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Abstract This paper presents and applies a novel shape op-
timization approach based on the Level Set description of
the geometry and the eXtended Finite Element Method (X-
FEM). The method benefits from the fixed mesh work us-
ing X-FEM and from the curves smoothness of the Level
Set description. Design variables are shape parameters of
basic geometric features which are described with a Level
Set representation. The number of design variables of this
formulation remains small whereas global (i.e. compliance)
and local constraints (i.e. stress) can be considered. To il-
lustrate the capability of the method to handle stress con-
straints, numerical applications revisit the minimization of
stress concentration in a 2D filet in tension which has been
studied previously by Pedersen in (27). Our results illustrate
the great interest of using X-FEM and Level Set description
together. A special attention is also paid to stress computa-
tion and accuracy with the X-FEM.

Keywords Shape optimization · Topology optimization ·
X-FEM · Level set

1 Introduction

Minimizing stress concentrations has been the topics of
many works in structural optimization. Reducing stress con-
centrations and stress intensity factors or controlling the
stress failure criteria is essential in mechanical engineer-
ing design (see for instance Ref. (29)). Very early structural
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optimization techniques have been identified as a powerful
and rationale tool to support the engineering task in finding
designs with high stiffness and strength. While sizing vari-
ables bring a rather limited improvement of stress concen-
tration factors, shape optimization can substantially increase
the strength of the design by modifying the boundaries of
the structures. The reader can refer to the two famous re-
view papers by Ding (12) or Haftka and Grandhi (17) and the
references cited therein. Among many papers one can men-
tion the contributions by Bennet and Botkin (7), Braibant
and Fleury (8), Pedersen and Laursen (24), which proposed
several applications of shape optimization to reduce stress
concentrations and failure criteria.

Following the impetus initiated by the work of Bendsøe
and Kikuchi (3), a very important amount of research has fo-
cused on topology optimization. As topology optimization
is formulated as an optimal material distribution, topology
optimization introduces a very large number of design vari-
ables so that most of the works consider only global or inte-
gral objective function with a single volume constraint. Due
to the large number of restrictions to be considered, works
including stress constraints are rather limited (see for in-
stance Duysinx and Bendsøe, (13) and Pereira et al. (28),
Allaire et al. (2)). Fortunately for a single load case, Peder-
sen in Ref. (26) showed that compliance minimization leads
to a good improvement of stress concentration. However for
multiple load case, unequal stress constraints or multi ma-
terial problems it is known (see for instance Rozvany (30))
that there is no guarantee that optimum designs for stiffness
and strength are the same and the stress constraints have to
be introduced in the design problem formulation.

While topology was experiencing a very spectacular suc-
cess in industrial applications, shape optimization has been
more difficult to apply in industrial environment. Practically,
one major advantage of the optimal material distribution for-
mulation is to be able to work on a fixed regular mesh, while
shape optimization is forced to struggle with difficult prob-
lems related to mesh distorsion, automatic mesh regenera-
tion problems, finite element errors, etc. Moreover a major
technical problem also stems from the sensitivity analysis
that requires the calculation of the so-called velocity field
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because of the moving mesh and it affects the complexity
and cost of the sensitivity analysis. It turns out that shape
optimization remains generally quite fragile and delicate to
use in industrial context.

In order to circumvent the technical difficulties of the
moving mesh problems, a couple of researches have tried to
apply the fixed mesh principle to shape optimization. Let’s
mention the use of fictitious domain approach by Haslinger
and co-authors as in Ref. (10), the fixed grid finite elements
by Kim et al. in Ref. (18) or more recently the projection
methods as in Norato et al. (20). The present work relies
on the novel eXtended Finite Element Method (X-FEM) that
has been proposed as an alternative to remeshing methods
(see Ref. (19) or (5) for instance). The X-FEM method is
naturally associated with the Level Set proposed by Osher
and Sethian (Ref. (23)) description of the geometry to pro-
vide a very efficient treatment of difficult problems involv-
ing discontinuities and propagations. Up to now the X-FEM
method has been mostly developed for crack propagation
problems (19), but the potential interest of the X-FEM and
the Level Set description for other problems like topology
optimization was identified very early in Belytschko et al.
(6), while the advantages of the Level Set method in struc-
tural optimization was clearly demonstrated by Wang et al.
(34) or Allaire et al. (1).

In Ref. (14), the authors see the X-FEM and the Level
Set description as an elegant way to fill the gap between
topology and shape optimization and the method can be
qualified as generalized shape optimization as it is based
on smooth boundary descriptions while allowing topology
modifications as holes can merge and disappear. X-FEM en-
ables working on a fixed mesh, as in topology optimization,
removing the technical difficulties related to the mesh and
velocity field management from the formulation. The op-
timization formulation has the advantage of using a small
number of design variables related to the shape parameters
of geometric model of the structure described in Level Sets
entities, while constraints can be either global (compliance,
volume) or local (stresses) responses as in shape optimiza-
tion.

The work wants to demonstrate that stress constraints
can be considered efficiently when using X-FEM and not
only compliance or energy functions. To this end the paper
illustrates the capabilities of the methodology to minimize
stress concentration factors in a well known family of bench-
marks coming from shape optimization. The example of 2D
filets has been selected because of the numerous published
results for this test case.

The layout of the paper is organized as follows. At first in
section 2 the Extended Finite Element Method is presented
for cracks, bi material and void. A special attention is also
paid to stress computation and accuracy with the X-FEM.
Then, section 3 summarizes the Level Set representation and
its combination with X-FEM. In section 4 the formulation
of optimization problem is presented whereas the sensitivity
analysis is addressed in section 5. Finally in section 6, 2D
filet stress concentration minimization problems (inspired

by Ref. (27)) are used to illustrate optimization strategy us-
ing X-FEM and Level Set when stress constraints are con-
sidered.

2 The eXtended Finite Element Method

The eXtended Finite Element Method (X-FEM) (19; 5) has
been firstly introduced to study propagating cracks in me-
chanical structures. The method has obtained so promising
results in fracture mechanics that some authors have im-
mediately foreseen the opportunities of applying X-FEM to
many kinds of problems in which discontinuities and mov-
ing boundaries have to be modeled. As exemple publications
we can mention Belytschko et al. (5) who applied the X-
FEM to the modelization of composite fibre orientation in
a micro-structure, Chessa et al. (9) who studied the case of
two phase fluid problems, and recently Guetari et al. (16)
who simulated material removal in machine tooling prob-
lems using X-FEM formalism.

2.1 Principle of the method

In the classical Finite Element Method, modeling disconti-
nuities inside an element is not possible because the shape
functions are required to be at least C1. Therefore, if discon-
tinuities are present in the model, these discontinuity bound-
aries have to coincide with the element mesh boundaries and
they require a remeshing process each time the singularity
evolves in the structure.

The X-FEM overcomes this restriction by adding to the
classical FEM approximation some particular discontinuous
or singular shape functions. Hence, these additional shape
functions, directly related to the nature of the discontinu-
ity, allow to include geometric boundaries, cracks, material
or phase changes that are not coincident with the mesh and
avoid the expensive and delicate mesh generation.

2.2 Modeling cracks

In presence of cracked structures, the displacement is dis-
continuous. Hence, modeling the displacement field calls for
discontinuous shape functions. The classical finite element
approximation used is then extended to embed the discon-
tinuous shape function as in the following equation:

u(x) = ∑
i

uiNi(x)+∑
j

a jN j(x)H(x) (1)

where Ni(x) are the classical shape functions related to nodal
degrees of freedom ui. The N j(x)H(x) are the discontinu-
ous shape functions constructed by multiplying a classical
shape function N j(x) with a Heaviside function H(x), which
is equal to +1 on one side of the crack and −1 on the other
side (see Fig. 1) .
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Fig. 1 Representation of the extended shape function N1(x)H(x) of
node 1 for a cracked element

Note that this set of extended shape functions are only
supported by the enrichment degrees of freedom a j . More-
over, only the elements near the discontinuity usually sup-
port extended shape functions whereas the other elements
remain unchanged (i.e. classical FE). The modification of
the displacement field approximation does not introduce a
new form of the discretized finite element equilibrium equa-
tion but rather leads to an enlarged problem (see Ref. (19)
for details):

K ·q = g ⇔

[

Kuu Kua

Kau Kaa

][

u
a

]

=

[

f ext
u

f ext
a

]

(2)

As the elements can now present discontinuous shape func-
tions, the numerical integration scheme has to be modified in
order to take care of the discontinuity. The implementation
used here is similar to the one described in Ref. (4). In or-
der to use the classical Gauss numerical integration schemes,
the elements embedding a singularity are divided into sub-
triangular mesh coincident with the discontinuity boundary.
Over this working mesh, a quadrature integration rule can
be applied (see Fig. 9). The procedure is described in more
details in section 2.5.

2.3 Modeling material-material interfaces

When an interface between two different materials is present,
the displacement field is continuous but the strain field is
discontinuous. Therefore, in order to model this kind of dis-
continuity inside an element, one have to add special shape
functions that contain a discontinuity of the derivative of the
displacement field. According to Ref. (9) and (31), one can
use the following expression to discretize the displacement
field:

u(x) = ∑
i

uiNi(x)+∑
j

a jN j(x)(
∣

∣φj

∣

∣−|φ(x)|) (3)

where φj is the distance from the node j to the interface and
φ(x) is the distance of the current point x to the interface.

In order to illustrate this approximation, let’s consider
the simple problem of a bimaterial beam of Young modulus
E1 = 1 and E2 = 2 subject to a traction force F = 1 along the
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Fig. 2 Representation of the shape function of node 1 for a bi-material
triangular element

x axis (Fig. 3). With classical finite elements approximation,
this very simple test case requires a minimum of two finite
elements to be modeled. Within the X-FEM framework, the
analysis of the problem can be carried out with a single X-
FEM. Using the enrichment of the shape functions proposed
in eq. (3), the axial displacement field of the X-FEM rod is:

u(x) = u1(1−
x

L
)+u2(

x

L
)+a1(1−

x

L
)x+a2(

x

L
)x, (4)

x ∈ [0,L/2]
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x

L
)+u2(

x

L
)+a1(1−

x

L
)(L−x) (5)
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Fig. 3 Geometrical model
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Different enrichment shape functions can be used to
model a bimaterial interface (see Ref. (31) for more details),
however, the displacement field of eqn. (4) and (5) has the
particular and attractive advantage of zeroing on the two end
nodes, which prevent from connecting the degree of freedom
a j to other elements.

2.4 Modeling material-void interfaces

The modeling of material-void interfaces with X-FEM (31)
differs only marginally from the cracked structure case (i.e.
the discontinuous field is the displacement). For void inclu-
sions and holes, the displacement field is now approximated
by:

u(x) = ∑
i

uiNi(x)V (x) (6)

where

V (x) =

{

0 if x ∈ material zone
1 if x ∈ void

(7)

One can note that this function V (x) models perfectly the
singularity in the displacement field as the function V (x)
cancels the displacement field in the void (see Fig. 5).

Boundary

3

2

1

Fig. 5 Representation of the shape function of node 1 on a cut element

Modeling holes with the X-FEM is a very appealing
method for the shape optimization but also for the topology
optimization as no remeshing is needed and no approxima-
tion is made on the nature of the voids conversely to nu-
merous methods as the power penalization of intermediate
densities method used (SIMP) in which void is replaced by
a very weak material. However, as we will note in section
2.5, the X-FEM method requires more complicated integra-
tion procedure and a careful attention has to be paid to stress
and sensitivity computation.

2.5 Implementation of X-FEM

In the case of material-void interfaces, elements are of only
three types: solid ones, void ones and cut ones. The void el-
ements have all their nodes lying fully in the void. These

elements (red ones in Fig. 6) are then consequently removed
from the problem and have no contribution to the stiffness
matrix. Their nodal degrees of freedom are eliminated from
the system of equations when assembling the global stiff-
ness matrix. The filled elements (green ones in Fig. 6) with
all nodes lying in the solid domain are treated as normal ele-
ments whereas the partially filled elements (blue ones in Fig.
6), which have a mix of void and solid nodes require purely
an X-FEM.

Fig. 6 Representation of the different element type

Fig. 7 Representation of the model with cut and filled element only

Fig. 8 Representation of the model with the sub-triangles
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2.5.1 Numerical integration of the stiffness matrix

First of all when an X-FEM element is to be integrated, we
first have to detect which part of the element is filled with
material in order to determine if the solid part is a triangle
or a quadrangle. As one can see in section 3 devoted to the
Level Set description of the geometry, this is easily done
when using a Level Set Description.

For X-FEM elements a major issue is the computation
of the stiffness matrix. Because of the strong discontinuity
of the shape functions that takes place at the void solid inter-
face, one can observe that using a quadrature rule (e.g. Gauss
points) would lead to a totally unsatisfactory results even
when increasing dramatically the number of Gauss points.
At first one has to notice that because of the zero displace-
ment field in the void domain (see eqn. 6), the void part
of the element does not contribute to the stiffness matrix.
Thus the computation is restricted to an integration proce-
dure solely over the solid sub-domain of the element(see Fig.
8). To integrate over the solid part of the element domain, we
divide it into a partition of triangles in 2D (or tetrahedrons
in 3D) and use a classical Gauss quadrature over each of the
sub-triangles. As the field is linear, Gauss quadrature rule is
exact on each sub-triangles. The procedure can easily be de-
veloped either for triangular or quadrangular sub-domains.
The main idea is to use the center of gravity to support a
new integration mesh. The Fig. 9 illustrates the domain sub-
division of a cut element in order to integrate it. One has
to notice that the sub-triangles are only a background mesh
only used for the integration and that the size of the prob-
lem is not augmented regarding to a classical finite element
model.

Attention has still to be paid to two kinds of numeri-
cal problems that can occur with the X-FEM modeling of
void. The first one happens when the remaining solid part
of the element is a quadrangle that is nearly degenerated
into a triangle. The case is illustrated in Fig. 10. Hence, this
quadrangle could be divided into four triangles, but one of
these triangles would be very ill conditioned and would in-
troduce a rank deficiency. Thus, it is better to consider this
solid domain of the element as a triangle and divide it into
three triangles. The error is very limited and the precision
is good, which would never be achieved with a degenerated
sub-triangle .

The second kind of numerical error occurs when the area
of the solid part becomes very small regarding to the area of
the supporting element (Fig. 11). One can observe that in
this case the element becomes very stiff and the structural
stiffness matrix becomes somewhat not so well conditioned.
This explains the reason why some authors (for example see
Ref. (11)) do not include these elements and eliminate them
from the model when building the stiffness matrix. In this
study we could circumvent the problem thanks to a scaling
procedure of the stiffness matrix and we could not notice
any degradation of the precision in the displacement field.

void

solid Boundary

(a) Sub-division of a quadrangular ele-
ment and Gauss points

boundary

void

solid

(b) Sub-division of a quadran-
gular element and Gauss
points

Fig. 9 Sub division of elements

Especially compliance value has always been in very good
agreement with FEM that is taken as a reference solution as
shown in Ref. (32). However we could observe that these
very small solid elements are the source of a more important
difficulty resulting in a very high overestimation of the local
stress. This is a crucial issue in this study in which we want
to minimize the stress level. The problem is explained in the
next section.

Fig. 10 Quadrangle degenerated into a triangle

2.5.2 Estimation of stresses

A test case illustrates the problem of the overestimation of
the stress when the area of the solid part becomes very small
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Fig. 11 Small solid triangle

regarding to the area of the supporting element. The prob-
lem is a classical quarter plate with a hole under an uniaxial
load as illustrated in Fig. 12 and Fig. 13. The Fig. 12 shows
the stress component along the x (computed at Gauss point)
obtained with a FEM model, whereas the second Fig. 13.
illustrates the same result given by an X-FEM analysis.

OOfelie GraphOOfelie Graph
sigma_xsigma_x
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0.497 0.497 
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1.65  1.65  
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Fig. 12 FEM stress distribution

As we can remark, a large error occurs on the maxi-
mum stress for the X-FEM model. This overestimation of
the stress level is due to a small solid element as pointed
out in the zoomed part of Fig. 13. This is even more clear
when we consider the following experiment. If the bound-
ary of the circle is slightly modified (perturbation of 10−4 of
the radius circle) in order to remove the small cut element, it
is seen that the agreement between the results obtained with
the two methods become excellent again.

To prevent the phenomenon, one can resort to the fol-
lowing strategy:

– Eliminate elements that have a too small solid part from
the model when building the stiffness matrix (see (11));

– Move the node on the boundary in order to remove the
small elements;

– Post process the stress results and eliminate stresses
when the ratio of the solid area to the supporting area
is too low;

OOfelie GraphOOfelie Graph
sigma_xsigma_x
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Fig. 13 X-FEM stress over estimation with a small solid element
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Fig. 14 X-FEM stress estimation without small solid elements

– Compute nodal stresses using a smoothing procedure as
in Finite Element error estimation.

The first and second ones sound a bit tricky, while the
fourth solution is obviously the best one. Because this solu-
tion was not available in our computer code, we preferred
here the third solution because of it simplicity since it is just
a matter of post-processing the results.

3 The Level Set Description

The low performances generally obtained with the shape op-
timization is directly related to the fact that no deep bound-
ary or topological changes such as creation or fusion of holes
is allowed with an explicit parametric CAD representation.
This restriction is overcome when using an implicit repre-
sentation based on the level Set description.

The Level Set method, introduced by Osher and Sethian
in Ref. (23), is a numerical technique first developed to track
moving interfaces in physics problems. It is based upon the
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idea of implicitly representing the interfaces as a Level Set
curve of a higher dimension function ψ(x, t). The boundaries
of the structure are then conventionally represented by the
zero level i.e. ψ(x, t)=0 of this function ψ, whereas the filled
region is attached to the positive part of the ψ function (see
Fig. 15).

If one knows also the parametric expression of the curve
γ, a corresponding Level Set can be easily constructed using
the signed distance function to the curve γ:

ψ(x, t) = ± min
xγ∈γ(t)

∥

∥x−xγ
∥

∥ (8)

Level Sets can be easily combined using Boolean oper-
ations via min or max operators. This allows to create new
entities and to model complex geometries.

3.1 Level Set and X-FEM

Applied to the X-FEM framework, the Level Set is defined
on the structural mesh and a geometrical degree of freedom
representing its Level Set function value is associated at each
element node. Inside the elements, the Level Set is interpo-
lated with the shape function used for a finite elements ap-
proximation:

ψ(x, t) = ∑
i

ψiNi(x) (9)

The sign of ψ is then used to know whether or not a node
lies in the material domain. It is also used to give a direct
access to the type of the elements (solid, void or cut) and to
the cut edges of the finite elements:

– a triangle with 3 positive (negative) values of the Level
Set if filled with material (void);

– a triangle which has both positive and negative values is
cut.

ψ(x, t) > 0 ⇔ Solid

ψ(x, t) < 0 ⇔Void
(10)

Besides these advantages, the Level Set can also present
some drawbacks. For instance in optimization, the dis-
cretization approximation of eqn. (9) interpolates linearly
the Level Set when first order finite element are used. As a
consequence, the representation of the boundaries can over-
estimate or underestimate the surface (volume) of the struc-
ture. Hence, the estimation of the surface depends on the
number of cut elements, on the position of the inteface in-
side the element and of course on the mesh refinement. This
error can causes some ”zigzagging” problems during opti-
mization if one uses a very coarse mesh and a constraint or
objective function related to the area (volume) as pointed out
in Ref. (33).

4 Formulation of optimization problem

The formulation of the considered optimization problem is
similar to a shape optimization problem, but its solution is

OOfelie Graph

0.755 

OOfelie Graph
Level Set

-0.274

-0.103

0.0688

0.240 

0.412 

0.584 

(a) Level Set representation of NURBS curve

OOfelie GraphOOfelie Graphuu

0.000 0.000 

5.30e-0065.30e-006

1.06e-0051.06e-005

1.59e-0051.59e-005

2.12e-0052.12e-005

2.65e-0052.65e-005

3.18e-0053.18e-005

(b) Displacement of the X-FEM model

Fig. 15 Geometric representation and X-FEM displacement result

greatly simplified thanks to the use of the X-FEM and Level
Set description as no velocity field and mesh perturbation
are needed.

The geometry and the material domains are specified us-
ing Level Sets description of the boundaries. The positive
part of the Level Set represents material domain while the
negative part is the void. To describe the structural geometry
the user has a library of basic geometric features (in Level
Sets) that can be combined to create almost any structural
geometry. The library geometric features are circles, ellipses
and all polygons. The design variables are chosen among the
geometric parameters of these features.

The optimization problem aims at finding the best shape
for minimizing a given objective function while satisfying
mechanical and geometrical design restrictions. The me-
chanical constraints can either be global responses (e.g.
compliance, volume) or local ones such as displacements or
stress constraints.

The number of design variables is generally small as in
shape optimization. However the number of constraints may
be large if many local stress restrictions (e.g. stress con-
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straints) are considered. Nonetheless, large scale problems
as in topology optimization are avoided.

The design problem is cast as a general constrained op-
timization problem:

min
x

g0(x)

s.t.: g j(x) ≤ gmax
j j = 1 . . .m

xi ≤ xi ≤ xi i = 1 . . .n

(11)

The solution to this problem is obtained using the so-called
sequential convex programming. At each iteration, the X-
FEM analysis problem is solved and a sensitivity analysis
is performed. The solution of the optimization problem is
then found by using a CONvex LINearization approxima-
tion scheme of each constraint functions (see (15)). The so-
lution becomes the new design and the procedure is repeated
until convergence.

Because of the X-FEM characteristics, the geometry has
not to coincide with the mesh and the shape optimization
problem is carried out on a fixed mesh. One works here in an
eulerian approach and not in a lagrangian approach. This cir-
cumvents the mesh perturbation problems of classical shape
optimization. Sensitivity analysis can be performed without
considering a velocity field. The present formulation is then,
up to a certain point, simpler. However, some technical dif-
ficulties can be encountered if a finite difference or a semi-
analytical scheme is used for sensitivity analysis. Basically,
the problem is that the perturbation must not change the
number of degrees of freedom of the X-FEM stiffness matrix
while a finite perturbation of the Level Set could introduce
new cut element and new nodes into the formulation.

The Level Set approach is very convenient to modify the
geometry because the Level Sets (and so the holes) can pen-
etrate each other or disappear. Creation of new holes is more
problematic since it leads to a non smooth problem. Topo-
logical derivatives have then to be used for a rigorous treat-
ment of the problem (see ref. (21) for instance). This capa-
bility has not been implemented in this study.

5 The sensitivity analysis method

Similarly to classical shape optimization, the sensitivity
analysis of the various responses (such as compliance, dis-
placements, stresses, . . .) is carried out using a semi-analytic
approach. The derivatives of stiffness matrix (K) and load
vectors (f) are calculated by finite differences with respect
to a small perturbation δx of Level Set parameters:

∂K

∂x
≃

K(x +δx)−K(x)

δx
(12)

∂ f

∂x
≃

f(x +δx)− f(x)

δx
(13)

These derivatives are then used to compute the sensitivity of
the various objective functions. For the compliance C, the
sensitivity (in the case of invariant loading forces) is then

given by:

∂C

∂x
= −

1

2
uT ∂K

∂x
u (14)

Now, if the objective function or constraint involves the
stresses of the problem, the sensitivity of this response is
needed. Two basic methods are available to get the deriva-
tive of the stresses. The first one, which has the drawback
of forcing us to know explicitly the tension matrix, consists
in deriving the expression of the stresses (σ) in all the ele-
ments:

σ = Tjuj = HBju (15)

where H is the Hooke’s matrix, Bj the matrix of the derived
shape functions of the element j and Tj the tension matrix of
element j. The second method is based on the computation
of the stresses related to the perturbed state x +δx by using
the expression of the displacement sensitivities:

σ(x) = HBju(x) (16)

u(x +δx) ≃ u(x)+
∂u

∂x
δx (17)

σ(x +δx) ≃ HBju(x +δx) (18)

∂σ
∂x

≃
σ(x +dx)−σ(x)

∂x
(19)

This procedure reduces the sensitivity of the stresses as a
function of the displacement derivative. In the present pa-
per, the implementation is performed in an industrial code
OOFELIE for which the knowledge of tension matrix Tj is
not available for any element. Moreover for the maintenance
of industrial code it is often preferred to assume that sensi-
tivity analysis is made less dependent upon element imple-
mentation. Therefore, the second method has been chosen
and implemented.

OOfelie GraphOOfelie Graph

Fig. 16 X-FEM Mesh for sensitivity analysis validation
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The quarter plate with an elliptical hole and non uniform
bi-axial loading (Fig. 16) serves as a tool for the valida-
tion of the approximated semi-analytical sensitivity analy-
sis that has been used. Table 1 gives the sensitivities of the
maximum stress calculated by finite differences and semi-
analytical approach for different combinations of the design
variables a and b, the major and minor axes of the elliptical
hole. The results were obtained with a relative perturbation
of the design variables of δ = 10−4. The table presents the
quality of the proposed semi-analytical approximation.

Table 1 Validation of semi-analytical sensitivity analysis approxima-
tion.

Variable Finite difference Semi-analytical Relative error

a = 0.41 -213.2172401 -213.2279160 0.005%
b = 0.41 2075.6012932 2074.0930198 0.073%

a = 0.55 -51.9288917 -51.888882944695 0.077%
b = 0.55 5019.8392594 5003.5389826985 0.32%

In the classical shape optimization, the computing com-
plexity of the stiffness matrix sensitivity is due to the mod-
ifications of the mesh associated to the perturbation δx and
to the velocity field calculation. In the present X-FEM based
approach, one has not to deal with the mesh perturbations
as one works on a fixed grid. However, this method exhibits
a different drawback with respect to the general shape op-
timization as, with X-FEM, the number of elements may
change. Therefore, when Level Set is perturbed in order to
compute the sensitivity, there is a possibility that previously
empty element become partly filled with material. As a con-
sequence, the number of degrees of freedom change and the
dimension of the stiffness matrix is modified between the
Level Set perturbation which forbid to compute the stiffness
matrix derivative by finite difference (eqn. 12). The strategy
that is implemented presently (see Ref. (33) and (14) for de-
tails) to circumvent the difficulty is the following. As one has
only the displacement (ui) for the elements that are present
in the reference configuration, only these elements are taken
into account while the contributions coming from the new
partly filled elements are ignored. Hence, no new elements
are introduced and the size of the stiffness matrix remains
unchanged. Of course, the ultimate solution to the problem
should resort to a fully analytical sensitivity of the stiffness
matrix. However, this would be rather restrictive for indus-
trial applications.

6 Numerical applications

The X-FEM method for the modeling of material-void dis-
continuity and its Level Set description have been imple-
mented in an object oriented (C++) multiphysics finite ele-
ment code, OOFELIE that is commercialized by Open En-

gineering (information available on the web site (22)).

In this software, various mechanical responses can be
chosen as objective functions and design restrictions that is:
compliance and potential energy, all stress components and
Von Mises equivalent stress, displacements and geometric
results. Presently, the implementation of the X-FEM method
is only available in 2-D with a library of both first degree
quadrangle and triangle elements. The Level Set description
can be defined in different ways. They can be constructed
classically from functions (circle, quadrangles, ellipses, ...)
or from a set of points which are interpolated by a NURBS
curve. The CONLIN optimizer by C. Fleury described in
Ref. (15) has been coupled in the OOFELIE environment to
realize the numerical applications.

6.1 The 2D-filet in tension

The numerical applications are inspired by the famous prob-
lems of stress concentration factors evaluation as in (29).
Pedersen in Ref.(27) has stated this problem as an optimiza-
tion problem. The problem consist in studying the effect of
the connection zones in the following 2D structure and re-
ducing the stress concentration factor.

l2

l3

l4

l1

lf

Fig. 17 2D filet model in tension

The following geometry parameters are fixed to the val-
ues:

– l1=30mm, l4=60mm, l2=30mm, l3=90mm;
– l f =30mm for section 6.1.1 and 6.1.2 and is a variable for

the section 6.1.3.

The plane stress state is assumed and a uni-axial stress
field is applied σx=1. The material properties associated are:
Young’s modulus E = 1N/m2, Poisson’s ration ν=0.3. Due
to symmetries, only a quarter part is studied.

6.1.1 Super circular connection

As P. Pedersen pointed out in Ref.(27), a circular connection
to a straight domain is not the best solution and it is better to
replace it by a super-circular connection as defined by:

x
η
1 + x

η
2 = r (20)
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(a) Mesh used for all the test cases

OOfelie Graph
sigma_x

-0.0216

0.242 

0.506 

0.770 

1.03  

1.30  

1.56  

(b) Initial configuration: η =2, σmax=1.563

Fig. 18 Mesh and X-FEM analysis

Since a parameter is introduced, the goal of the optimization
problem is to find the configuration presenting the minimum
stress concentration:

minmax
i

σ2
ix

(21)

where i is the index of the finite elements. In practice, a multi
objective approach is used by taking into account only the
most critical elements, i.e. the top 10 % of the most stressed
finite elements. No other constraint is prescribed in the prob-
lem except the side-constraint over the variable η which re-
stricts η to the domain 2 ≤ η ≤ 4. The initial configura-
tion, with η=2, presents a stress concentration σmax/σ∞ =
1.56253 with the mesh given in Fig. 18 (8000 degrees of
freedom). The optimum, obtained after ten iterations, pro-
vide a rather limited improvement as the stress concentra-
tion is reduced to the value of σmax/σ∞ = 1.52612 (gain of
2.75%) and an optimum value of η=2.0935 (Fig. 19).

6.1.2 Generalized super circular connection

The previous test case shows that only a minor improvement
can be obtained by using a super circle in comparison to
a normal circle. Therefore, we replace the super circle filet
with a generalized super circle defined as:

x
η
1 + x

ξ
2 = r (22)

OOfelie GraphOOfelie Graph

Iteration nbIteration nb
0.000 0.000 3.00  3.00  6.00  6.00  9.00  9.00  12.0  12.0  15.0  15.0  

Obj FctObj Fct

1.57  1.57  

1.56  1.56  

1.55  1.55  

1.54  1.54  

1.53  1.53  

(a) Evolution of the maximum stress

OOfelie GraphOOfelie Graph
sigma_xsigma_x

-0.0233-0.0233

0.235 0.235 

0.493 0.493 

0.751 0.751 

1.01  1.01  

1.27  1.27  

1.53  1.53  

(b) Final configuration: η =2.09, σmax=1.526

Fig. 19 Optimization with a super circle

The problem is defined as the previous one, however it
handles now two variables, ξ and η which are constrained
between the values 2 and 4. As it can be remarked, the ad-
ditional exponent allows a deepest modification of the filet
curvature which leads to a significant reduce of the stress
concentration of 6.7 % (Fig. 20).

6.1.3 Generalized super ellipse connection

This last test case shows the important effect of the filet
length on the stress concentration. A generalized super el-
lipse is used to define the boundary of the filet:
∣

∣

∣

x1

a

∣

∣

∣

η
+

∣

∣

∣

x2

b

∣

∣

∣

ξ
= r (23)

With an unlimited filet length this stress concentration could
be avoided. Hence, the optimization variable a is constrained
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OOfelie GraphOOfelie Graph

Iteration nbIteration nb
0.000 0.000 5.00  5.00  10.0  10.0  15.0  15.0  20.0  20.0  25.0  25.0  

Obj FctObj Fct

1.57  1.57  

1.54  1.54  

1.51  1.51  

1.48  1.48  

1.45  1.45  

1.42  1.42  

(a) Evolution of the maximum stress

OOfelie GraphOOfelie Graph
sigma_xsigma_x

-0.0285-0.0285

0.214 0.214 

0.458 0.458 

0.701 0.701 

0.944 0.944 

1.19  1.19  

1.43  1.43  

(b) Final configuration: ξ =3.259, η =2.09, σmax=1.42938

Fig. 20 Optimization with a generalized super circle

between the values 20 and 60 (initial value at 30). The other
variables are constrained between 2≤ ξ ≤4 and 2≤ η ≤4.

As expected, the optimization reaches the same ξ and
η obtained with the previous application and maximizes the
value of the parameter a representing the filet length. The
stress concentration has been reduced by 22% with respect
to the previous case and nearly 30% to the initial circular
filet (Fig. 21).

7 CONCLUSIONS

This work has presented an novel approach for shape opti-
mization based on the Level Set description and the X-FEM
for the structural optimization. This new approach takes
place between shape and topology optimization as it pos-

OOfelie GraphOOfelie Graph

Iteration nbIteration nb
0.000 0.000 3.00  3.00  6.00  6.00  9.00  9.00  12.0  12.0  15.0  15.0  

Obj FctObj Fct

1.61  1.61  

1.51  1.51  

1.41  1.41.  

1.31  1.31  

1.21.  1.21  

1.11  1.11  

(a) Evolution of the maximum stress

OOfelie GraphOOfelie Graph
sigma_xsigma_x

-0.0275-0.0275

0.163 0.163 

0.354 0.354 

0.545 0.545 

0.736 0.736 

0.927 0.927 

1.12  1.12  

(b) Final configuration: ξ =3.259, η =2.09, a=60,
σmax=1.11809

Fig. 21 Optimization with a generalized super ellipse

sesses the same characteristics of both ones. The X-FEM
method has shown to be very useful as it easily takes ad-
vantage of the fixed mesh work approach of topology op-
timization whereas the smooth curve description from the
shape optimization is preserved. Moreover, void is not ap-
proximated as a smooth material in opposition to the SIMP
method. Contrary to shape optimization, no remeshing pro-
cess is needed in our applications, and only one mesh has
been created and used for all the test cases.

A semi-analytic sensitivity analysis with X-FEM and
Level Set for various responses have been developed and
validated. One issue that has been investigated is the quality
of the X-FEM approximation for stresses. The source of the
problems are the small elements that have only a very low
fraction of their surface filled with solids. These elements



12

leads to large errors in the stress estimation. The estimation
for these elements should not be considered in a rough way,
but rather require special post processing.

The novel shape optimization approach based on the X-
FEM and Level Set description has been illustrated with the
minimization of the stress concentration of a 2D mechanical
structure. It gives encouraging results to study large scale in-
dustrial problems, especially 3-D problems. Other analyses
problems will also be investigated in the future as dynamic
problems and multiphysics (electro-mechanical) problems.

8 Acknowledgments

The authors gratefully acknowledge the support of project
ARC MEMS, Action de recherche concertée 03/08-298
funded by the Communaute Francaise de Belgique.

References

1. Allaire G. Jouve F. and Toader A.M. (2004) Structural optimization
using sensitivity analysis and a level-set method. Journal of Compu-
tational Physics. Vol. 194, Issue 1, pp 363-393.

2. Allaire G., Jouve F. and Maillot H. (2004) Topology optimization
for minimum stress design with the homogenization method. Struc-
tural and Multidisciplinary Optimization Vol. 28, No 2-3, 87–98.

3. Bendsøe M. P. and Kikuchi N. (1988). Generating Optimal Topolo-
gies in Structural Design Using a Homogenization Method, Com-
puter Methods in Applied Mechanics and Engineering, 1988, 71,
197-224.
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