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Abstract 
Stress often affects our social lives. When undergoing high level or persistent stress, individuals 
frequently retract from social interactions and tend to be irritable and hostile. Predispositions to 
anti-social behaviors – including social detachment and violence – are also modulated by early-life 
adversity; however, the effects of early-life stress depend on the timing of exposure and genetic 
factors. Research in this emerging field in animals and humans has revealed some of the structural, 
functional and molecular changes in the brain. Findings in this field will have implications for the 
clinic and society. 
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Stress (here defined as the activation of the neurophysiological stress response) effectively helps 
organisms to cope with situations that challenge survival and promotes adaptation in response to 
threats to homeostasis1-3. However, sustained stress can have strong and long-lasting adverse effects 
on brain function and behavior4, 5.  

In the last two decades, there has been an explosion of research on how stress affects emotion 
and cognition. Although a social dimension of the stress response was recognized a century ago6, 
much less is known about how stress can affect the brain circuits engaged in the processing of social 
information and articulation of social actions. However, the recent blooming of the social 
neuroscience field has stimulated an emerging interest in this field, and human epidemiological and 
clinical studies have revealed multiple examples of changes in social behaviors that seem to be linked 
to stress (BOX 1) — from income inequalities and economic crises (indirect indexes of stress) that 
uphold societal-level violence7, 8 to severe stressors that induce marked dysfunctions in individuals’ 
social functioning9, 10.  

Given the ethical constraints inherent in exposing individuals to high or recurrent stressful 
conditions, most studies in humans are observational or correlational. This has hindered the 
dissection of the specific impact of different types of stressors and time-windows of vulnerability in 
shaping social behaviors. Furthermore, different people are exposed to unique combinations of 
stressors during their lifetime and their effects are influenced by genetic, educational and social 
factors that are particularly relevant in humans and thus complicate human studies. For these 
reasons, translational animal models of stress and social behavior that are amenable to experimental 
control of potential confounds are important tools that may enable the dissection of neurobiological 
mechanisms at levels that are currently inaccessible to human studies.  

This Review considers how various forms of stressors administered in different phases of the 
lifespan affect individuals’ interest in and reactions towards conspecifics – including social 
motivation, social recognition and aggression – and analyzes the mechanisms that mediate such 
effects. Although there remain many gaps in our knowledge, the evidence accumulated so far has 
revealed surprisingly specific associations between the characteristics and concomitants of stress and 
its immediate and long-term consequences for brain function and social behaviors. These findings 
suggest that the development of novel intervention and treatment strategies for stress-related 
individual and societal problems will require a widening and deepening of our understanding in this 
important field of neuroscience. 

 

Effects of stress on social behaviors  
Most of the experimental work in this field employs rodents as animal models. Social behaviors in 
rodents are investigated using a variety of behavioral tests that assess different aspects of sociality 
(BOX 2). A consideration of the characteristic social behavioral profiles that result from different 
types of stress exposure (summarized below) reveals an interesting picture. 

Stressors in adulthood  
In rodents, acute stress – elicited, for example, by ‘frustration’ caused by omission of scheduled 
reinforcement or instigation by pre-exposure to a physically inaccessible intruder – typically leads to 
reduced social behaviors and increased aggression, including antisocial behaviours such as bite 
counts that exceed species-typical levels 11, 12. This fits with the concept of acute stress as a ‘flight or 
fight’ response6 and implies that brief acute stressors mobilize resources to cope with the situation. 

Chronic stress (the stressor is recurrent or is sustained over several days) reduces social 
motivation and social interactions in a variety of sociability tests13-15, particularly in highly anxious 
animals16. For example, chronic social defeat induces social avoidance and social fear towards 
unknown conspecifics17, with the severity of these effects depending on the type and length of the 
defeat. However, although chronic stressors generally reduce sociability, social isolation stress 
actually enhances social interest18, probably because long-term deprivation from social contacts 
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increases interest in social partners. Social interactions with an animal’s kin are also affected by 
chronic stress, as indicated by a disruption of paternal behavior and pairmate interactions in the 
monogamous, biparental California mouse (Peromyscus californicus) male subjected to chronic 
variable stress19. 

Aggressiveness is increased by chronic physical stressors — including chronic unpredictable 
mild stress20, restraint or immobilization13-15, 21 — in mice and rats, as well as by social stressors such 
as social isolation18, 22 in rodents and social and spatial restrictions in dogs23. Interestingly, chronic 
immobilization escalated both normative aggressive behavior (attacking small adversaries with a high 
chance of winning) and ‘risky’ aggression (attacking big adversaries, with a low chance of winning) in 
rats21. By contrast, chronic social stressors that involve fighting that leads to defeat and 
subordination have been shown to down-regulate aggressiveness in a variety of species. These 
effects frequently last for at least one month and are observed even when subjects are confronted in 
their homecage by smaller opponents24-27. Conversely, repeated victories – which are accompanied 
by reduced physiological stress responses but can be considered stressful because they involve 
recurrent exposure to social conflicts ‒ may result in exacerbated and abnormal aggression 28, 29. 

Stress during development  
Stress models that cover a range of neurodevelopmental periods have been applied to investigate 
the long-term impact of stress on adult social behaviors (BOX 3). Social motivation (sociability) was 
disrupted in adulthood by prenatal30; neonatal31, 32 and juvenile 33-35 exposure to stressors. By 
contrast, the execution of social behaviors in the social interaction test was affected differentially by 
stressors administered at different ages. Prenatal stress30, neonatal stressors (maternal separation36 

and early deprivation37) and peripubertal exposure to physical stressors35 inhibited social interactions 
in adulthood. Interestingly, early social deprivation also inhibited pair bonding in mandarin voles 
(Microtus mandarinus)32. Juvenile social stressors (post-weaning social isolation38 and early 
subjugation39) either did not affect this aspect of social behavior or, in one study40, increased adult 
social interactions.  

The effects of early stressors on adult behavior in the resident–intruder test are even more 
variable. Here, prenatal stress reduced aggressiveness41. Maternal separation, by contrast, increased 
inter-male aggressiveness in rats (but not mice, although female mice showed increased maternal 
aggression42). Specifically, the latency of attack was reduced and/or the duration of offensive threats 
was increased, although bite counts remained unchanged43. Early deprivation increased all three 
components of aggression32 and stressors administered to juveniles also enhanced aggressiveness in 
adulthood35, 44-46.  

Importantly, antisocial features of aggression were found to emerge mainly when animals were 
stressed at juvenile ages. All symptoms of ‘antisociality’ (see BOX 2) were observed in both the post-
weaning social isolation and peripubertal non-social stress models35, 47, 48. However, only the subjects 
of the post-weaning social isolation model ‒ but not the animals exposed to non-social peripubertal 
stressors ‒ showed strong signs of behavioral agitation and defensiveness. The long-term 
consequences of early subjugation are different and include the expression of adult-type 
aggressiveness in juveniles, enhanced responses to provocation, and offensive ambiguity45, 49, 50. It is 
interesting to note that similar differences were found in studies that compared the long-term neural 
consequences of social and non-social stressors administered to juveniles51. Interestingly, antisocial 
features of aggression, particularly offensive ambiguity52, 53, were also seen in the early social 
deprivation model. 

These findings demonstrate that early life stressors decrease measures of social motivation, 
reduce the expression of social behaviors, increase aggressiveness, and promote the development of 
antisocial features, but the specific consequences depend on the timing and type of the early 
stressor(FIG. 1). Although these changes can be problematic for human individuals and societies, 
from an evolutionary perspective they could be interpreted as mechanisms through which early 
adversity prepares the organism to endure similar adversities later in life54. For example, enhanced 
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fighting readiness may confer adaptive advantage under subsequent social pressures, such as 
physical attacks or competition for scarce resources. Epigenetic programming may be a critical 
mechanism for mediating these long-term effects of stress on brain function and behavior55. 

 
Intergenerational effects 
Animal studies have shown that the effects of stress on social behaviors in males can be transmitted 
to the next generation without direct contact between the stressed subject and his offspring, 
excluding the possibility that the transmission is a result of direct social learning. For example, a 
reduction in social exploration and reduced social memory was found in male mice submitted to 
stressors during early postnatal life, as well as in their offspring across two generations31. In rats, 
both the female and male F2 offspring of dams exposed to chronic stress during lactation displayed 
decreased social behavior as juveniles and adults56. Similarly, the offspring of peripubertally stressed 
male rats that had had no direct interactions with their father showed increased aggression48. 
Several mechanisms may drive these transgenerational effects, including changes in the females 
(such as altered maternal behavior56 and/or physiological changes) that mated with the stressed 
male and epigenetic processes transmitted through the germline 57. However, these possibilities 
require investigation. 
 
The role of glucocorticoids  
When a stress response is triggered, a rise in plasma glucocorticoid levels, resulting from the 
activation of the HPA axis, closely follows the initial activation of the sympathetic nervous system. 
The lipophilic nature of glucocorticoids enables their access to the brain, where they exert a broad 
range of molecular, structural and functional effects58 through mineralocorticoid receptors (MR) and 
glucocorticoid receptors (GR; which mediate their effects through both genomic (slow) and non-
genomic (rapid) mechanisms)59, 60. In addition to imediate effects of the activation of these receptors, 
glucocorticoids can also exert long lasting programming effects on brain function and behavior58, 61-63. 

Changes in glucocorticoid levels in stress models 
Stressful experiences frequently alter the ‘set-point’ of the HPA axis, which can result in permanent 
changes (either increases or decreases (BOX 3)) in basal and/or stress-induced glucocorticoid levels. 
Alterations in the magnitude of stress-induced glucocorticoid responses can have both immediate 
effects in brain function through non-genomic mechanisms and long-term effects mediated by 
changes in gene transcription; however, the latter mechanism is predominantly involved when basal 
glucocorticoid levels are affected64-69. These changes in glucocorticoid levels seem to contribute to 
many of the changes in social behaviors induced by stressors. Three of the rodent developmental 
stress models resulting in antisocial aggression discussed above — early deprivation64, early 
subjugation39 and peripubertal stress35 — are characterized by long-term decreases in HPA-axis 
activity (BOX 3). A fourth model — post-weaning social isolation — is characterized by normal basal 
HPA-axis activity, but enhanced autonomic and glucocorticoid responses to stress65, which may drive 
the increased-stress induced aggression seen in adults in this model 11, 12.  

Alterations in the glucocorticoid response to stress could result from molecular and cellular 
adaptations within different components of the HPA-axis as well as in the brain regions that regulate 
HPA-axis activity. For example, stress induces changes in the expression of GRs in the hippocampus, 
prefrontal cortex, and amygdala (all of which regulate HPA axis activity)1, 2 and in the neural circuitry 
— including the preoptic area and other hypothalamic nuclei projecting to the periventricular 
nucleus — that regulates the activity of hypothalamic neurons expressing corticotropin releasing 
hormone (CRH)3.  
Effects of manipulating glucocorticoid levels.  
Studies that have investigated the effect of exogenous glucocorticoid administration at different ages 
have provided support for the notion that glucocorticoids mediate, at least in part, the effects of 
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stress on social behavior. These treatments induced effects on social behaviors that were highly 
consistent with those seen in stress models. Corticosterone treatment in neonates66 mimicked the 
diminished adult social exploration and increased submissiveness observed in maternally deprived 
mice31, 32, 42. Corticosterone treatment in juvenile rats67 diminished social exploration as did exposure 
to peripuberty stress35, 68-70 and acute glucocorticoid treatments in adulthood71 increased aggressive 
behavior as did acute stress elicited by frustration11, 12. 

Other studies have mimicked the long-term effects of early stress exposure on HPA-axis 
function. For example, acute glucocorticoid treatments in adulthood that mimicked the HPA-axis 
alterations resulting from post-weaning social isolation decreased sociability and social behavior and 
increased aggression69, 72. In another example, mimicking the reduction in HPA axis activity in 
adulthood caused by early deprivation, early subjugation and non-social peripubertal stressors 
(through adrenalectomy with low-level glucocorticoid replacement)72 led to decreased social 
behaviors and antisociality. This was abolished by repeated glucocorticoid treatments73, 74 suggesting 
that the long-term suppression of HPA-axis function and the altered social behavior in these models 
are causally related. Therefore, both excesses and deficits in glucocorticoid production have 
detrimental effects on social behavior. 

These findings indicate that glucocorticoid signaling at least partly mediates the behavioral 
effects of stress. Further support for this notion was provided by a study which showed that 
activation of GRs in dopamine receptor-expressing neurons in mesocorticolimbic and striatal circuits 
promoted social aversion induced by a subchronic social defeat procedure in mice75. Moreover, in 
humans, an interaction between genetic variation in the gene encoding FKBP5 (a cochaperone of 
heat shock protein 90 that affects the transcriptional capacity of GRs) and childhood trauma 
influences both lifetime history of aggressive behavior76 and the glucocorticoid response to stress77. 
These findings suggest that individual differences in the neurodevelopmental trajectories leading to 
antisociality might be related to genetic variation in HPA-axis-related genes that affect the 
functioning of the stress systems during development and its consequent promotion of long-lasting 
epigenetic adaptations76, 78.  

Changes in social brain systems  
The concept of the ‘social brain’ emerged in the context of brain imaging studies, and refers to brain 
areas that are activated in humans by social cognition tasks. It typically includes areas involved in 
social recognition (fusiform area, superior temporal gyrus and accessory olfactory bulb), context 
evaluation (amygdala, temporal and prefrontal cortices), social motivation (ventral tegmental area, 
nucleus accumbens and ventral pallidum) and execution of social behaviors (hypothalamus, and 
brainstem motor and autonomic pathways)79. Studies in animals have revealed a ‘social brain 
network’ that largely overlaps with the human social brain80,81 (FIG. 2). In addition, a key role for the 
periaqueductal gray (PAG) in aggression in animals has been identified and recently confirmed in 
humans studies82,83. These findings substantiate the view that interactions between conspecifics are 
governed by homologous brain networks in mammals. Stress is a strong modulator of brain structure 
and function5 and most of the brain areas that are particularly vulnerable to stress (such as the 
amygdala, prefrontal cortex, hippocampus and mesolimbic system) exhibit functional and/or 
structural alterations in individuals with abnormal social behaviors84, 85.  

Inappropriate social behavior that is not due to a brain lesion is usually assumed to be due to 
altered brain development (which might be caused by stress), impaired social learning (which could 
also be due to stress) and an inability of the brain to maintain normal structure and function under 
pressure (including stress)86-89. Although brain development, social learning and remodeling of brain 
circuits are not independent of one another (for example, neonatal stress may alter brain function 
and endocrine stress responses such that social learning becomes difficult), the relative contribution 
of these three factors to the effects of stress on social behavior changes across the lifespan. Prenatal 
and very early postnatal stress particularly impinge on brain development, whereas stress during 
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childhood and adolescence can also affect social learning. Chronic stressors in adulthood probably 
exert their effects by remodeling brain circuits that are involved in social behavior, whereas acute 
stressors seem to drive the adaptive mechanisms of the organism. Different families of cell adhesion 
molecules play roles in brain development, plasticity and cognition, and recent work has implicated 
several cell adhesion families in stress-induced alterations in social behaviors (BOX 4). 
 
Structural changes 
Developmental trajectories in the brain are strongly altered by prenatal stress or high pregnancy 
anxiety, which leads to grey matter volume reductions in several brain areas (prefrontal cortex (PFC), 
hippocampus and hypothalamus) in humans90, 91 and rodents92-94. Rodent studies suggest an 
important role for glucocorticoid-induced apoptosis in some of these effects95. Structural changes in 
the same brain areas were observed when chronic stressors were administered to adult rodents96-98. 
Stress at other developmental stages also causes structural alterations. For instance, neonatal stress 
affected dendritic organization and synaptic plasticity in the PFC in rats99-101. Post-weaning social 
isolation specifically reduced the volume of posterodorsal component of the medial amygdala and of 
the right medial PFC in rats102, 103. However, neural plasticity markers, neuron numbers and basal 
metabolic activities were not altered in the limbic brain after early social subjugation in rats and 
hamsters104-106, suggesting that structural changes are minimal following this stressor. Interestingly, 
early deprivation increased neuron numbers and decreased apoptosis throughout the 
hypothalamus107, whereas it had mixed effects in different hippocampal fields 108. Taking into 
consideration the important role of the hypothalamus in aggression control81, 109, this suggests that 
adult consequences of early stressors may be attributed to both structural brain deficits and 
structural "gains".  
 
Functional changes 
Acute social challenges that elicit stress coping responses in rodents specifically and acutely activate 
the brain regions that promote aggressiveness, including the medial amygdala, mediobasal 
hypothalamus and dorsal aspects of the periaqueductal gray (PAG)79. By contrast, very early social 
stressors as well as social and non-social chronic stress in adulthood reduce activation in most areas 
of the social brain when subjects are exposed to other conspecifics110-115, consistent with the general 
impairment in social behaviors induced by such stressors.  

Experiencing stress chronically in adulthood or early in life results in alterations in cortico-
limbic networks, including changes in amygdala-PFC connectivity116. Such changes are also frequently 
found in individuals with abnormal social behaviors84. In most such individuals frontal regions show 
reduced functioning. However, amygdala activation by emotional stimuli differs between subgroups 
of antisocial individuals: it shows hypofunctionality in individuals with psychopathic traits and 
hyperreactivity in those showing impulsive and reactive social problems84. Furthermore, carriers of 
genetic variants of serotonin-system-related genes that can, through an interaction with stress 
exposure, increase the development of impulsive aggression (see below), show increased reactivity 
in the amygdala and reduced reactivity in the emotion regulatory prefrontal regions (orbitofrontal 
and anterior cingulate cortices) during emotional arousal117, 118. Interestingly, peripubertal stress that 
reduces sociability and increases aggression in male rats also leads to amygdala hyperactivity and 
blunted activation of the medial orbitofrontal cortex when the rats encounter intruders in their 
home cage as adults35. Furthermore, alterations in the functional connectivity between the medial 
orbitofrontal cortex and the amygdala predicted the aggressive behavior of these mice35. However, 
animals exposed to post-weaning social isolation showed, as adults, activation of both the amygdala 
and orbitofrontal cortex in response to an intruder119 (FIG. 1). This pattern may mimic findings in 
criminal psychopathic individuals, who showed enhanced PFC activation when punishing opponents 
in a competitive game120. 
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Insights into brain changes that are associated with social abnormalities resulting from 
atypically low glucocorticoid levels were provided by studies in rats submitted to adrenalectomy and 
low dose corticosterone replacement. Strikingly, these animals show similar patterns of brain 
activation in response to encountering a conspecific towards which they displayed pathological 
aggression and during mouse killing (predatory aggression)121, 122, suggesting that both stress-induced 
glucocorticoid levels and low basal and stress-activated glucocorticoids may be causally linked to 
abnormally high aggression. The activation of ‘predatory circuits’ when fights occur under low 
glucocorticoid levels may have its analog in human instrumental aggression, which — based on 
behavioral and emotional features — is often termed ‘predatory’ aggression, especially in the case of 
psychopathy123.  

 
Neurochemical mechanisms  
Several neurotransmitter and neuropeptide systems were implicated in the effects of stress on social 
behaviors by neurobiological and pharmacological studies that found correlations between 
neurotransmitter or neuropeptide expression and effects of stress on social behavior and genetic 
studies exploring the interaction between specific genes and stress in the production of social 
dysfunctions.   

Monoamines 
Ample evidence from clinical and preclinical studies implicates the monoaminergic – particularly the 
serotonergic and dopaminergic – systems in the regulation of social behaviors. Stress experienced at 
different developmental periods can have persistent effects on the serotonergic system [such as 
changes in the expression of serotonin (5-HT) and its metabolites and receptors] and dopaminergic 
system in specific brain regions. Some studies have observed those changes in the context of 
increased aggression and reduced motivation for social exploration. For example, in rhesus monkeys, 
stress-induced increases in aggression were correlated with expression of the serotonin transporter 
(5-HTT) in infants124 and inversely correlated with cerebrospinal fluid (CSF) 5-hydroxyindoleacetic 
acid  (5-HIAA; a metabolite of 5-HT) concentrations in adults125. In rats exposed to peripubertal 
stress, expression levels of both the monoamine oxidase A (MAOA, an enzyme that degrades 
monoamines) and 5HTT genes in the PFC were increased and this was accompanied by increased 
acetylation of histone H3 at the promoter of the MAOA gene35. Importantly, administration of a 
MAOA inhibitor in adulthood reversed the deficits in sociability and increased aggression in these 
rats35. Likewise, treatment with the serotonin reuptake inhibitor fluoxetine normalized changes in 
behaviour, biochemistry  and cell firing in mice that were susceptible to the development of social 
aversion following social defeat stress126, 127. Interestingly, changes in the serotonergic system have 
also been detected in transgenerational studies of stress-induced social deficits31. Specifically, the 
offspring of male mice submitted to maternal separation and maternal stress showed social 
avoidance and altered social recognition memory, as well as reduced serotonin receptor 1A (5HT1A) 
expression in the dorsal raphe nucleus, and increased 5-HT levels in dorsal raphe projection areas31. 

Studies of social defeat in mice have suggested an involvement of the mesocorticolimbic 
dopaminergic system. Social defeat leads to reduced social exploration (social avoidance)17 and a 
reduced probability of winning future social contests128. Social avoidance in such mice was associated 
with brain-derived neurotrophic factor (BDNF)-induced activation of the receptor tyrosine kinase 
TRKB signaling pathway in the nucleus accumbens (NAc)127 and the activation of GRs in neurons 
expressing dopamine receptors75. Upregulation of phasic firing of dopamine neurons that project 
from the ventral tegmental area (VTA) to the NAc127, 129 and decreased excitatory synaptic input to 
dopamine receptor D1-containing medium spiny neurons from the NAc130 were also implicated in the 
development of social avoidance following exposure to social defeat.  

Exposure to stressful experiences also frequently increases dopamine release or turnover in 
the NAc131 and individual variation in VTA stress responses has been linked to individual differences 
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in coping responses to stress127. Moreover, sustained increases in dopaminergic activity in the NAc 
and activation of D1 receptors were also implicated in social defeat-induced social avoidance in both 
males and females from the monogamous California mouse (Peromyscus californicus) strain132. These 
enhanced DA responses might reflect animals’ attempt to develop active coping responses to 
stressors, whereas inhibition of DA has been proposed to mediate passive coping with stressful 
situations appraised as unescapable and/or uncontrollable133. Accordingly, stress-related social 
subordination in rats has been associated with decreased dopamine transporter binding and 
increased D2 receptor binding134.  

Genetic association studies in human and non-human primates have identified 
polymorphisms in genes that regulate serotonin and dopaminergic neurotransmission as risk factors 
for the development of social dysfunctions, including pathological aggression. The MAOA gene was 
the first for which a gene-by-environment (specifically, maltreatment during early life) interaction 
was reported135. Subsequently, polymorphisms in the 5-HTT gene were shown to contribute to 
individual differences in aggressiveness in individuals exposed to stress in early life136, at the 
transition into adulthood137 or acutely in adulthood136, 138. Genetic variants in dopamine-system-
related genes are also associated with aggression. For example, a variant in the gene encoding 
dopamine receptor D2 (DRD2) was associated with social dysfunction in Vietnam veterans with 
PTSD139. Gene variants of the D4 receptor (DRD4), when combined with prenatal maternal stress, 
were associated with increased antisocial behavior in childhood140 and increased aggression and low 
cortisol responses to social stress at adulthood141.  

 
Extrahypothalamic corticotropin releasing hormone (CRH) 
Changes in the expression of components of the extrahypothalamic CRH system following stress and 
in the context of antisocial behaviors in humans and animals have been shown. They occur, for 
example, in patients with stress-related psychiatric disorders in which social behaviors are commonly 
compromised, such as anxiety and depression142. Abusive rhesus macaque mothers (who were 
abused themselves as infants) show higher CSF concentrations of CRH than controls and these are 
associated with antisocial behavior patterns143. The differences in the CRH system could be due to 
the early trauma or to genetic factors and findings in rats exposed to peripubertal stress indicate that 
early stress is a critical trigger. In these rats, social dysfunction was associated with enhanced CRH 
receptor 1 (CRHR1) expression in the hippocampus and the central nucleus of the amygdala, and 
treatment with a CRHR1 antagonist prevented the social dysfunctions144. Changes in the 
extrahypothalamic CRH system have also been observed after stress exposure in other 
developmental periods in rats145,146 and prairie voles147, but their role in the associated changes in 
social behavior has not been explored. Interestingly, antagonizing brain CRH receptors reduced acute 
stress-induced fighting in rats148, decreased the expression of social defeat-induced submissive 
behavior in hamsters149 and reversed passive stress coping behavior observed in male prairie voles 
separated from their female partners150. Overall, the highly stress-sensitive CRH system seems to 
play a central role in the regulation of a broad array of social behaviors151. 
 
Oxytocin and vasopressin 
The neuropeptides arginine vasopressin and oxytocin, which are synthesized in the hypothalamus 
and limbic system modulating emotional behaviors (such as anxiety and depression), and multiple 
aspects of social behavior152, 153. Generally, evidence points to a role for vasopressin in promoting 
antisocial behaviors (such as aggression), whereas oxytocin facilitates prosocial actions (such as social 
affiliation, attachment, social support, maternal behavior and trust). Importantly, vasopressin tends 
to exert anxiogenic effects, whereas oxytocin exerts anxiolytic effects152 and this difference probably 
contributes to the contrasting social actions of these neuropeptides152.  

Intriguingly, increases in both oxytocin and vasopressin release have been detected within 
hypothalamic and limbic brain regions following acute exposure to a variety of stressors152.  
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Furthermore, in mandarin voles (Microtus mandarimus) paternal deprivation leading to impaired 
social recognition, was associated with a reduction in oxytocin receptors in the medial amygdala and 
nucleus accumbens154.  

Whether these modifications have a role in stress-related changes in social behaviors has 
been investigated. In one study, acute intracerebral administration of oxytocin reversed the social 
avoidance and reduced social preference elicited by prior social defeat stress in rodents155. In 
another study, a reduction in oxytocin receptor expression in the medial amygdala156 was found in 
male rats that acquire a long-term subordinate status as a result of application of an acute stressor 
just before being exposed to a social contest against a non-stressed rat157. Long-term subordination 
was also induced in rats without former exposure to stress by microinfusion of an oxytocin receptor 
antagonist in the medial amygdala immediately after hierarchy formation156, which suggests a role 
for the modulation of oxytocin receptors in stress-induced facilitation of long-term subordination. 
This view is in agreement with the findings of pharmacological experiments that implicated oxytocin 
in the medial amygdala in the establishment of social memories in rats158.  

Prenatal stress in rats both diminished the quality of social interactions at adulthood and 
resulted in alterations in the oxytocin system in the hypothalamus and amygdala: administration of 
oxytocin in these animals at adulthood reversed the social deficits159.  Furthermore, enduring 
changes in the expression of oxytocin and vasopressin have been observed in adult rodents that had 
experienced maternal separation stress160. Pharmacological experiments showed that maternally-
deprived male rats had a blunted vasopressin release within the septum when exposed to another 
male rat, and this  was causally linked to their impaired social recognition memory161. In maternally 
separated female rats, a decrease in hypothalamic oxytocin immunoreactivity was found in the 
context of increased maternal aggression42.  

Lower oxytocin concentrations have also been observed in the CSF162 and plasma163 of 
women with a history of childhood abuse and borderline personality disorder. Interestingly, although 
a particular variation in the gene encoding the oxytocin receptor is generally associated with 
increased prosocial behavior, when it interacts with developmental stress it is associated with 
increased levels of antisocial behaviors164.  

 
 
Epigenetic mechanisms 
An exploding body of evidence provides strong support for key roles of epigenetic mechanisms in 
mediating the effects of stress on brain and behavior, including gene-environment interactions at 
different developmental periods (for reviews, see55, 165). By regulating gene transcription, epigenetic 
mechanisms contribute to the effects of both stressors experienced in adulthood that have an 
immediate impact and those experienced early in life that have long-lasting effects on adult behavior 
and brain function. Following pioneering work that indicated that differential methylation of the GR 
gene mediated the effects of different mothering styles on stress responses and maternal behavior in 
rats166, substantial evidence has shown that different components of the HPA axis are highly 
susceptible to epigenetic modulation by stress. Conversely, glucocorticoids themselves are important 
regulators of the epigenome165. Although the precise link with social behaviors is still scarce, the 
importance of these mechanisms in the link between stress and the social brain is illustrated by 
several examples. One study presented causal evidence for a role of epigenetic regulation of a Rho 
GTPase-related gene involved in the regulation of synaptic structure, RAC1, in the NAc in the 
development of social defeat stress-induced social avoidance167. Another study implicated 
acetylation of histone H3 at the promoter of the MAOA gene in long-lasting effects of peripuberty 
stress in the induction of antisocial behaviors at adulthood in rats35. Finally, a role for epigenetic 
mechanisms has also been suggested for the transmission of some behavioral stress effects across 
generations57. Future studies should more closely define the role of epigenetic modifications in the 
link between stress and the social brain. 
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Conclusions 
A model of stress effects in the social brain 
An emerging model suggests that social withdrawal in adulthood is a general consequence of 
experiencing, or having experienced, high and persistent stress levels, regardless of the 
developmental period (prenatal, early postnatal, juvenile, adulthood) when the episode occurs (FIG. 
1). Similarly, aggression tends to be facilitated by stress (acute, chronic or developmental), unless the 
stress is inflicted by social defeat, which has an inhibitory effect on aggressive behavior. From a 
developmental perspective, stress appears to impose a progressive pattern of dysfunctional social 
behavior that begins with asociality (elicited by prenatal stressors) progresses to hostility (which 
emerges when stress is suffered postnatally) and ends with antisociality (which seems particularly 
bound to stress experienced in the juvenile period).  

Although direct causality is not yet established, glucocorticoids seem to be particularly 
important mediators of stress effects. Their elevation during exposure to adversity contributes to the 
molecular changes – including alterations in expression of components of the monoaminergic and 
CRH systems, modulation of cell adhesion molecules and epigenetic modifications – that are 
associated with the alterations in neural structure and function and in inter-region connectivity 
induced by stress. In addition, long-term changes in the reactivity of glucocorticoid stress responses 
can also contribute to alterations in the processing of social information and/or ensuing social 
behaviors. Strikingly, both asociality and abnormal aggression can result from either blunted or 
enhanced glucocorticoid stress responses.   

At the neural level, large changes in the social brain disrupt all aspects of sociality and 
consequently, lower the animals' ability to cope with social challenges. At one extreme, the 'asocial' 
profile (FIG. 1) is paralleled by volume reductions in major areas of the social brain when elicited by 
prenatal stress and involves profound alterations in the functioning of the mesolimbic system when 
resulting from chronic social defeat experiences at adulthood. Although the available data regarding 
the structural impact of different stress models in the social brain is limited, dendritic processes, 
spines and synapses tend to retract in brain regions involved in the processing of (social) information 
and executive control, but increase in regions involved in the processing of emotions. Changes in cell 
adhesion molecules (FIG. 3) parallel these structural effects, probably contributing to changes in the 
weight played by these different key brain areas in the processing of (social) information. Similar 
changes in circuit remodeling have been reported for chronic non-social stress and developmental 
conditions that exemplify the 'hostile' and 'antisocial' profiles (FIG. 1), although more information is 
needed to understand the specific changes for each profile. Another relevant emerging mechanism is 
an alteration in the neural E/I balance towards increased excitation  and, again, a neural cell 
adhesion molecule (NLGN-2) appears to be a major stress-modulated target (FIG. 3). However, any 
emerging model is constrained by the rather incomplete and non-systematic data available which, 
beyond rendering the interpretation provided above tentative, also raises a series of outstanding 
questions.  
 
 
Outstanding questions 

Much progress still remains to be done to increase our understanding of how the social brain 
works and we are only starting to reveal how stress can interact with social brain function. 
Vulnerability factors ‒ extensively studied in domains such as emotion and affect168 ‒ are poorly 
understood in the case of social behaviors. We have also not yet explored the possible effects of 
stress on the interaction between social and other domains. Interactions between the social and 
cognitive domains169 appear particularly relevant in light of the proposed inverse relationship 
between the degree of abstract reasoning and violence170 and correlations between working memory 
and abstract reasoning171. Another outstanding question is how stress influences the interaction 
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between social behavior and empathy. Although most current findings emphasize asocial and 
antisocial patterns of behaviors following stress, a few examples in humans indicate that stress can 
also facilitate prosocial behaviors by promoting altruism and empathy (BOX 1). This is important 
because although stress may help us “feel with others” undergoing similar stressful situations172, very 
high stress seems to compromise empathic capacities 173-176. Furthermore, there seems to be a 
bidirectional relationship between stress and social behaviors. Social integration and social support is 
an important modulator of individuals’ stress reactivity and stress-related outcomes: positive social 
interactions buffer stress (BOX 5), whereas dysfunctional social interactions (such as being a victim of 
violence or having a subordinate role in highly unequal social hierarchies177) can trigger stress.  

 
Clinical and societal implications 

Some of the knowledge summarized here could have immediate applications: understanding 
the interaction between stress, the brain and social behavior may guide the development of novel 
treatment strategies. For example, neurochemical mechanisms that favor a prosocial attitude (such 
as oxytocin) might be used to develop pharmacological tools to reverse undesirable changes in 
neuronal communication that are caused by stress. Epigenetic mechanisms could be considered as 
alternative targets for intervention.  

By affecting social behaviors, stress in an individual can have a multiplicative effect in society. 
Thus, stress is one of the key regulators not only of our social lives but also of the functioning of our 
societies. This opens novel avenues to potentially intervene in societal problems: would reducing 
stress levels and improving the stress reactions of individuals improve our social organizations? It is 
also important to consider the role of stress in the production of cycles of violence. If stress caused 
by social disputes – such as war, physical abuse or aberrant socioeconomic inequalities – exacerbates 
antisocial dispositions in individuals, it may be instrumental in the development of spirals of violence. 
Accordingly, tackling stress should also be considered as a promising strategy in conflict resolution 
programs. Another important dimension is the proposed role of stress in the transgenerational 
transmission of violence: this places a great responsibility on individuals, societies and political 
organizations to stop exposing today’s children to excessive stress, violence or maltreatment. Given 
the recent growth in the number of studies into the interaction between stress and social behavior 
reviewed here, we are confident that this area of study will contribute with important solutions to 
the clinic and society. 
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Box 1. Stress and social behaviors in humans 
Epidemiological studies. Several stress-eliciting factors have been related to high societal levels of 
crime and violence; these include high environmental temperature, which was found to correlate 
with violence in laboratory experiments178; income inequalities within regions and countries8; and 
economic crises, which particularly relate to high levels of violence against women and children7. 

Clinical studies. Insights into links between stress and social behaviors have also been obtained in 
studies of individuals with stress-related psychiatric disorders, such as posttraumatic stress disorder 
(PTSD) and depression. These disorders frequently involve marked dysfunctions in social functioning, 
including reductions in social motivation and social cognition, social anxiety and avoidance, 
alterations in social behaviors9, 10, and high levels of anger, hostility or violence179, 180, particularly 
when experiencing stress181.  

Adverse early-life social experiences are particularly associated with social anxiety and 
aggression later in life. Maltreatment during childhood, inflicted by family182 or peers183-185, is linked 
to social anxiety, impaired social skills and loneliness at adulthood182, and is a robust predictor of 
adolescent and adult antisocial behaviors186. However, not all individuals are equally affected187, 
which suggests that genetic factors interact with early adversity to mediate these effects135, 186. A 
direct causal effect of childhood adversity on aggression was suggested by findings from longitudinal 
twin studies188. Overall, these findings illustrate the concept of a ‘cycle of violence’ or 
intergenerational transmission of externalizing behaviors189 observed in some families — through 
which maltreated children tend to become abusive parents — and that occurs for both general and 
domestic violence190.  

Psychosocial studies. Recently, the prosocial effects of stress have also been underscored through a 
series of studies that identified the phenomenon termed “altruism born of suffering”191. Specifically, 
these studies revealed increased motivation in former victims of suffering (whether from natural 
causes or inflicted by other human beings) to help others – particularly in-group members – and 
prevent further suffering172, 191.  

Behavioral economic studies. Several recent studies in this field also demonstrated prosocial effects 
of acute stress. In one example, shortly after being challenged with a standardized laboratory 
stressor male participants took economic decisions indicative of increased trust, trustworthiness, 
sharing192 and altruistic punishment193. Other studies in civilian populations of countries engaged in 
war conflicts suggested that the well-known phenomenon of increased societal in-group cooperation 
in times of war might not be a direct, immediate reaction of the individuals but rather a result of 
group pressure194 and early life programming195. 
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Box 2. The palette of social behavioral tests in rodents 

Social relationships in real-life situations in rodents involve sequences of behaviors. Several 
laboratory tests have been developed that allow these individual behaviors to be studied separately:  
 

- The three-chamber sociability test: In this test, the subject is placed in a chamber adjacent to 
two other chambers (figure, part a). Each of these compartments contains a receptacle that 
allows an animal to see and smell, but not to directly contact, its content. One receptacle 
contains a conspecific animal and the other is empty or contains an inanimate object. The 
test monitors the percentage of time that the experimental animal spends exploring each 
receptacle.  

- Social memory tests for recognition memory (figure, part b) compare the time an 
experimental animal spends exploring an unfamiliar animal versus the time it spends 
exploring a familiar animal ( each animal is contained in a receptacle similar to that described 
above).   

- The social interaction test (figure, part c) allows measurement of direct social interactions. It 
normally takes place in a neutral arena (to limit aggressiveness) and the propensity of 
unfamiliar individuals to engage in different forms of social interaction, including sniffing, 
following, and adjacent lying, is monitored 

- The resident/intruder test (figure, part d) evaluates the aggressiveness of male rodents 
towards an intruder male placed into their territory. Quantitative measures of aggressive 
(offensive threats, bites) and defensive behaviors are monitored. In addition to assessing 
normal territorial aggression, this test can be used to detect antisocial features. Such 
features are identified as deviations from natural "rules" that govern aggressive behavior and 
that result from evolutionary pressures against dangerous forms of aggression29. These 
include excessive number of attacks (several folds larger than species-typical levels), attacks 
on non-threatening opponents (juveniles, females, or anesthetized animals), dangerous 
attacks targeting the head, throat and belly, deficits in social communication 
(failure/reluctance to communicate attack intentions by threats) and offensive ambiguity 
(such as parallel increases in offense and defense). 

- Social competition tests (figure, part e) allow one to investigate the formation of social 
hierarchies and other social dynamics. These tests involve a visible burrow system24 or 
observing two animals fighting for novel territory, food or water157.  

Each test focuses on one aspect of social behavior and can provide information complementary to 
the other tests. For example, whereas motivation might be to some degree masked by the actions of 
the opponent in the social interaction test, this limitation is precluded in the sociability chambers. 
However, actual social interactions are not observable in the latter. Likewise, aggressiveness is 
revealed in aggression tests but other types of social interactions are compromised.  
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Box 3. Early developmental stress procedures in rodents and their neuroendocrine effects  

There are three developmental windows during which stressors elicit distinct and life-long changes in 
behavior: the prenatal period, during which stress mediators in the mother can reach the fetus via 
the placenta; the neonatal period, during which parent–pup interactions are particularly critical; and 
the juvenile period, during which the brain is still undergoing substantial developmental changes. The 
effects of exposure to stressors during these periods have been investigated in several rodent 
models (see the figure). 
 
Prenatal stress: this model involves the exposure of dams to stressors (usually physical restraint) 
during pregnancy. The stressors are typically applied several times a day during the last week of 
pregnancy.  
Maternal separation: this model involves the separation of the litter from the dam for more than 3 
hours per day in the two weeks that follow birth.  
Early social deprivation: in this model pups are separated from both the dam and their litter mates.  
Post-weaning social isolation: this model involves the isolation rearing of subjects from weaning until 
early adulthood.  
Early subjugation: this model consists of repeated defeats of a young rat or mouse (typically between 
postnatal days (PND) 28-42) by an aggressive adult male. 
Peripubertal stress: this model involves the exposure of a young rat or mouse (typically between 
postnatal days 28-42) to a variety of non-social stressors.  
 
Each of these procedures ‒ which are typically administered in an unpredictable and uncontrollable 
manner ‒ increases glucocorticoid production acutely (except social isolation), but their long-term 
effects on the hypothalamic-pituitary-adrenal (HPA) axis differ (see the figure; arrows indicate HPA-
axis function in adulthood for early stressors, and in non-stress periods for adult stressors). Prenatal 
stress, maternal separation and post-weaning social isolation lead to increased HPA-axis activity 
(either or both under basal conditions and in response to stress) in adulthood65, 196, 197. By contrast, 
early deprivation, early subjugation and peripubertal stressors lead to decreased HPA-axis activity in 
adulthood35, 39, 64, 66. The differences in the long term effects induced by the maternal separation and 
early deprivation models depend only on the social context of stress administration (that is, whether 
maternally separated animals remain with peers or isolated)198. 
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Box 4. Stress, cell adhesion molecules and the balance excitation/inhibition (E/I)  
Stress-induced changes in social behaviors involve a reduction in specific cell adhesion molecules that 
play key roles in the remodeling of neural circuits, synaptic function and in the balance between 
neural excitation and inhibition. 

The neural cell adhesion molecule (NCAM) is down-regulated by chronic stress in the 
hippocampus and prefrontal cortex199 [figure, part a]. Mice with a forebrain-specific NCAM deletion 
display increased vulnerability to the development of aggressive behaviors when repeatedly exposed 
to uncontrollable stressors200.  

A reduction in nectin-3 participates in structural and functional alterations that occur in the 
hippocampus following stress108, including reductions in social exploration and social recognition14. 
Although the hippocampus is not classically included among the brain regions that are at the core of 
the social brain, it exerts direct and indirect influences on the brain structures that control social 
behaviors201. Hippocampal expression of nectin-3 is reduced following chronic restrain stress in rats 
and was implicated in the induced. Down-regulation of nectin-3 by chronic stress involves proteolytic 
cleavage by matrix metalloproteinase MMP-9, which is elicited through NMDA receptor activation14 
[figure, part b].  

Neuroligins (NLGNs) are involved in the regulation of the neural excitation/inhibition (E/I) 
balance and social behaviors202. NLGN-1 has a key role in the functioning of excitatory synapses and 
NLGN-2 has a similar role at inhibitory synapses202. Alterations in the neural E/I balance203,204 are 
believed to underlie social deficits in psychiatric disorders, and chronic stress was shown to lead to 
an increase in the E/I balance205,206,207 in the hippocampus of rodents. Chronic stress reduces NLGN-2, 
but not NLGN-1, expression throughout the hippocampus in parallel with decreased sociability and 
increased aggression in rats13 [figure, part c]. Hippocampal overexpression of NLGN-2 reduced 
aggressive behavior in rats208.  
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Box 5. Social buffering of stress in rodents: effects and mechanisms 

Social interactions can protect individuals from exerting exaggerated physiological stress responses 
to challenging situations, and consequently prevent the development of stress-related 
pathologies209. Although this phenomenon is well-known in humans, several studies have confirmed 
its existence in animals and have started searching for the underlying neurobiological mechanisms. 
Oxytocin’s actions in the brain reduce stress-induced corticosterone release and anxiety behavior in 
rodents210 and oxytocin was also shown to be a key player in the social buffering of stress. Oxytocin 
release within the paraventricular nucleus of the hypothalamus, triggered by mating, mediated 
mating-induced anxiolytic behavior in male rats211. Oxytocin release that was independent of mating 
was involved in the buffering of stress-induced increases in anxiety-like behaviors and circulating 
corticosterone that occur in female prairie voles if the male partner is present212. Furthermore, social 
buffering in rats was also shown to protect from the development of alterations in social interactions 
that otherwise emerge following stress exposure213. 
Social buffering by mothers and peers can also protect against effects induced by early-life stress. For 
example, rat pups deprived of their mother’s presence for a few hours have a fearful phenotype in 
adulthood, but only if they were also isolated from peers214. Moreover, mother-infant interactions 
are essential determinants of a pup’s corticosterone responses to stressful stimuli during early life 
and influence the extent to which early-life stress affects behavior and emotionality in adulthood215, 

216. In infants, changes in cortical synchrony (i.e., the level of synchronization of neural oscillations at 
particular frequencies, a fundamental mechanisms for enabling coordinated neural activity and 
essential for brain development) may be modulated by maternal contact217, and this might be a 
mechanism through which mother-infant interactions can affect circuit development.   
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Glossary 

Stress response: The activation of coordinated neurophysiological responses in the brain and 
periphery – i.e., sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA) axis – to 
restore homeostasis disturbed by environmental demands or ‘stressors’. 

Stressors: Noxious stimuli eliciting a stress response. 

Behavioral agitation: Rapid switches from one behavior to the other, included running around the 
perimeter of the cage, jumping, repeated self-grooming, and/or performing repeated, stereotypy-like 
behaviors. 

Offensive ambiguity: Increased aggression against small, but decreased aggression against large 
opponents, as well as increased defensiveness on the background of increased offensiveness. 

Agonistic behavior: Any social behaviour related to fighting. It includes threats, displays, retreats, 
placating aggressors, and conciliation. 

Antisociality: Agonistic behaviors that brake evolutionarily-shaped behavioral "rules" that limit 
dangerous forms of aggression. It includes excessive levels and displaced targeting of attack and 
deficient social communication. 

Epigenetic mechanisms: Changes in gene expression that do not arise from changes to the DNA 
sequence and that include alterations in DNA methylation, histone modifications, and noncoding 
RNAs (microRNAs and long noncoding RNAs). 

Behavioral economics: A research field that investigates social behaviors by applying economic 
games to participants that are asked to take decisions that will have an impact on the payoffs 
received by other player/s and themselves. 

Conspecifics: Individuals of the same species 

Social defeat: Losing and aggressive encounter, which is behaviorally identified by submissive 
postures shown in response to offense by the winner and by the avoidance of social contacts and 
aggression. 

Instrumental aggression: Premeditated aggressive action that has a specific goal e.g. material gain. It 
is associated with low emotional and physiological arousal, which mainly characterizes animal 
analogs. 

Extrahypothalamic CRH system: Neurons containing CRH and/or CRH receptors whose cell bodies are 
localized in other brain regions beyond the hypothalamus.  
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Legends for figures 

 
Figure 1. Social behavioral profiles emerging in response to stress exposure.  We can distinguish 
four different patterns of behavioural change that result from exposure to different types of stressor 
at different developmental time points. In profile A (green), acute stressors activate coping 
mechanisms and transiently promote agonistic behavior, including antisocial features. This profile is 
characterized by a transient shift towards aggressiveness (‘fight or flight’ changes). In Profile B (blue), 
prenatal stressors and chronic social defeat in adulthood promote passive coping mechanisms 
(including signs of anxiety and depression) along with a general reduction of social behaviors 
(asociality) without inducing abnormal forms of aggression; In profile C (brown),  maternal separation 
and chronic physical stressors administered in adulthood result in behavioral withdrawal in all 
contexts except for aggression, which increases (these animals are classified as hostile, anxious and/ 
or depressed); In profile D (red), early social deprivation and stress experienced during the juvenile 
period induce a behavioral profile marked by different signs of antisociality. These animals are 
characterized by abnormal forms of aggression and model-dependent changes in other behaviors. 
PS, prenatal stress; MS, maternal separation; ED, early deprivation; ES, early subjugation; pPS, non-
social peripubertal stressors; pwSI, post-weaning social isolation; CHphS, chronic physical stress; 
CHsS, chronic social defeat stress; AcS, acute stress.  Horizontal arrows mean no changes.  
 
Figure 2. The social brain in humans and animals. The left-hand panel illustrates the brain regions 
that have become known as the ‘social brain’ in humans as a result of neuroimaging studies. The 
right-hand panel depicts areas that constitute the “aggressive brain” in rodents on the basis of 
stimulation, lesion, and immunocytochemical studies79, 81, 109. Although the techniques employed in 
identifying these brain aras were different, and the behaviors that they control are overlapping but 
distinct, similarities between the identified brain regions involved in the social brain in humans and 
the aggressive brain in rodents are noticeable. arrows, the proposed flow of information between 
areas; brackets; modulating inputs affecting multiple brain sites; VTA, ventral tegmental area; nACC, 
nucleus accumbens; vPALL, ventral pallidum; PAG, periaqueductal gray; 5-HT, serotonin, DA, 
dopamine; AVP, vasopressin, OT, oxytocin). 
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