactivation in females. DNA methylation is further linked

to nuclear organization, concentrating in dense silenced

heterochromatin regions. Allele-specific DNA methylation

(ASM) reflects tissue-specific cis-regulatory influences of DNA

polymorphisms on epigenetic status (Tycko, 2010), whereas

compromised DNMT1 function at CpG sites (Chen et al., 1998)

and deposition of methyl groups at certain CpG sites (Pfeifer,

2006) have been shown to enhance genetic variation leading

to changes in gene expression and cell function (Chen et al.,

1998), suggesting that differentially methylated CpG sites serve

as evolutionarily established mediators between the genetic code

and phenotypic diversity.

The DNA methyltransferases (DNMTs)—DNMT1, DNMT2,

DNMT3A, DNMT3B and DNMT3L—are a family of enzymes

that write the patterns of DNA methylation (Okano et al.,

1999). These enzymes are all expressed in the central nervous

system (CNS) and are dynamically regulated during development

(Goto et al., 1994; Feng et al., 2005). The recognition and

selective binding to hemi-methylated DNA by maintenance

methyltransferase, DNMT1, ensures methylation patterns are

faithfully copied from parental to daughter strand during

DNA replication (Bestor, 1988, 1992). Methylation within

critical regulatory regions of genes (transcription factor binding

sites and enhancer elements) can silence gene expression by

either directly blocking access and binding of transcription

factors (Watt and Molloy, 1988; Tate and Bird, 1993), or

through recruitment of methyl-CpG binding domain (MBD)

proteins such as MeCP2 and MBD proteins 1–4 that bind to

the methylated DNA and recruit co-proteins such as SIN3A

and histone modification enzymes, leading to heterochromatin

formation (Helbo et al., 2017). Non-CpG cytosine methylation

(i.e., mCpH, where H = adenine (A), cytosine (C) or thymine

(T)) constitutes ∼25% of the DNA methylome and has also

been linked to early neural development (Lister et al., 2013) and

adult mammalian brain function (Guo et al., 2014). Neuronal

CpH methylation is enriched in regions of low CpG density

and, similar to CpG methylation, is depleted at protein-DNA

interaction sites and functionally can repress transcription

in neurons. As CpG dinucleotides form only ∼1% of the

mammalian genome, CpH methylation may therefore function

to increase the local density of methylated cytosine in neurons in

the absence of additional CpG dinucleotide methylation. Other

modifications of cytosine in DNA include 5-carboxyl-cytosine

and 5-hydroxymethylcytosine (5-hmC) formation, which forms

∼40% of modified cytosines in neurons, increases in the brain

with age and in response to neuronal activity, including acute

stress (Song et al., 2011; Szulwach et al., 2011).

During mammalian development, DNA methylation marks

are globally removed from both the maternal and paternal

genomes at fertilization to ensure totipotency (Reik and Surani,

2015). Specific methylation patterns are re-established by the

de novomethyltransferases DNMT3A and -3B, andmodulated by

DNMT3L (Okano et al., 1999). DNA methylation has long been

considered a stable, static modification with few mechanisms

for removal of the methyl group; leading to studies suggesting

passive (DNA replication-dependent; Morgan et al., 2005) vs.

active (enzymatically driven, DNA replication independent;

Bhattacharya et al., 1999; Brown et al., 2008) processes. The

rediscovery of 5hmC (Kriaucionis and Heintz, 2009; Tahiliani

et al., 2009) led to the identification of a family of enzymes

known as ten-eleven translocation 1–3 (TET1–3) with the ability

to convert 5mC to 5hmC in an oxidation- driven reaction that

generates other intermediates (that is, 5-formylcytosine (5-fC)

and 5-carboxylcytosine (5-caC); Tahiliani et al., 2009; Ito et al.,

2010). Enzymatic excision of 5hmCbyDNA glycosylases (termed

base excision repair) may follow, replacing 5-hmC with cytosine

resulting in active DNA demethylation and transcriptional

activation (He et al., 2011).

Aberrant DNA methylation patterns and expression and/or

activities of DNMTs are involved in several pathologies,

from cancer to neurodegeneration (Zwergel et al., 2016). In

cancer cells, anti-proliferation/tumor suppressor genes are

frequently silenced by promoter CpG methylation, which led

to the pursuit of DNMT inhibitors (DNMTi) as potential

cancer therapeutics to reactivate these genes and stop or

even reverse tumor growth and cell invasiveness. These

inhibitors include nucleoside analogs, such as 5-azacytidine

(Azacitidine), and more stable and less toxic 5-aza-2-

deoxycytidine (decitabine), 5-fluoro-2-deoxycytidine (FdCyd),

SGI-110 and Zebularine that intercalate into DNA during
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replication and inhibit DNMT1 activity; as well as other

small molecule inhibitors that are not incorporated into

DNA—such as RG108 (N-Phthalyl-1-tryptophan) that

binds to the catalytic site of DNMTs causing inhibition

of DNA methylation (Brueckner et al., 2005; Zheng et al.,

2008) and the antisense oligonucleotide MG98 (2′-O-CH3-

substituted phosphorothioate oligo deoxynucleotide) that

targets the 3′ UTR of DNMT1, blocks translation of the Dnmt1

mRNA, thereby causing a decrease in DNA methylation

(Stewart et al., 2003; Klisovic et al., 2008). DNMTi treatment

can also lead to widespread gene-body demethylation and

transcriptional downregulation of overexpressed oncogenes,

suggesting convergent mechanisms for DNMTi mediated

cell growth inhibition (Yang et al., 2014). For example,

key molecular targets and DNA methylation marks linked

to hormone-receptor-targeted therapy inhibition in triple-

negative breast cancer (Coyle et al., 2016) provide further

insight for novel therapeutic intervention strategies for cancer

pathology. Similar to histone-modifying enzymes, several natural

compounds such as polyphenols, flavonoids and antraquinones

(e.g., (-)-epigallocatechin-3-gallate and laccaic acid A) inhibit

DNMT activity and/or expression, resulting in the re-expression

of anti-proliferation/tumor suppressor genes, tumor growth

inhibition and cell death (Lee et al., 2006a). However, these

non-nucleoside analog inhibitors are less potent than the

nucleoside analogs and require further optimization (Chuang

et al., 2005).

Neurodegenerative disorders (including, AD, dementia with

Lewy bodies, PD, Down’s syndrome) share similar aberrant

CpG methylation profiles at DMRS that overlapped gene

promoter regions of common genes involved in a variety of

cellular signaling pathways (e.g., ErbB, TGFβ, Wnt, MAPK,

Neurotrophin, p53) that influence brain development and

function (Sanchez-Mut et al., 2016). These findings suggest

not only that different neurodegenerative diseases emerge

from similar pathogenetic mechanisms, but also that DNA

methylation is key in the aberrant changes in gene expression

associated with cell survival. When administered directly into the

brain tissue of rodents, DNMTi treatment blocks neurotoxicity

associated with Huntington disease (Pan et al., 2016), while

haploinsufficiency of Dnmt1 protects against irreversible damage

following acute ischemia and recurring stroke (Endres et al.,

2000, 2001), suggesting that DNA methylation-targeted drugs

may rescue CNS functions after injury, promote neuron survival

and prevent progressive dementia. However, DNMTi treatment

can also disrupt synaptic plasticity and impair hippocampal

learning and memory, and modulate reward and addiction

behaviors (Sen, 2015). Furthermore, overexpression of the

TET1 protein (which promotes 5hmC formation and active

demethylation) results in increased expression of memory-

associated genes in neurons as well as contextual fear

memory impairment (Kaas et al., 2013). Understanding the

complexity of DNA methylation (and histone modification)

and the ability to epigenetically reprogram gene expression

in differentiated cells, such as neurons, is therefore of major

importance to cognitive research examining not only the role

of emotions in information processing but also the effects of

dysregulation on decision-making, including emotional states

in social withdrawal, impulsivity, substance dependence in

neuropsychiatric disorders and age-related neurodegenerative

diseases.

INTER-RELATIONS BETWEEN HISTONE
MODIFICATION AND DNA METHYLATION
AND TRANSCRIPTIONAL STATES

As described above, gene expression requires the alteration

of chromatin domains from condensed heterochromatin

to a transcriptionally accessible euchromatin and DNA

demethylation. Conversely, DNA methylation drives the

formation of heterochromatin and gene silencing. DNA

methylation and histone modification pathways are therefore

dependent on one another—chromatin state can direct DNA

methylation which itself can equally define chromatin state—and

this bidirectional cross-talk is mediated by biochemical

interactions between both histone-modifying enzymes and DNA

methylation enzymes in response to upstream cell signaling

pathways (D’Alessio and Szyf, 2006). This has important

implications for identifying mechanisms and molecular cascades

involved in regulation of gene and protein expression at different

stages of development or in response to pathological processes

that resolve as metabolic, immune, nervous and behavioral

systems.

Although necessary for survival, recurrent stress responses

threaten survival of cells and organisms. Stable modifications in

cell physiology involve induction of changes in gene expression

programs by the activation of cell surface receptors, intracellular

signaling pathways and activity-dependent transcription

factors that modulate chromatin structure at responsive

genes. The changes can affect DNA methylation, histone tail

modifications, exchange of histone variants, or nucleosome

occupancy by chromatin remodeling. Genome-wide and

single cell transcriptomics have revealed how organisms

respond to different stresses by regulating gene expression

from chromatin structure to transcription, mRNA stability

and mRNA translation (Valencia-Sanchez et al., 2006). Stable

modulation of gene expression through chromatin modeling

therefore has a central role in adaptation and resilience toward

stress conditions.

The question then becomes what is physiologically different

about individuals that successfully adapt to stressors and those

that do not? The influence of early life experience and degree

of parental-infant attachment on emotional development in

children and adolescents has been comprehensively studied.

Animal models of parental care provide both correlative and

mechanistic connections between early life experience and

development of cognitive and emotional responses to stress,

allowing for control of genotype and environment. Increasingly,

it has become appreciated that individual differences in maternal

care can establish stable programming of brain region-specific

gene expression through chromatin modifications and changes

in DNA methylation (Figure 1), and modify phenotypic

outcomes, including cognitive, social and stress-coping abilities

in the offspring.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 March 2017 | Volume 11 | Article 41

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Weaver et al. Nurturing Early Brain Development

PARENTAL INVESTMENT, CHROMATIN
MODIFICATIONS AND HPA RESPONSES
TO STRESS IN RODENTS

A common theme for many species is that the quality and

stability of the early social context has profound influences

on long-term emotional well-being. In mammals, both the

degree of positive attachment in parent-infant bonding and

level of parental investment appear to be important mediators

of the infant’s cognitive and social-emotional development

(Canetti et al., 1997). From an evolutionary perspective,

differential parental allocation during the critical postpartum

period provides newly born altricial animals with an ability

to selectively hone gene expression profiles and physiological

pathways associated with the development of reproductive and

defensive systems to promote survival, growth and persistence

in the given environment, as well as to program for sufficient

parental investment in the subsequent generation (Gross, 2005;

Klug and Bonsall, 2010). The relationship between early life

experience and long-term health is mediated, in part, by

maternal influences on the development of neuroendocrine

systems that regulate the hypothalamus-pituitary-adrenal (HPA)

axis and behavioral responses to stress. Accumulating evidence

indicates the underlying mechanism for this developmental

programming involves chromatin remodeling and changes

in DNA methylation of specific genes expressed in the

brain.

Despite their limitations, rodent behavioral models continue

to represent the most efficient approach to elucidating

the molecular and cellular mechanisms that underlie the

etiopathogenesis of psychiatric disorders. Most importantly,

rodent models offer access to brain tissue, which is essential

for elucidating the circuit basis of these disorders (reviewed

in Weaver, 2010, 2014). Observational studies in rats (and

mice) have provided evidence for stable individual differences

in two main forms of mother-pup interactions over the first

week of lactation: licking/grooming (LG) and arched-back

nursing (ABN) posture (Stern, 1997; Champagne et al.,

2003). Maternal LG-ABN behavior during the first week

of postnatal life is associated with stable programming of

individual differences in responsiveness of the HPA axis,

anxiety-like and cognitive performance and reproductive

behavior in the rat (Weaver, 2011). As adults, the male offspring

of high LG-ABN mothers show decreased expression of

corticotrophin releasing factor (CRF), in the paraventricular

nucleus of the hypothalamus (PVN), and a lower hormonal

(corticosterone) response to stress by comparison to adult

animals reared by low LG-ABN mothers (Liu et al., 1997;

Caldji et al., 1998; Francis et al., 1999). In the rat, the

maternal care appears stable across generations—the adult

female offspring of high LG-ABN mothers are high LG-ABN

towards their offspring and the offspring of low LG mothers

are low LG-ABN towards their offspring (Francis et al.,

1999). These effects, including those on the behavioral and

neuroendocrine responses to stress, are reversed by cross-

fostering, revealing direct maternal effects (Liu et al., 1997;

Francis et al., 1999).

Interestingly, the maternal effects on stress responsivity

in the offspring depend upon epigenetic programming of

gene expression in the CNS. In comparison to offspring of

high LG-ABN mothers, offspring of low LG-ABN mothers

display life long enhanced DNA methylation and decreased

acetylation of lysine 9 on histone H3 (H3K9) of the neuron-

specific exon 17 glucocorticoid receptor-alpha (GRα) promoter

region, decreased NGFI-A transcription factor association,

and decreased GRα expression in the hippocampus (Weaver

et al., 2004, 2007, 2014); leading to disinhibition of CRF

secretion and higher corticosterone levels in response to

stress (Liu et al., 1997; Caldji et al., 1998; Francis et al.,

1999). These group differences emerge over the first week

of lactation, are reversed with cross-fostering, and remain

stable through life and are potentially reversible in adulthood

(Weaver et al., 2004). Additional in vivo and in vitro studies

have provided several levels of insight into the underlying

biological pathway. Maternal LG-ABN behavior during the first

week of lactation stimulates production of thyroid hormones

thyroxine (T4) and triiodothyronine (T3) and a subsequent

increase in forebrain serotonin (5-HT) levels. Activation of the

G-protein-coupled receptor, 5-HT7, in hippocampal neurons

by serotonin initiates a signaling cascade that drives cAMP

and cAMP-dependent protein kinase A (PKA) activation

and NGFI-A expression. In the neonatal hippocampus, the

transcription factor NGFI-A associates with the HAT CBP

and the methyl-binding protein MBD2b and recruits them

both to the exon 17 GR promoter (Weaver et al., 2007,

2014). At the exon 17 GR promoter, CBP increases acetylation

on histone (H3K9ac), whereas MBD2b is associated with

demethylation of the NGFI-A binding site. The remodeling

of chromatin and DNA demethylation facilitates the stable

binding of NGFI-A to the exon 17 GR promoter, which

then initiates transcription and drives GR expression and

GR signaling in the neonatal hippocampus. The variation in

methylation state of the exon 17 GR promoter sequences remains

consistent through to adulthood. In adulthood, the different

levels of hippocampal GR expression is mediated by NGFI-A,

which selectively binds and activates unmethylated exon 17 GR

promoter sequences.

These studies, among others (reviewed in Turecki

and Meaney, 2016), suggest that the maternal behavior

initiates a neural signaling cascade that directs activation

of particular transcription factors to recruit and guide

chromatin remodelers and DNA methylation enzymes to

particular chromatin domains, allowing maternal behavior

to affect several behavioral phenotypes in the offspring,

including maternal behavior. Herein, both acquired and

stable behavioral traits can be propagated across generations

through epigenetic modifications to chromatin domains in a

brain region- and genome sequence-specific manner. Support

of this idea is evidenced by the widespread differences in

hippocampal gene expression and cognitive function that

has been observed in the adult offspring of high and low LG

mothers (Weaver et al., 2006). For example, adult offspring

of low LG mothers show increased cytosine methylation

and decreased H3K9Ac of the glutamate acid decarboxylase
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(GAD)1 gene promoter and reduced Gad1 mRNA expression in

the hippocampus (Zhang et al., 2010). Additionally, these

offspring show increased association of MECP2 to the

brain-derived neurotropic factor (BDNF) gene promoter

(Weaver et al., 2014), and a reduction in Bdnf expression,

neuronal survival, synaptogenesis and synaptic plasticity in

the hippocampus (Liu et al., 2000; Weaver et al., 2002; Bredy

et al., 2003a). Consistent with this, these offspring exhibit

deficits in hippocampal dependent tasks tests (e.g., spatial

learning, object recognition; Liu et al., 2000; Bredy et al.,

2003b). These maternal effects on BDNF, including cognitive

ability, are reversed with peripubertal exposure to an enriched

environment, revealing a potential nonpharmacological strategy

to prevent the cognitive deficits associated with low levels of

maternal care (Bredy et al., 2003b, 2004; Champagne et al.,

2008).

In addition to maternal behavior, studies have shown

persistent effects on offspring of paternal age (Smith et al., 2009,

2013), obesity (Ng et al., 2010; Fullston et al., 2013), enrichment

(Mashoodh et al., 2012), and physiological/psychological stress

(Franklin et al., 2010; Dietz et al., 2011; Hoyer et al., 2013;

Mychasiuk et al., 2013; Rodgers et al., 2013; Gapp et al.,

2014; Wu et al., 2016). These paternal effects could be

disseminated via sperm (Dias and Ressler, 2014), facilitated

by sperm miRNA (Rodgers et al., 2013, 2015; Gapp et al.,

2014). However, studies (Dietz et al., 2011) utilizing in vitro

fertilization following chronic paternal stress (social defeat)

further support the theory that the effects of paternal stress

experience on social, emotional and cognitive development

in the offspring are propagated by variations in maternal

behavior. The differential allocation hypothesis suggests that

the dam can detect the prior experiences of potential mates

through variation in his behavior and/or chemical cues,

and then vary her own reproductive investment accordingly,

including offspring rearing strategies. For example, dams

mated with males that had been reared in an enriched

environment, show increased LG-ABN behavior toward their

offspring (Mashoodh et al., 2012). Consistent with this, early

rearing in semi-naturalistic housing (SNH) has profound effects

on offspring development—seizure severity and number of

CRF-immunoreactive neurons were reduced in adolescent rats

raised in SNH compared to offspring reared in standard housing

(Korgan et al., 2014, 2015). Histone acetylation of the crf

gene promoter may play a role in determining long-term

sex-specific regulation of HPA endocrine function, evidenced

by: (1) sex differences in crf gene promoter methylation and

mRNA expression (Sterrenburg et al., 2011); and (2) reversal

of maternal effects on stress responses by HDAC inhibitor

(HDACi) treatment (Weaver et al., 2006). Consistent with

this, genetic disruption of Mecp2 in the PVN resulted in

sex differences in Crf mRNA expression and corticosterone

secretion in response to stress (Fyffe et al., 2008), although

sex-differentiation mechanisms remain unclear. Taken together,

these findings suggest that preconception paternal stress and

housing could potentially influence the development of defensive

(emotional) behaviors through differential maternal allocation to

offspring.

CHROMATIN MODIFICATIONS AND HPA
RESPONSES TO STRESS IN HUMANS

Since the initial reports of epigenetic regulation of hippocampal

GR expression, several studies have associated GR gene

methylation status with parental stress, early-life adversity,

and have attempted to determine the extent to which

findings from model animals are transferable to humans

(reviewed in Turecki and Meaney, 2016). Studies investigating

methylation of the GR exon 17 in rats or GR exon variant

1F in humans in conditions of negative early-life social

environments report increased GR promoter methylation

within or proximal to the NGFI-A binding site. Consistent

with these findings, differential methylation profiles of many

genes supporting HPA function have now been shown

to be environmentally regulated. For example, childhood

maltreatment predicts the methylation status of the FK506

binding protein 5 (FKBP5) gene, which encodes for a

functional regulator of GR protein signaling. The primary

mechanism of GR signaling is as a transcription factor

and the pleiotropic and organism-wide effects are strongly

associated with development-related pathways. Tissue specificity

is modulated by enzymatic conversion of the ligand cortisol

to an inactive form, cortisone. FKBP5 decreases cortisol

binding and prevents nuclear translocation of GR. Childhood

maltreatment is associated with an FKBP5 genotype-dependent

demethylation of a distal enhancer, resulting in enhanced

FKBP5 expression and reduced GR function (Klengel et al.,

2013). Herein, in response to early social adversity, many labile

genes coordinate in a tissue-specific fashion to collectively

contribute to the increased HPA responsivity to stress,

which may help explain the vast majority of the inter-

individual variation in gene expression and social-emotional

behavior in animal models of maternal care (Weaver et al.,

2006).

Taken together, increased GR promoter methylation

represents a general epigenetic mark of early-life stress

that could potentially be a useful biomarker for human

populations. Increased DNA methylation of the human GR

gene promoter in peripheral blood lymphocytes has been

associated with childhood maltreatment in individuals with

borderline personality disorder, suggesting that peripheral

blood could represent a proxy of the epigenetic modifications

of the GR gene promoter occurring in the CNS (Perroud

et al., 2011). Indeed, the extent of human GR gene promoter

methylation shows a strong positive correlation to the reported

experience of childhood maltreatment decades earlier (Perroud

et al., 2014). Analysis of peripheral blood cells from adults

with posttraumatic stress disorder (PTSD) revealed distinct

DNA methylation and concomitant transcriptional changes

in patients with a history of early abuse (Mehta et al., 2013).

Together the results from these studies and others (Roberts

et al., 2014) suggest the degree of DNA methylation in

stress-related psychiatric disorders may have implications

not only for the development of more efficient preventive and

therapeutic approaches, but also in predicting and monitoring

treatment.
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CHROMATIN MODIFICATIONS AND
LEARNING AND MEMORY AND
NEURODEVELOPMENTAL DISORDERS

Learning and memory are subject to rigorous epigenetic

remodeling involving multiple mechanisms of neuronal

chromatin modifications in the brain to produce persistent

alterations in synaptic signaling, organization, morphology and

cognitive function (for review see Jarome et al., 2014; Heyward

and Sweatt, 2015). Contextual fear memory formation and

its initial maintenance is hippocampal dependent. Neuronal

activity in the hippocampus of mice induces active DNA

demethylation or de novo methylation (Guo et al., 2011),

and targeted knockouts of DNA de novo methyltransferases

cause learning and memory impairments (Feng et al., 2010).

Memory undergoes systems consolidation over ∼3 weeks, so

that the remote memory becomes hippocampal independent.

Similarly, retrieval of conditioned place preference memory is

also dependent on DNA methylation in the prelimbic cortex

(Miller et al., 2010; Day and Sweatt, 2011). Although knockout of

the TET1 protein (which promotes 5hmC formation and active

demethylation) results in compensatory upregulation of Tet2,

Tet3 and other genes required for demethylation (e.g., Gadd45b,

Smug1, Apobec1, Tdg; Jarome et al., 2015; Kumar et al., 2015),

overexpression of TET1 protein (Kaas et al., 2013) and DNA

methylation inhibition (Telese et al., 2015; Halder et al., 2016)

result in increased expression of several neural plasticity-

related genes (e.g., Bdnf, Cobl, Reelin, PP1, Calcineurin, Vrk1)

and impaired contextual fear memory. Alterations in histone

methylation (Schaefer et al., 2009) and acetylation (Guan et al.,

2002) influence long-term memory formation and synaptic

transmission. Accordingly, HDAC activity stimulates chromatin

compaction, reducing synaptic plasticity and impairing memory

formation (Guan et al., 2009). Inhibition of HDAC (by SB) can

enhance memory consolidation in young (Yuan et al., 2015) and

older animals (Blank et al., 2015). Histone methylation status is

also critical in memory formation (Wang et al., 2015).

Disruptions to genes encoding the enzymatic proteins and

metabolic intermediates that mediate DNA methylation and

chromatin remodeling have profound effects on human

neurobehavioral development. For example, functional

polymorphisms in the gene encoding methylenetetrahydrofolate

reductase (a regulatory enzyme in folate metabolism) results

in altered SAM availability and are linked to the increased

risk of psychiatric disorders (Miller et al., 1994; Poirier et al.,

2001). On the other hand, a mutation in the gene encoding

ATRX (a regulatory enzyme in chromatin remodeling) results

in an X-linked form of mental retardation associated with alpha

thalassaemia (ATRX syndrome; Picketts et al., 1996). The loss of

ATRX function causes defective H3K9me3 binding, related to

changes in the binding pocket and ability of the ATRX-DNMT3-

DNMT3L (ADD) histone reader to recognize methylation

patterns at specific lysine residues (Iwase et al., 2011; He et al.,

2015). Further, ATRX knockouts show significant chromatin

instability, even in utero (De La Fuente et al., 2015). This begs

the question regarding the functional role of ATRX in normal

cognitive and emotional development.

The two best characterized examples of the effects of

epigenetic changes on cognitive function relate to dysregulation

ofMeCP2 and CBP, which are crucial for mediating precise gene

expression in neurons (Chen et al., 2003; Martinowich et al.,

2003). In humans, genetic mutations in MeCP2 and CBP are

associated severe forms of intellectual disability—Rett syndrome

and Rubinstein-Taybi syndrome (RTS), respectively—as well as

increased anxiety-like behaviors (Amir et al., 1999; Alarcón et al.,

2004).

The phosphorylated (active) form of MeCP2 binds broadly

throughout the genome, affecting chromatin remodeling,

dendritic and synaptic development and hippocampus-

dependent memory (Skene et al., 2010; Li et al., 2011).

Knocking out MeCP2 in inhibitory neurons causes symptom-

specific effects, suggesting a substantial role for GABA-ergic

dysregulation in Rett syndrome (Ito-Ishida et al., 2015). BDNF

expression is also disrupted in MeCP2-deficient models. In

neurons, this could be regulated by a MeCP2 mutation-

induced overexpression of miR-15a, which can disrupt

the BDNF pathway, and thus, neuronal maturation and

dendritic morphogenesis (Gao et al., 2015). SUMOylation of

MeCP2 enhances Bdnf mRNA, LTP and memory performance

(Tai et al., 2016). Likewise, BDNF overexpression reversed many

of the social, cognitive and physiological deficits observed in the

MeCP2mutant mice (Shahbazian et al., 2002; Chang et al., 2006).

Truncated MeCP2 mice show cell-type independent changes in

Bdnf mRNA isoform expression, but MeCP2-induced effects

are specific to Bdnf exon VI in astrocytes (Rousseaud et al.,

2015). MeCP2-deficient astrocytes have significantly decreased

microtubule-dependent vesicle transport and correlate to

Rett-like anxiety and locomotion deficits (Delépine et al.,

2016). MeCP2 is the main 5hmC-binding protein in the

mammalian brain and MeCP2 bound 5hmC facilitates gene

transcription (Mellén et al., 2012). However, MeCP2’s binding

to 5hmC is disrupted by the Rett-causing mutation R133C.

These findings provide a potential model of how 5mC, 5hmC

and MeCP2 regulation of chromatin structure and gene

expression may be disrupted in Rett syndrome (Bedogni et al.,

2016).

RTS on the other hand, is associated with a mutation of the

CBP HAT domain resulting in decreased genome-wide histone

acetylation and cognitive deficits later in life (Kalkhoven et al.,

2003). In humans, single exon or whole gene mutations in

cbp flanking regions do not cause a differential diagnosis of

RTS, suggesting that these flanking regions are complementary

but not critical in the etiology of a clinical phenotype

(Rusconi et al., 2015). Anatomically, RTS individuals show

structure abnormalities related to deficits in activity dependent

development and neural plasticity (Korzus et al., 2004), and

display delayedmyelination, neural dysgenesis, including cortical

abnormalities and a thin corpus callosum and cognitive

dysfunction early in life (Roelfsema and Peters, 2007; Lee

et al., 2015). Mice carrying a heterozygous null mutation of

CBP also exhibit genome-wide histone hypoacetylation show

severe cognitive dysfunction early in life (Josselyn, 2005).

Haploinsufficient CBP mice exhibit reduced activation of CBP

by atypical protein kinase C (aPKC), hypoacetylation of neural
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genes and decreased precursor differentiation in the fetal brain

as well as reduced vocalization early in postnatal life (Wang

et al., 2010). Herein chromatin analysis has provided molecular

insights into the critical functions of CBP that have simplified our

understanding of the complex RTS pathology.

Lastly, metabolic aberrations and epigenetic regulation of

gene expression in neurodegenerative disease may open the

door to additional treatment options. For example, the fatal

neurodegenerative disorder Niemann-Pick Type C (NPC) is

caused in most cases by mutations in NPC1, which encodes

the late endosomal NPC1 protein (Ory, 2004; Vance and

Peake, 2011). Alterations in amino acid metabolism and

epigenetic changes in the cerebellum have been identified in

pre-symptomatic stages of NPC disease (Kennedy et al., 2016).

Decreased expression of DNMt3a and MBD proteins, reduced

DNA methylation in the molecular and Purkinje cell layers,

demethylation of genome-wide repetitive LINE-1 elements and

hypermethylation in specific promoter regions of single-copy

genes in NPC1-deficient cerebellum at early stages of the

disease representing previously unrecognized mechanisms of

NPC pathogenesis. Deeper insight into the role of metabolic

aberrations and epigenetic regulation of gene expression

in NPC1-deficient brain may open the door to additional

treatment options. Taken together, these studies demonstrate

that dysregulation of chromatin remodeling enzymes and their

modifications in chromatin structures is sufficient to cause

profound deficits in neuronal plasticity and cognitive function

abnormalities, underlying causes of neurodegenerative and

neuropsychiatric disorders.

CHROMATIN MODIFICATIONS AND
NEUROPSYCHIATRIC DISEASE

Stress induced changes in DNA methylation and histone

modifications that fine tune HPA axis function may contribute

to altered memory formation and vulnerability to mood

disorders. Indeed, depression-related behavior and action of

antidepressant medications have long been linked to chromatin

remodeling enzymes that alter chromatin domains to regulate

gene activity (reviewed in Daskalakis et al., 2015). As described

above, neurotrophins such as BDNF promote the genesis,

survival, development, and function of neurons important in

mediating stress and depressive responses. Genetic blockade

of neurogenesis (proliferating and immature neurons) in the

hippocampus results in increased anxiety- and depression-like

behaviors in adult animals (Snyder et al., 2011; Sakharkar et al.,

2016). Mice exposed to stressors early in life show decreased

CBP (which has HAT activity) and histone H3K9ac association

with the BDNF IV promoter and decreased BDNF expression

and neurogenesis inhibition in the hippocampus and increased

anxiety- and depression-like behaviors in adulthood (Blaze et al.,

2015). These results indicate that not unlike low maternal care

early in life, stress exposure decreases CBP levels and histone

H3 acetylation in the hippocampus, which potentially decrease

BDNF expression and inhibit neurogenesis that may be involved

in stress-induced behavioral abnormalities, including adult onset

of mood disorders.

Repeated exposures to social defeat stress in rodents, cause a

robust depression-like phenotype marked by anhedonia, anxiety

and social-avoidance behaviors (Nestler and Hyman, 2010). The

‘‘chronic social defeat’’ model of depression (Berton et al., 2006)

is a behavioral paradigm in which the animal is exposed to

a more aggressive animal of the same species. When brought

together again, animals chronically exposed to this stressful

event tend to avoid contact with the aggressor (Tsankova et al.,

2007). In mice, social avoidance results in altered chromatin

and transcriptional states of many of growth factors, including

BDNF (Duman and Monteggia, 2006; Castrén et al., 2007),

CNTF (Kokoeva et al., 2005; Grunblatt et al., 2006), FGF (Evans

et al., 2004), VGF (Thakker-Varia and Alder, 2009), VEGF (De

Rossi et al., 2016), TGF (Lee and Kim, 2006), Wnt (Hiester

et al., 2013), and IGF (Hoshaw et al., 2005). For example,

social avoidance results in increased transcriptionally repressive

H3K27me2 levels and decreased expression of hippocampal

Bdnf splice variants (Bdnf III and Bdnf IV, Tsankova et al.,

2006). Similarly, chronic social defeat stress was found to

increase the repressive mark H3K9me3 in the hypothalamic

orexin (hypocretin) gene promoter—a neuropeptide implicated

in normal emotion processing (Lutter et al., 2008). Chronic

administration of the widely used antidepressant imipramine

increased markers of transcriptional activation H3K9/K14ac and

H3K4me2 and reversed the repression of the Bdnf transcripts

induced by defeat stress (Tsankova et al., 2006; Wilkinson

et al., 2009). Other classes of antidepressants have also been

shown to enhance H3K4me2 levels (Lee et al., 2006b), gene

expression, cell proliferation, survival and apoptosis (Erburu

et al., 2015), reverse social avoidance behavior and decrease

neuroinflammatory signaling in mice, following social defeat

(Ramirez et al., 2015).

The effects of imipramine on H3K9/K14ac appear to associate

specifically with HDAC5 activity (Tsankova et al., 2006).

Hdac5 overexpression blocks the enhanced H3K9/K14ac and

Bdnf splice variant expression responses to the antidepressant

imipramine (Tsankova et al., 2006), suggesting a potential

for HDAC inhibitors in the treatment of depression. Indeed,

several HDAC inhibitors, including SB (Tsankova et al., 2006),

Entinostat (MS-275; Covington et al., 2009), and suberoylanilide

hydroxamic acid (SAHA; Covington et al., 2009), have

demonstrated antidepressant qualities and upregulate BDNF,

NGF and GDNF (Valvassori et al., 2014) as well as reduce

Hdac5 expression in the hippocampus, reversing depression

like phenotypes in models of chronic social defeat (Schroeder

et al., 2007; Covington et al., 2015). Like social defeat stress,

early life stress increases vulnerability to depression-like behavior

(in rodents), which appears to be mediated through epigenetic

programming at the BDNF IV promoter (Seo et al., 2015) via

several histone modifiers (Pusalkar et al., 2016). Similarly, early

life maltreatment is capable of decreasing H3K9/K14ac at the

BDNF IV promoter (Blaze et al., 2015).

Chronic social defeat stress decreased Hdac5 mRNA levels

in the nucleus accumbens (NAc; Renthal et al., 2007),

while imipramine rescues Hdac5 mRNA expression levels

in animal models of chronic social defeat (Erburu et al.,

2015; Serchov et al., 2015). Accordingly, Hdac5 KO animals
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showed depression-associated behavior but no effects of

imipramine treatment. Additionally, Hdac2—but not of Hdac1

or Hdac3—levels were reduced in the NAc of mice following

chronic social defeat and in human post mortem NAc tissue

from clinically depressed individuals (Covington et al., 2009).

Indeed, HDAC inhibitors themselves are capable of reversing

depression like phenotypes (Covington et al., 2015) and different

types of HDAC inhibitors may be effective as antidepressants

by each modifying distinct cellular targets. For example,

in the rat, chronic antidepressant treatment with fluoxetine

increases Hdac2 mRNA expression and H3K9/K14ac levels,

and enhances expression of MeCP2 and MBD1 in the frontal

cortex and hippocampus (Cassel et al., 2006). HDAC inhibition

may therefore enhance the effectiveness of antidepressants

through enhancing chromatin access. For example, while

fluoxetine treatment is only anxiolytic in Balb/C mice with

HDAC II inhibition, combination therapy leads to enhanced

acetylation association (Schmauss, 2015) and TET1-mediated

DNA demethylation (Wei et al., 2015) of BDNF promoter

and increased transcription. Optogenetic models of gene

regulation (Konermann et al., 2013; Polstein and Gersbach, 2015)

promise to provide further insight into the specific molecular

mechanism(s) that underlies these effects, crucial for future drug

development and treatment strategies for mood disorders.

The discovery of biomarkers and the ability to target

etiological disease epigenetic changes (epimutations) in

psychiatric disorders may improve their diagnosis, treatment and

even their prevention. Abnormal GABAergic transmission and

altered GABA-related gene methylation have been associated

with SCZ, MDD and suicidal behavior in humans (Schmidt

and Mirnics, 2015). For example, compared with control

individuals the GABA-A α1 receptor and Bdnf exon IV

promoter regions are hypermethylated in prefrontal cortex

tissue from individuals with depression that have died by suicide

(Poulter et al., 2008; Keller et al., 2010). These individuals

also show increased forebrain Dnmt3b mRNA and protein

expression. DNMT3a levels in the DG have also been shown to

predict resilient/susceptible depressive phenotypes (Hammels

et al., 2015). Suicidal behavior has also been associated with

altered chromatin remodeling and DNA methylation and

aberrant loss of transcriptional and transcription protein

synthesis capacity. For example, Ribosomal RNA (rRNA)

promoter methylation (Brown and Szyf, 2007, 2008) is enhanced

in the hippocampus (but not the cerebellum) of individuals who

died by suicide who were victims of abuse during childhood

(McGowan et al., 2008). Epigenome-wide studies have identified

several DNA methylation alterations in genes involved in both

normal brain development and neuropsychiatric pathologies

(Mill et al., 2008). Some of these epigenetic changes are sex-

specific and either inherited or acquired before birth (Kaminsky

et al., 2012). Interestingly, the relationship of psychosocial

stress with psychiatric illness is most evident in neuroses,

followed by depression and SCZ, which is influenced not only

by the nature of the challenge, but also by the individual’s

biological vulnerability (i.e., genetic variation) and ability to

cope (i.e., resilience; Schneiderman et al., 2005). Given that

neuropsychiatric disorders in adolescence and adulthood

appear to have their origins in pathways that begin much

earlier in life, this demonstrates the importance of preventive

early intervention programs, especially those targeting early

developmental antecedents such as anxiety to prevent the onset

of severe mental illness (Uher et al., 2014).

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

While developmental genetic studies continue to enhance our

understanding of phenotypic variation in human health and

disease pathologies, emerging evidence suggests that chromatin

remodeling potentially plays an important role in mediating the

effects of early experience on life long programming of defensive

responses to stress and stress-induced pathologies in offspring.

Regulation of epigenetic programs by metabolic intermediates is

emerging as an important mechanism of biological integration

of distinct cellular functions. A full understanding of the link

between intermediary metabolites and chromatin regulators

will require the development of highly sensitive and selective

sensors that measure metabolite concentrations in different

organs and cellular compartments, drawing upon advances in

single-cell analyses (e.g., FRET, molecular beacons, optogenetics)

and genome editing technology (e.g., the CRISPR-Cas9 system).

Such exploratory research in models of human complex disease

(including metabolic and neurodegenerative disorders) may help

to distinguish between the cause or consequence of genetic

and epigenetic variation and allow a comprehensive evaluation

of combinational epigenetic therapies (including HDACi and

DNMTi inhibitors) on habitual functions (such as learning and

memory) from a developmental perspective. Determining how

epigenetic mechanisms serve as a conduit for gene-environment

interactions is complex, especially when they pertain to early

life programming and transmission of antecedent personality

and behavioral traits and the emergence of severe mental illness.

Accordingly, the nature of gene misregulation conferring risk

also has broad ranging implications for our understanding

of personality and the interrelations between physiology and

pathology of emotions.
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