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Abstract. A generic relaxation for stress constrained optimal design problems is
presented. It is accomplished by introducing the stress constrained G closure. For a
finite number of stress constraints, an explicit characterization of the stress constrained
G closure is given. It is shown that the stress constrained G closure is characterized by
all G limits together with their derivatives. A local representation of the set of all G
limits and their derivatives is developed.

1. Introduction. In the absence of stress constraints, a large body of theory has
been developed that facilitates the numerical solution of structural design problems for
multiphase solid structures. References to the literature and overviews of the subject can
be found in [1], [6], [8], [16], and [29]. In addition to designing for structural response,
it is also of central importance to control the stress inside structural components made
from composite materials. Regions of large stresses are most likely to be the first to
exhibit failure during service. The objective of this work is to identify the relaxed design
problem for stress constrained design.

We consider structural elements made from N linearly elastic materials with elasticity
tensors Ai, A2, A3,..., Ajy. The structural domain is a bounded set S7 in R3 with
Lipschitz continuous boundary. A generic point in Q. is denoted by x. The elastic phases
occupy the N subsets f22> ■ • •> &N where Qi U ̂ 2 U • • • U Qn = ft- A particular choice
of component elasticity tensors is specified by the array A = (Ai, A2, A3,..., Ajv). The
local elasticity tensor C(A, x) is piecewise constant and takes the value C(A, x) =
in the ith material. Denoting the indicator function of the ith material by the local
elasticity tensor is written C(A, x) = Xi(x)Ai- Here \i = 1 in the ith material and
zero outside. The design space consists of all partitions of O into Lebesgue measurable
subsets Qi, i = 1,2occupied by the different materials subject to the resource
constraints meas(f2j) < 7j. Here 7\ > meas(f2) and the vector of resource constraints
is written 7 = (71,72, - - - ,7Jv)-
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For a body load f in W~1,2{Sl, R3), the elastic displacement u is the W01,2(fi,R3)
solution of

- div(C(A, x)f(u)) = f. (1.1)
The stress at each point in the composite a is given by the constitutive relation

er(x) = C(A, x)e(u(x)). (1.2)

Here e(u) is the strain tensor given by

e(u )ij = (uij + ujti)/2, (1.3)

where Ui is the ith component of displacement u and Uij is its partial derivative in the
jth coordinate direction. The equilibrium equation (1.1) holds in the weak sense; i.e.,
for every v in Wo'2(f2,R3),

I C(A, x)e(u) : f(v)dx = / f • vdx. (1.4)
J a Jn

The contractions C(A, x)e(u) : e(v) and f • v are given by Cjjki(A, x)e(u),je(v)j.; and
fiVi respectively where repeated subscripts indicate summation.

The design criterion is a function of the elastic field u and is denoted by F(u). The
type of structural design criteria considered here are those associated with the compliance
of the structure given by F(u) = fn f ■ udx or the distance of the displacement from a
desired target displacement u given by F(u) = fn |u - u|2, dx. Both of these functions
are continuous with respect to weak convergence in W12(tt, R3). However, the results
given here arc not restricted to this situation and apply to multi-load design problems or
any design criteria that is continuous with respect to G convergent sequences of designs
[5]. The objective of the design problem is to optimize F(u) over the class of admissible
configurations subject to constraints on the stress. One measure of stress concentration
is given by the sup-norm of the stress field in the composite body. This is denoted by

II M ||oo = esssup|er(x)|, (1.5)

where |<r| = sjo : a. We introduce the prototypical design problem given by

= inf F{ u), (1.6)
Configurations,

meas(f2i )<7 i

subject to
II M Hoc < A', (1.7)

where u is a solution of the equation of state (1.1) and a = C(A.x)e(u). Here K is
a preset tolerance. We point out that the constraint (1.7) is equivalent to the infinite
number of constraints given by

/ Pj(x)\a\2clx < K2 I pj(x)dx, forallpj(x), (1.8)
■hi Jn

for a countably dense set {pj}JL1 °f the nonnegative functions in C°°(f2). From (1.8) it
is clear that a theory for design problems with a finite number of stress constraints given
by

PL = inf F( u), (1.9)
Configurations,

meas(J2j)<7i



STRESS CONSTRAINED G CLOSURE 297

subject to

[ pj(x)|cr|2cfx < K2 / pj(x.)dx, for j = 1,..., L, (1-10)
Jq J ft

is a prerequisite for understanding (1.6).
The design problems stated above are not readily amenable to numerical solution. The

fundamental reason for this is that problems of this type do not possess configurations
for which the infimum in (1.6) and (1.9) are attained; see [15], [19], and [26]. Thus
any approach that seeks to identify optimal configurations is likely to fail. Instead one
seeks to identify minimizing sequences of configurations that approach the infimum in
(1.6) and (1.9). Here the objective is to identify nearly optimal configurations. Methods
developed for this purpose are known as relaxation methods; see [4] and [10]. Here
the original design problem is replaced by a "relaxed version" that is used to identify
minimizing sequences of configurations for the original design problem.

The generic feature of minimizing sequences is the appearance of zones in which in-
finitesimally fine oscillations of material properties occur. This motivates the extension of
the design space to the set of all G limits of sequences of local elasticity tensors associated
with configurations of the component materials; see [17] and [20]. Roughly speaking, a
G limit can be thought of as an elasticity tensor that takes values in the set of effective
elasticity tensors associated with mixtures of the N component materials. This exten-
sion of the design space suffices to produce the desired relaxed problem for optimizing
structural performance in the absence of stress constraints. The extended design space
is referred to as the G closure of the set of local elasticity tensors C(A,x); see [6].

When dealing with stress constrained problems, a strictly smaller extension of the
design space is required. For stress constrained problems, one again extends the space
to include G limits. However, in this context, it is seen that the relaxation is obtained
by the extension over the subclass of configurations for which the stress constraints (1.7)
or (1.10) are satisfied; see Theorem 4.1. This extension of the design space is referred to
as the stress constrained G closure of the set of local elasticity tensors C(A, x). For a
finite number of stress constraints, an explicit characterization of the stress constrained
G closure is given in Theorem 4.2. It is seen that the stress constrained G closure is
characterized by all G limits together with their derivatives. This is used to develop an
explicit version of the relaxed stress constrained design problem; see Theorems 4.3 and
4.4. An explicit upper bound for the stress constrained G closure associated with (1.7) is
presented in Theorem 4.5. The homogenized design problem associated with the upper
bound is given in Theorem 4.6 and its relation to nearly optimal configurations is given
in Theorem 4.7.

In order to characterize the stress constrained G closure, one is obliged to compute
the stress constraints (1.10) for G converging sequences of tensors. The difficulty stems
from the fact that the limit of the stress constraints is not given by the stress constraint
applied to the weak limit. This is due to the lack of continuity that can be expressed as
follows. Given a sequence of stresses {o"n}^_1 converging weakly in L2 to crA/, one has
that

lim [ pj(x)|(j™|2rix > [ pj{x)\aM\2dx, (1-11)
00 Jn Jn
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where equality holds only if {an}^=1 converges strongly in L2 on the support of the test
function pj. In what follows we provide a formula for the limit on the left-hand side of
(1.11). This formula is presented in Theorem 3.1 and is given in terms of derivatives of
the G limit; see Sec. 2, Theorems 2.1, 2.2, and 2.3. It is pointed out that Theorem 2.1
provides an extension of the periodic localization principle [32] to the derivatives of G
limits. Theorems 2.2 and 2.3 are in the spirit of [24] for the local representation of G
limits.

The tool used to establish Theorem 4.5 (the upper bound on the stress constrained
G closure associated with (1.7)) is given by Theorem 3.2. In Theorem 3.2, a lower
bound on the limit inferior of the L°° norms of the stresses associated with G convergent
sequences of elastic tensors is obtained. However, in order to precisely characterize the
stress constrained G closure associated with (1.7), upper bounds on the limit superior of
the L°° norms of stresses associated with G convergent sequences of elastic tensors are
required. The goal of future work will be to establish the necessary upper bounds when
the limit superior of the L°° norms of stresses is finite.

Earlier work [13] addresses the problem of optimal design in the context of thermal
conductivity in the presence of a finite number of mean square constraints on the temper-
ature gradient. As in the present case, the relaxed problem is given in terms of gradients
of G limits. A related problem in which there has been recent development appears in
the context of optimal design for multiphase conductors made from isotropic materials.
The goal is to minimize the mean square deviation of the gradient from a prescribed
target field. This problem is proposed in the work of [30] and requires new techniques.
Here the extra difficulty is also due to a lack of continuity under weak convergence. For
this problem it is the objective functional that is discontinuous with respect to weak
convergence. In [30] a relaxation is obtained for a dense Gg set of target fields in the
space Wg'2(f7, R3). This is accomplished through the introduction of the notion of strong
Lr closure. It is shown that minimizing sequences are exclusively associated with the
well-known rank one laminates. Here the local layer orientation is parallel to the gradient
field. As of this writing, this class of targets resists an explicit representation. However,
numerical experiments using layered materials, see [14] and [31], suggest a conjecture
that 0 lies in the G$ set. For composites made of two isotropic phases, the work of
[14] and [31] shows that minimizing sequences of configurations can be found within the
class of rank one microstructures for any choice of target field. The more recent work
[9] provides an explicit formula for the relaxation of the mean square deviation. This is
used to rule out the appearance of minimizing sequences of layered configurations with
more than one scale of oscillation and establishes that minimizing sequences of layered
materials are exclusively given by rank one laminates. Another recent development is
given in [23]. Here, for any choice of target, the notion of constrained quasiconvexity
[22] is applied and is used to explicitly compute the constrained quasiconvex envelope of
the mean square deviation [23]. This is also used to establish that minimizing sequences
can be found within the class of rank 1 laminates as well as rule out the appearance of
layered materials with more than one scale of oscillation.

In order to expedite the presentation, the following notation is used. The contractions
of symmetric fourth order tensors A with second order tensors cr are written [A]ijki&ki =
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Act, contractions of two fourth order tensors A and M are written \A\ijkl[M]kiop — AM,
contractions of two second order tensors ct, e are written — a : e,a : a = |ct|2, and
contractions of second order tensors e and vectors x are written etjXj = ex.

2. Local formulas for the derivatives of G limits and a local representation
theorem. In this section, local formulas for the derivatives of G limits are provided
as well as a local representation theorem for derivatives of G limits. In order to define
derivatives of G limits, we introduce the neighborhood 7V"( A) of the array A of component
elasticity tensors. Arrays in this neighborhood are denoted by P = (Pi, p2, ■ • •, Pjv)-
The neighborhood is chosen such that all tensors P; in the array satisfy the constraint
0 < A < Pi < A. The associated set of local elasticity tensors C(P, x) = Xi(x)P;
for P in Af(A) for which Xidx < 7^ is denoted by C(A, 7). The G convergence is given
in the following definition [21].

Definition 2.1. The sequence of elasticity tensors {C"(A,x)}^ G converges to
CB(A, x) if and only if, for any open subset set u> of fl and any f in W~1,2{u>, R3), the
solutions u" in Wq 2(lu) of

— div(Cn(A, x)e(u™)) = f (2.1)

converge to u weakly in W0' (u) and

Cn(A, x)e(u") -» Ce(A, x)e(u) (2.2)

weakly in L2(fi,R3x3), where u is the W01,2(a;) solution of

— div(C£(A, x)e(u)) = f. (2.3)

The G limit is Lebesgue measurable with respect to the x variable [27]. Two fundamental
compactness properties of G convergence are now stated.

Property 2.1. Given any sequence of coefficients {Cn(A,x)}^=1, there is a subse-
quence {C" (A, x)}£9=1 and an elasticity tensor CE(A, x) such that {Cn'(A, x)}^?_1 G
converges to CE(A, x).

This property is established for the case of symmetric coefficients in [27], For the
nonsymmetric case, see [21]; see also [28] for elliptic systems. This property extends to
the elasticity tensor viewed as a function of P on Af(A).

Property 2.2. Given a sequence {Cn(P,x)}^!, then there exists a subsequence
{C™ (P, x)}£?=1 and an effective elasticity function CE(P. x) such that {Cn (P, x)}£?=1
G converges to CE(P, x) for every P in Af(A).

This property follows directly from [29].
In order to define local formulas for derivatives of G limits, we consider a sequence

of configurations with elastic properties {C"(P,x)}^Lx that G converge to the tensor
CB(P,x) for every P in Af(A). Fix a cube Q(x, r) of side length r centered at some
point x in fl. For r sufficiently small, Q(x,r) is contained within ft. Given a constant
strain e applied to the cube, the local oscillatory response function is denoted by w"'r,
where w"'r is the VF^'2(Q(x, r), R3) solution of

- div(Cn(A, y)(e(w"'r(y)) + e)) = 0, for y in Q(x, r). (2.4)
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Here W^'2(Q(x,r). R3) is the subspace of functions in W^'^R3, R3) that are periodic
with period cell Q(x, r) and zero mean when averaged over Q(x, r).

The local response functions are used to define directional derivatives of the G limit
in the following theorem.

Theorem 2.1. The directional derivative of C£(P,x) at P = A with respect to the ith
component elasticity in the direction specified by the symmetric fourth order tensor M;
is given by

<9C£(A,x) ■1 <2-5>

= ^2 y][Mj\klmn
k—1 1 = 1 m= 1 n—1

X liin lim (l/|Q(x,r)|) / X™(e(wf'r)fc; + efc,)(e(wf'r)mn + emn)<iy,
r—*0 n—*oo 7g(x,r)

where e is any constant strain. The derivative is Lebesgue measurable with respect to x.

It follows that the definition of the ith phase gradient denoted by (VJ.jmTlCE(A, x))e : e
is given by the local formula

(Vfe;mnC'B(A. x))e : e

= lim lim (l/|Q(x,r)|) / Xi(e(wr'r)fei + efci)(e(w§'r)mn + emn)dy
r^On^oo JQ(x,r)

and

(^A-K-/C/;(A.x))f :?.= lim lim (l/|Q(x, r)|) [ xl(^ir)ki+eki){e(w^r)ki+eki)dy,
r '0 n >oo JQ(x.r)

(2.7)
where repeated indices indicate summation. The formula for the G limit is

C£(A.x)e : e = lim lim (l/|Q(x,r)|) / Cn(A,y)(e(w^r) + e) : (e(w^r) + t)dy.
0n-oo ./Q(x.r)

(2.8)
The local formula (2.8) for the G limit is known; see [27] and [32]. In fact, formula
(2.8) holds true when the response functions are chosen from any space V such that
W01,2(Q(x,r),R3) Wrl-2(Q(x,r), R3), where

W?1'2(Q(x,r),R3) = {v in W1'2^, r), R3) : [ e(v(y))dy = 0}. (2.9)
J Q(x,r)

This follows directly from Remarks 13, 17, and 18 of [27]. The formulas (2.5) and (2.6)
for the derivatives of the effective elastic tensor are semi-explicit in that they are given
in terms of sequences of solutions to local problems. These formulas hold for general
oscillations and are obtained without any hypotheses on the sequence of configurations.
They provide the extension of the concept of periodic localization put forth in [32] to the
derivatives of G limits.
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We present, a local representation of the set of all G limits and their derivatives.
Consider a G limit CB(A, x) together with its phase gradients

V!Ce(A, x) S7iklmnCE (A, x)opqr (2.10)

and denote them by the array (Cfi(A,x),9C£:(A,x)), defined by

(Ce(A. x), 9Cb(A, x)) d= (C£(A, x), V1Cb(A, x), ..., VnCe{A, x)). (2.11)

We provide a characterization of the array (CB(A, x), dCE(A, x)) for almost all x in fl.
To start, we consider any partition of the unit cube into N Lebesgue measurable subsets.
The indicator functions of these subsets are denoted by i = 1> • ■ •, N. Given a vector
9 = (6>i, 9-2, ■ ■ ■, On) such that 0 < &i < 1 and YliLi = 1' the set Sg(A) is the set of all
arrays (CH (A), 5CH(A)) such that there exists a C0(P, y) = Xi(y)P« with P in
A/"(A), fQ(0,i) Xidy = 0, and

CH(A)e:e = [ C0(A,y)(e(w) + e) : (e(w) + e)dy
Jq( o,i)

V'CH(A)e:e = [ Xi(y)(e(w) + e) ® (e(w) + e)dy,i = 1,..., N, (2.12)
Jq( o,i)

where w is the W^2{Q{0,1),R3) solution of

- div(C0(A, y)(e(w(y)) + e)) = 0 (2.13)

for any constant strain e. For P in 7V(P), the function CH (P) is given by

CH(P)e:e = I C0(P,y)(e(w) + e) : (e(w) + e)dy, (2.14)
JQ( o,i)

where

- div(C0(P, y)(e(w(y)) + ?)) = 0. (2.15)

Direct calculation (as in the proof of Theorem 2.1) shows that the derivatives of CH(P)
at P = A are given by (2.12).

Theorem 2.2. For almost every x in f2, the array (C£'(A1 x),9CE(A, x)) lies in the
closure of Sg(A).

The converse of Theorem 2.2 is given by

Theorem 2.3. Given the measurable functions Oi(x), i = 1, , N, such that #i(x) =
1, JQ0t(x)dx < 7i, suppose that for every x in fl that the measurable tensor C(P, x)
is a limit of tensors of the form (2.14) and that the array of measurable tensors (C(A, x),
aC(A.x)) takes values in the closure of 5g(x)(A), then there exists a sequence
{C™(P,x)}^=1 C C(A,7) such that {C"(P,x)}^L1 G converges to C(P,x) for all P
in AT (A).

The proofs of Theorems 2.1, 2.2, and 2.3 are given in the following subsections.
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2.1. Proof of Theorem 2.1. In this subsection the formula for derivative of the G limit
is established. Consider a sequence {C"(P, x)}^_1 that G converges to C£(P, x) for
every P in W(A). Given a constant strain e, the local oscillatory response w"'r is the
Wl/(Q(x,r)-R3 ) solution of (2.4). The differential equation (2.4) is written in the weak
form given by

I Cn(A, x)(e(w",r) +e) : e(v)dy = 0, (2.16)
J Q(x,r)

for all v in W^'2(Q(x,r); R3 ). The volume of Q(x,r) is denoted by |Q(x,r)| and an
application of Cauchy's inequality in (2.16) gives

[ le(w™'r)|2rfy < (A2/A2)|<3(x,r)| |e|2, (2.17)
J Q(x,r)/Q(x,r)

and

|f(w") + e\2dy < (A2/A2 + l)|Q(x,r)| |?|2. (2.18)LQ(x,r)

Choose a number 80 and M such that A + <S/3M are in Af(A) and consider the sequence
{Cn(A+<5/iM, x)}^=1. Here M is an array of elastic tensors that is identically zero except
for the ith component elastic tensor M, . Here M* is of norm one where the tensor norm is

given by |Mj| = The sequence of coefficients {C"(A + <5/3M-x)}^Lj

differs from {C"(A,x)}^_j by the increment The G limit for the sequence
{Cn(A + 5/3M,x)}^=1 is written as CE(A + £/?M. x). We set <5C = CB(A + 80M., x) —
CE(A, x) and use (2.8) to compute SC with respect to the increment 80. The oscillatory
responses associated with the sequence {Cn (A+<5/?M, x)}^_x are denoted by w"'r, where
w. 'r are WV (Q(x, r); R;i) solutions of

[ Cn(A + 80M,y)(e(^'r)+e) : e(v)dy = 0, (2.19)
J Q(x,r)

for all v in W^2 (Q(-x, r); R3).
It follows from (2.8) that

8Cl: e = lim lim (l/|Q(x,r)|) [ Cn(A + 6/3M, y)(e(w"'r) + e) : (e(w"'r) + e)dy
r—»0 n—>oo 'Q(x,r)

lim lim (l/|Q(x,r)|) [ Cn(A,y)(e(w"'r) + e) : (w"'r) + e)dy. (2.20)
r >0 n >oc JQ(x,r)

Writing C"(A + 80M..y) = Cn(A,y) + 80Mi\™ and w"'r = w"'T + 6wn'r, where
(5w"'r = w"'r — w"'r, one has, for every v in W^2(Q(yL, r); R3), the equation

0 = I 8/3M,^(f(wD + e) : e(v)dy + [ Cn(A + 80M,y)e(8wn<r) : e(v)dy.
JQ(x,r) J Q(x,r)

(2.21)
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Setting v = 5wn'r in (2.21) and substitution into (2.20) gives

SCe:e
= 6/3 lim lim

r—>0 n—*oo

x (l/|Q(x,r)|) I (Mixr(e(w"'r) + e) : (e(w~'r) 4-e)
J Q(x,r)

+ MiX?(e(^'r) + e) : e(6wn'r))dy. (2.22)

Setting v = Swn'r in (2.21) and application of Cauchy's inequality gives

[ \e(8wn'r)\2dy < 6f32\~2\Q(x, r)| |e|2(l + (A/A)2). (2.23)
J Q(x,r)

Estimates (2.18) and (2.23) show that

|(l/|Q(x,r))| / MiX?(e(w?'r) +e) : e(6wn'r)dy\ < 6/3|e|2(l + (A/A)2). (2.24)
JQ(x,r)

From this one deduces that

SCe :e = 5(3 lim lim (l/|Q(x,r)|) / Mixr(e(w?'r) + ?) : (f(w?'r) + e)dy + o(5(3)
r—>0 n—*oo JQ(x,r)

(2.25)
and (2.5) follows. The measurability of dCE(A, x)/(9M. is assured as it is a pointwise
limit of measurable functions and Theorem 2.1 follows.

2.2. Proof of Theorem 2.2. Consider a sequence of configurations with elastic proper-
ties {C"(P, x)}^_1 in C(A,7) that G converge to the effective tensor C£(P, x) for every
P in Af(A) and with characteristic functions {xrln^i converging to 0t in L°° weak *.
Then for any cube Q(x, r) contained in f2, one has

lim (l/|Q(x,r)|) [ x?dy = (l/|Q(x,r)|) [ My- (2.26)
™^°° J Q(x,r) JQ{x,r)

At the Lebesgue points of 6i, one sees that

lim lim (l/|Q(x,r)|) [ x?dy = 0l(x). (2.27)
r >0 n *°o JQ(x,r)

Starting with the formulas (2.6), (2.8), and (2.27), we choose a diagonal sequence
indexed by j such that r3 —> 0 and rij —> 00 as j —>00, for which

(V'C£(A,x))e : e = lim (l/|Q(x,rj)|) f (e(w|) + e) ® (e(w|) + e)dy, (2.28)

C*(A,x)e:e = lim (l/|Q(x,r,)|) [ Cnj(A,y)(e(w|) +e) : (e(wf) + e)dy (2.29)
I"00 JQ(x,r,)

and

0i(x) = lim (l/|Q(x,rj)|) / xl'dy. (2.30)
^°° JQ(x, Tj)

Here the local oscillatory response function is denoted by w|, where w| is the
W^2(Q(x,rrf),R3) solution of

— div(C™3' (A, y)(e(wi(y)) + e)) = 0, for y in Q(x, rj). (2.31)
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To prove Theorem 2.2 we change coordinates so that x = 0 and show that
(Cb(A, 0), dCE(A, 0)) lies in the closure of S$(A). Using the rescaled variable z = y/rj
and writing w|(y) = where </>|(z) is the W"(Q(0,1); R3) solution of

— div(C'lj (A, rjz)(e(^4(z)) + ?)) = 0, for z in Q(0,1), (2.32)

it is seen that

(VlCE(A, 0))e : e = lim / x"J (rjz)(e(#) + ?) ® (e(#) + ?)dz> (2-33)
J—>OC

U V'J"/Q(o,i)

C (A, 0)e : e = lim
j—► oo

I Cn< (A, Tjz)(e((/4) + e) : (e(0|) + e)dz (2.34)
•/Q(0,i)

and

0i(O) = lim [ x"J{rjz)dz. (2.35)
v/Q(0,l)

To conclude the proof we show that, for sufficiently large indices j, we can slightly modify
X™3 so that its modification \'iJ satisfies

0M= I X?{rjz)dz (2.36)
JQ{ 0,1)

for every j greater than some J and

(V®Ce(A, 0))e : e = lim I y^3 (rjz)(e(</>§) + e) .0 (e(^) + e)dz, (2.37)
i—°°7q(o.i)

C£(A,0)e:e= lim [ CUj (A, rjz)(e(^) + e) : (e(<^) + e)dz, (2.38)
■?^°° Jq(0,1)

where

— div(C'lj (A, ?'jz)(e(0|(z)) + e)) = 0, for z in Q((), 1), (2.39)

(j>i is in 1T^'2(Q(x, r);R:i), and C'1j(P, r,z) = Ef=i X'"'(r.jz)p>-
Since = /^0 ^ (rjz)dz (0), it is evident that we can introduce modifications

x"3 (? jZ) for which

/ Itf' (r'jz) - X™' (rjz)|dz -> 0 as j -> oo (2.40)
•/QfO.l)

and for some J that

f X? (rjz)dz = ^( 0), (2-41)
•/Q.ro.:)

for every j > J. An application of the higher integrability result of Meyers and Elcrat [18]
together with Holder's inequality shows that the convergence given by (2.40) is sufficient
to guarantee the strong L2(Q(0, l); R,ix3) convergence of the difference e(0|) —e(4>~) and
Theorem 2.2 follows.
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2.3. Proof of Theorem 2.3. Given a set of functions i — 1,..., N, and C(P, x) satis-
fying the hypothesis of Theorem 2.3, we suppose first that the array (C(A, x), dC(A, x))
takes values in Sg(x)(A) and establish the theorem for this case.

Since (C(A,x),<9C(A,x)) e Sg(x)(A), it follows that for each x in SI the associated
function C(P, x) is defined for all P in 7V*(A) in terms of a simple function defined on
Q(0,1) indexed by x and denoted by Cq(P, y,x) = X^=i Xi(y;x)Pi> where

C(P,x)e : e = f C0(P, y, x)(e(w) + e) : (e(w) + e)dy. (2.42)
JQ( 0,1)

Here w is the W^'2(Q(0,1), R3) solution of

- div(C0(A, y, x)(e(w(y)) + e)) = 0 (2.43)

for any constant strain e. In order to establish the theorem for this case, it suffices
to show that there exists a sequence in {Cra(P,x)}^Lx C C(A, 7) that G converges to
C(P, x) for all P in Af{A). Repeated application of Lusin's theorem together with the
differentiability of C(P, x) with respect to P in Af{A) delivers the approximation to
C(P, x) and 9i(x) by piecewise constant functions of the form

M(k) M(k)
Cfe(P,x) = £ x0.C(P,xJ) and <£(*) = £ (2.44)

j=1 j=1

Here and xj a point in The sequence {Cfe(P,x)}^=1 converges

almost everywhere to C(P,x). This implies that the sequence G converges to C(P, x);
see [27]. The sequence {0!i(x)}'^_1 also converges almost everywhere to 9i{x). At each
sample point x^, one has

C(P.Xj)e:e= f C0(P,y,x*)(e(w) + e) : (e(w) + e)dy, (2.45)
JQ{ 0,1)

where w is the W#2(Q(0,1), R3) solution of

- div(C0(A, y, x*)(e(w(y)) + e)) = 0. (2.46)

Motivated by (2.45) and (2.46), the functions C0(A, y,x*) are extended to R3 in the y
variable by periodicity and for k and n sufficiently large, we define the tensor c'""(P, x)
in C(A, x) by

M(k)
Ck'n(P, x) = £ Xn}Co(P,x/n, Xjfc). (2.47)

3=1

From the local property of G convergence [27] and from the theory of periodic homog-

enization [3], it is evident that {C '"(P,x)}^=1 G converges to Cfc(P,x) for every P
in Af{A). Since the topology of G convergence is metrizable [8], [25], an application
of the triangle inequality provides a diagonal sequence (P, x)}?^ that G con-
verges to C(P, x) for every P in Af(A) and the theorem follows for the case when
(C(A,x),c?C(A,x)) takes values in Sg^(A).

Next given a set of functions 6i, i — 1,... ,N and C(P, x), satisfying the hypothesis of
Theorem 2.3, suppose that (C(A, x), 3C(A, x)) takes values in the closure of Sg(x\(A).
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Then for each x in H, there is a sequence {(C'7 (A, x), dCJ (A, x))}^2.1 C Sg(x)(A) that
converges to (C(A, x), <9C(A, x)). The theorem follows from similar arguments on noting
that one has an approximation to C(P, x) of the form given by (2.44) and at the sample

points C(P,Xg) = limj_oo CJ(P, xj).

3. Homogenization of stress fluctuations and L°° estimates for weak limits.
In this section, a homogenization theorem is presented for quadratic functions of a weakly
converging sequence of stresses associated with a G convergent sequence of elasticity
tensors. This result is used to obtain L°° estimates for the weak L2 limit of the sequence.
In what follows it is assumed that the sequence {Cn(P, x)}^Lj G converges to C£(P, x)
for every P in Af(A). Here the sequence of stresses {cr™}^^ satisfy an = Cn(A, x)e(u"),
where un is the Wq'2(Q, R3) solution of

-div(Cn(A,x)£(un)) = f. (3.1)

The weak limit of the stresses erM is given in terms of the Wo'2(fi,R3) solution uM of

-div(CB(A,x)e(uM)) = f, (3.2)

and <xM = CB(A,x)e(uM).
We begin by considering the limits of quadratic functions of sequences of weakly

converging stress tensors. Given any symmetric fourth order tensor II and any function
p(x) in C°°(f2), then the following homogenization result holds:

Theorem 3.1 (Homogenization of stress fluctuations in the ith phase). Given that
{Cn(A>x)}^L1 G converges to CE(A, x), then

lim
n—> oo

f p(x)x"(x)ncrn(x) : an(x)dx = f p(x)nf(x)crM(x) : aM(x)dx, (3.3)
J n Jn

where

n,(x)C7M(x) : <tm(x) = (Se(A,x)AinAiViCfi(A,x)SE(A,x))ctm(x) : aM(x). (3.4)

Here SB(A, x) = (CE(A, x))_1 is the effective compliance.

Equivalently

X?(x)nCTn(x) : an(x) - (S£(A,x)A,nAlVlCB(A,x)SE(A,x))aM(x) : <tm(x) (3.5)

in the sense of distributions. We specialize to the case n = I where I is the fourth order
identity tensor; then Uan : crn = |crn\2 and we write

Ian -aM\2dxlim f p{x)\an\2dx = lim f p(x)|c
n^°°J n

+ f p(x)\aM\2dx. (3.6)
JQ

Prom Theorem 3.1 it follows that

!°"n(x) - aM(x)|2 Q(x)crM(x) : aM(x) (3.7)
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in the sense of distributions, where Q is given by

Q(x) = jXJ(sE(A,x)A?Vicfi(A,x)s£;(A,x) j -I (3.8)

Prom (3.7) it is evident that the tensor Q is positive definite. The next theorem provides
an upper bound on the L°° norm for the homogenized stress aM.

THEOREM 3.2. Given that {Cn(A,x)}^L1 G converges to C£(A, x), with <rn =
Cn(A,x)e(un) and aM = Cfi(A, x)e(uM), then

{(I + Q(x))<tm(x) : ctM(x)} < liminf || |ern|2||oo, (3.9)
n—»oo

almost everywhere.

The homogenized versions of the stress constraints (1.7) and (1.10) follow from The-
orems 3.1 and 3.2 and are given in the following corollaries.

Corollary 3.1. If for a collection of nonnegative functions {pj}j=i in C°°(fi), it is
known that

/ pj(x)\crn\2dx < K2 / pj(x)dx, for every n, (3.10)
Jn J n

then aAI satisfies

f pj(x)(l -I- Q(x))erM(x) : crM(x)cJx < K2 f pj(x)dx. (3-11)
Jo. Jn

Corollary 3.2. If it is known that

II kn| Hoc < K, for every n, (3.12)

then aM satisfies
^(I + Q(x))<rM(x) : crM(x) < K, (3.13)

almost everywhere.

3.1. The local homogenization theorem for stress and strain fluctuations. In this sub-
section the local homogenization Theorem 3.3 is established. The local homogenization
theorem is applied in the following subsection to establish Theorem 3.1. Consider a
sequence {Cn(P, x)}^Lx that G converges to C£(P, x) for every P in A/"(A). Given
a constant strain e and an open subset ui of £2, the local corrector function w™ is the
W01,2(u;;R3) solution of

- div(C"(Ax))(e(w") + e) = - div(C£(A, x)e), in w. (3.14)

The differential equation (3.14) is written in the weak form given by

f Cn(A, x)(e(w") + e) : e(v)dx - f CE(A,x)e : e(v)dx = 0, (3.15)
J u) J CO

for all v in Wq'2(lu; R3). In the sequel, a generic open subset of fi is denoted by lu. The
volume of u is denoted by |o;| and an application of Cauchy's inequality in (3.15) give

/J cj
le(w?)l "x ^ (4A /A )|w| |e| , (3.16)
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and

f |e(w") + e\2dx < (4A2/A2 + l)|w| |e|2. (3.17)
J uJ

Integration by parts and taking limits shows that sequence of corrector functions
converge weakly to the following limits given by

Property 3.1. The sequence converges weakly to zero in W01,2(o;; R3); thus

e(w") 0 (3.18)

and
Cn(A,x)(e(w") +e) C£(A,x)e. (3.19)

Moreover, passing to a subsequence, if necessary, standard results show that
limjj^oo J jw"|2<ix = 0. It is Property 3.1 that makes the correctors useful for our
purposes.

We set 6C = CB(A + <50M, x) — CE(A, x) and examine the dependence of
(l/|u;|) f^SCe : edx with respect to the increment 5(5. The correctors associated with
the sequence {C™(A+ ^/3M, x)}^! are denoted by w™ + ex, where w" are Wq'2(w; R3)
solutions of

I C?,(A + ^M,x)(e(w?) + e) : e(v)dx - f CE(A +5pM,x)e : e(v) dx = 0, (3.20)
J UJ J uj

for all v in Wq'2(cj; R3) and

C"(A + SpM, x)(e(w£) + I) CE{A + 60M, x)e (3.21)
e(w?) ->• 0. (3.22)

For any choice of test function p(x) that is differentiate on u> and continuous on w,
it follows from (3.19) and (3.21) that

(1/M) I p(x)5Ce : edx = lim (1/M) [ p(x)Cn(A + x)(e(wj) + e) : edx
Juj n^°° Jul

- lim (l/|w|) / p(:r)Cn(A,x)(e(w?) + e) : edx. (3.23)
n^°° Jco

Writing C"(A + 6(3M,x) = Cn(A,x) + 6/3MiXi and w? = w? + <5wn, where Sw" =
w™ — w™ and substitution into (3.23) gives

(l/|w|) / pSCe : edx = lim
J u n^°°

x (1/M) f pS/3MiXi(e{w^)+e) : e+p5/3M,x"e(<5wn) : e + pC"(A, x)e(6wn) : edx.
J UJ

(3.24)

To proceed further, subtract (3.15) from (3.20) to obtain for every v in Wj'2(u;;R3) the
equation

0= / i5/3M,x"(e(w") + e) : e(v)dx + f Cn(A,x)e(6wn) : e(v)dx
J UJ J UJ

+ f 5f3'MiXi'e(Swn) : e(v)dx — f <5Ce : e(v)dx. (3.25)
J UJ J UJ
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Choosing v = (pw") in (3.25), substitution into (3.24), and taking limits gives

pSCe : edx = 5(3 lim
} n—► oo

x((l/|o;|) jTpMiX?(e(w?)+ c): (e(w?)+ e)dx +(1/M)JpMiX?(e(w?)+e):e(6wn)d^\ .

(3.26)
Writing

S = limsup(l/|w|) I pSpMiXi(^) + c) : e(5wn)dx and
n—too Ju

S = liminf(l/|a;|) [ p6/?MiX™(e(w") + e) : e(5wn)dx, (3.27)
n-+0° Ju.

an application of Cauchy's inequality gives

\S\ < and |5| < \\p\UK\e\2 y/\8p\, (3-28)
where K is a constant independent of 5j3 and choice of u> C and ||p||oo is the maximum
value of p on uj. From this one arrives at the

Property 3.2. For every uj c Q and differentiable function p continuous on uj,

(1/M) J P*CI: edx = 50lnm ((l/M) J pMiX?(e(w?)+e) : (e(w?) +e)dx)

+ SPR(6P,u,p),
(3.29)

with

R{Sp,io,p)= lim f(l/M) f pMiXi(e(w") + e) : e(6wn)dx] (3.30)
n^oo \ Ju J

and
\R{5p,u,p)\<\\p\UK\e\2J\5p\. (3.31)

Next consider subsets of given by cubes Q(x, r) and the associated local corrector
functions are denoted by w"'r. Put

H(x,r) = lim (l/|Q(x,r)|) [ Mlx"(e(w"'r) + e) : (e(w"'r) + e)dy. (3.32)
n_>°° JQ(x,r)

Given the increment dp consider the intersection of Lebesgue points of CB(A, x) and
CE(A + S0M., x). Choose p = 1 and from Property 3.2 one has

<5Ce : e = lim(l/|Q(x, r)|) [ SCe:edy
r^° JQ(x,r)

= SP lim (if (x, r) + R(SP,x)), (3.33)
r—>0

almost everywhere on Q and for any constant strain e. Here \R(5p, x)| < K\e\2y/\5P\. It
dCE
dMi

dCE

is evident from (3.33) that §£r-e : e is also given by

9Mi lim lim (l/|Q(x,r)|) [ Mjx"
r*->0 n—>oo JQ(x,r)

e:e = lim lim (l/|Q(x,r)|) / MIx™(e(w?"') + e) : (e(w"'r) + e)dy. (3.34)
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Collecting results, one substitutes (3.33) into (3.29) of Property 3.2 to obtain the local
homogenization result.

THEOREM 3.3 (Local Homogenization). Given any aj C fl and any differentiable test
function p continuous on w, the sequence of local correctors, {w™ + exj^Lj defined by
(3.14), satisfy

dCE_ _J
>——-e : eaxdMi

= (l/|w|) I pM,VlCEe : edx.
J uJ

(3.35)
For future reference it is noted that the estimate (3.17) gives the bound

(V*Cb(A,x))e : e < (4A2/A2 + l)|e|2, (3.36)

almost everywhere in f2.
3.2. Homogenization of stress fluctuations. In this subsection Theorem 3.3 is used to

establish Theorem 3.1. Consider a sequence of elasticity tensors {Cn(P, x)}^_j that G
converges to C£(P, x) for every P in A/"(A). Here un is the WQ,2(f2;R3) solution of

- div(Cn(A, x)e(un)) = f (3.37)

and uM is the W/01,2(fi; R3) solution of

- div(Cs(A, x)e(uM)) = f, (3.38)

where un converges weakly to uM in W01,2(f];R3) as n tends to infinity. The first step
is to approximate uA/ by piecewise affine functions. Given 5 > 0 there exists a function
W5 in W01,2(fi;R3 ) which is piecewise affine on fl and

,<5\ 2 . ^ r2

/Jn
e(w ) — e(u )| dx < 6 , (3.39)

see, for example, [7]. The strain e(w<s) is constant on the open sets uils and Q = To
In each open set wj, one has e(w<5) = e'x + c\ where e1 is a constant strain and cl is a
constant vector.

The right-hand side fs = — div(CB(A, x)e(w'5)) is chosen and wn,< is defined to be
the W01,2(f2;R3) solution of

- div(Cn(A, x)e(w£'5)) = f. (3.40)

Integration by parts and taking limits shows that w71'"5 converges weakly to w5 in
W01,2(fi; R3) as n goes to infinity and

Cn(A,x)e(wn-'5) C£(A,x)e(w5). (3.41)

The error between the weakly converging sequences {un}^=1 and the sequence of
global corrector functions {wn'<5}^L1 can be controlled uniformly with respect to n.
Indeed, application of Cauchy's inequality gives a constant Co independent of n and 8
such that

J |e(un)-e(wn'<5)|2dx<C^^ S2, for all n > 0. (3.42)
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Collecting results we write U = w"5 + r^u™ = wn'5 + zn'S. Here rs and zn'S are in
Wd'2(f2; R3) and satisfy

f |e(r<J)|2rfx < S2 and f \e(zn's)\2dx < S2, for all n > 0. (3.43)
J a J n

Given a differentiate test function p(x) continuous on fi, one writes

LPX™ ncrn : <rndx
o ;

= [ px]nA,(£(wn'{) + e{zn'6)) : Aj(e(wn's) + c(zn'6))dx
J n
«(<5) „

= H PXjnAje(w™''5) : A,-e(wn's)cbi + O(S). (3.44)
i= 1

The following observation follows easily from integration by parts and the definitions of
G convergence.

Localization Property. Let wl;™'"5 be the solution ofel

- div(C"(A,x))(e(wIf1'5) + ?) = - div(Cs(A, x)?) (3.45)

on LJg, where wl;n,(5 = 0 on the boundary of uls; then

lim f \e(wli\n'6) + el-e(wn's)\2dx = 0. (3.46)
n—>oo 7 i e

Jus

Applying Theorem 3.3 and working up from small to intermediate scales, one finds that

k(5)

^2 [ pAjnAJ V:,'CB(A,x)ei : tdx (3.47)
1 = 1 J "I

«(<*)
= / PX"nAi(e(w^n'<5) +61) : AJ(e(w^n,<5) + el)dx

2=1 n^°° v'wj

■k(<5)

= lim V / px?nA,e(wn''5) : A,-e(wn',5Wx.
n—*oo I a J

i=1

Proceeding from large scales down to intermediate scales, we see from (3.36), (3.39),
(3.44), and (3.47) that

r ^ /•
lim / px?ncrn : andx = / pA,TIA7-VJCE(A,x)e* : eJdx + 0(c5)

n—>oo J0 J z' I aJU i=1 Joj6

= / pAjllAj VjC£(A, x)e(uM) : e(uM)dx + 0(<J)*~JXXjr^3

/Q

= [ pA:UA]VjCE{A,x)SE{A,x)aM : SE (A:x)(jM dx+0{6)
Jo

(3.48)
and Theorem 3.1 follows noting that <5 is arbitrary.
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To establish Theorem 3.2, note that for any positive test function p in C°°(f2), Holder's
inequality gives

I p(x)(Kf - II Kl'llocMx < 0. (3.49)
Jn

Sending n to infinity together with Theorem 3.1 gives

[ p(x)((I + Q)(TM : aAI - liminf || |cr"|-1|oo)rfx < 0, (3.50)
.hi

for every choice of p and Theorem 3.2 follows.

4. The stress constrained G closure and relaxation of stress constrained
design problems. The relaxed formulation of the design problems PL and P°° is in-
troduced using the notion of stress constrained G closure. To do this we reformulate the
design problems PL and Px in an equivalent way. For a given tolerance K, we define
the set of controls denoted by Ad°°(K, A,j) to be the set of all local elasticity tensors

C(P, x) = i Pi-Yi(x) with P in M(A),fa Xidx < 7i, such that

II M Hoc < A", (4.1)

where cr(x) = C(A,x)e(u(x)), and u is the W01'2(fi,R3) solution of

— div(C(A, x)e(u)) = f. (4.2)

The P°° design problem is given by

P°° = inf F(u). (4.3)
Ad™(K, A,7)

Recent developments in regularity theory [2], [11], [12], imply that the class of controls
(A', A, 7) is generated by a strikingly large class of configurations. The set of con-

trols denoted by AdL(K,A,'y) is defined to be all local elasticity tensors C(P, x) =

Y^iLi Pi\i(x) with P in J\f(A), fil Xidyi < 7j associated with solutions u of (4.2) sat-
isfying the finite number of integral stress constraints given by (1.10). The PL design
problem is given by

PL = inf F( u). (4.4)
AdL(K, A,7)

The G closure of Ad'x(K1 A, 7) is defined to be all functions (C(P, x), ^i(x),..., 6^(x))
for which there exist sequences {C™(P. x)}"=1 in Ad°°(K, A, 7) G converging in C(P, x)
for every P in A/*(A) with the associated sequences {x?}nLi converging in L°° weak
* to 0i. This set is denoted by QAd°°{K, A, 7). Similarly for a finite number of
stress constraints the G closure of AdL(K.A,f) is denoted by QAdL(K,A,^) and is
defined to be all functions (C(P, x), #i(x),..., #at(x)) for which there exists sequences
{C"(P. x)}™=1 in AdL(K, A, 7) G converging to C(P,x) for every P in Af(A) with the
associated sequences {xFl^Li converging in L°° weak * to (9j. The sets QAd°°(K, A, 7)
and QAdL(K,A,^/) are referred to as stress constrained G closures of the original set of
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controls C(A, x) defined in the introduction. The relaxed formulations for P°° and PL
are given by

RP°° = inf{F(u); u in R3), - div(C(A, x)e(u)) = f, C(A, x)

in QAd°°(K. A,2)} (4.5)

and

RPl = inf{i?(u); u in R3), — div(C(A, x)e(u)) = f, C(A, x)

in GAdL{K,A,2)}. (4.6)

The desired properties of the relaxed problems are given in the following theorem.

Theorem 4.1. The relaxed problems have the following properties.
1. RP°° = and RPl = PL.
2. There exists a function C(P, x) in QAd°°(K, A, 7) and displacement u in

Wo1'2(ft, R3) for which

— div(C(A, x)e(u)) = f, (4.7)

and
RP°° = F( u). (4.8)

Similarly there exists a function C*(P, x) in QAdL (K, A, 7) and displacement
u* in Wo'2(ft,R3) for which

— div(C*(A, x)e(u*)) = f, (4.9)

and
RPl = F{ u*). (4.10)

3. There exists a recovery sequence of controls {C"}^^ in Ad°°(K,A,, 7) G converg-

ing to C(A, x). Similarly there exists a recovery sequence of controls {C"}^!L1
in AdL(K,A,^) G converging to C*(A, x).

As it stands, the definition of the stress constrained G closure is given in terms of
constraints on G convergent sequences of controls. We show that the explicit character-
ization of QAdL{K, A, 7) can be found and is given in terms of constraints on suitable
homogenized quantities. For the set QAd°°(K, A,^) we develop an upper bound in terms
of homogenized quantities.

In order to characterize QAdL{K,A,')) we introduce a new set of controls. We

begin with the set C(A, 7) given by all controls C(P, x) = PjXj(x) with P in
Af(A), fQ Xidx < 7i- Next we consider the unconstrained G closure of C(A, 7) G converg-

ing to C(P, x) for every P in J\f(A) with the associated sequences {x"}^=i converging
in L°° weak * to 9i. This set is denoted by QC(A, 7). The set HL(K, A, 7) is defined to
be all C(P, x) in QC(A, 7) for which the associated stress is given by a — C(A, x)e(v),

where v is the Wq''2(Q, R3) solution of

— div(C(A, x)e(v)) = f, (4.11)
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and <7 satisfies

/ pj(x)(I + Q(x))cr(x) : a(x)dx < K2 f p0(x)dx, for j = 1,..., L, (4-12)
■Jn J n

with

QW = |E(§(A, x)A;2ViC(A, x)S(A, x)| - I, (4.13)

and S(A,x) = (C(A,x))-1. The characterization of QAdL(K,A,/y) is given by the
following

Theorem 4.2. For any t > 0, one has

HL{K-t, A, 7) c GAdL{K, A, 7) C HL(K, A, 7). (4.14)

One can use the explicit set of controls provided by the class HL(K, A, 7) to provide a
relaxed design problem given in terms of explicit homogenized quantities. We introduce
the homogenized design problem

HPl= inf F( u). (4.15)
nL(K, a,7)

The first feature of the homogenized design problem is that the infimum HPL is
attained by a function in A, 7), i.e.,

Theorem 4.3. There exists a function C(P, x) in HL(K, A, 7) and displacement u in
iyo'2(fi,R3) for which

-div(C(A, x)e(u)) = f, (4-16)
HPl = F( u), (4.17)

where

f Pj(x)(I+Q(x))a(x) : a(x)dx < K2 [ Pj(x)dx, for j = 1,..., L, (4.18)
Jn Jq

and

QW = |^(§(A,x)A2VjC(A,x)S(A,x))| - I. (4.19)

The second important feature is the connection between the minimizer C(P, x) of the
homogenized design problem and nearly optimal configurations. To make the connection
the following optimal design problems are introduced.

Pk = inf F{ u), (4.20)
C(P,x) in C{A,7) ;

subject to the constraints:

/ PM)W?dx<{l + \)K2 ( Pj(x)dx,j = (4.21)
J a K Jn

where u is the Wg1,2(f2, R3) solution to the state equation

— div(C(A, x)e(u)) = f (4.22)
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and a = C(A, x)e(u). It is clear that as k tends to infinity, the constraints given in the
design problems Pfc approach the stress constraints associated with PL. The problems
Pfc share the same feature as the problem PL in that they are optimal design problems
over admissible configurations of N linear elastic materials. The connection between the
minimizer of HPL and nearly optimal configurations is given in the following theorem.

Theorem 4.4. Given a minimizer C(P, x) of HPL, then there is a sequence of config-
urations and associated controls {Cfc(P, x)}^=1 in C(A, 7) such that for all P in Af(A),

the sequence {Cfc(P, x)}j^_j G-converges to C(P,x) and the stresses ak satisfy the con-
straints (4.21). For this case, one has

lim F(ufc) = HPL. (4.23)
k—> 00

Moreover, given any e > 0, there exists an index J > 0 such that for all k > J,

Pt < F{uk) < P£ + s (4.24)

and
lim P£ = HPl. (4.25)

k —*00

Thus one can use the minimizer for the homogenized design problem to recover nearly
optimal stress constrained designs. It is clear that the homogenized design problem
introduced here provides a way to identify nearly optimal configurations to a family of
stress constrained problems with constraints approaching the original problem. Indeed, if
instead of considering the problem PL we consider a problem with the stress constraints
given in terms of a slightly larger tolerance K2 (1+1 /k), the homogenized problem delivers
an admissible and nearly optimal configuration.

Next, an upper bound for the set QAd°°(K, A, 7) is provided. The set A, 7)

is defined to be all C(P, x) in QC{A, 7) for which the associated stress is given by
a = C(A,x)e(v), where v is the W01,2(f2, R3) solution of

— div(C(A, x)e(v)) = f, (4-26)

and a satisfies

(I + Q(x))cr(x) : ct(x) < K2, (4.27)

almost everywhere. The upper bound for the set QAd°°(K,A,-y) is given by

Theorem 4.5.
GAd°°(K, A, 7) c n°°{K: A, 7). (4.28)

As before, one can use the explicit set of controls provided by the class 'H00(K, A, 7)
to identify nearly optimal configurations for stress constrained problems. We introduce
the homogenized design problem

HP00 = inf F( u). (4.29)
H°°(K, A,7)

The first feature of the homogenized design problem is that the infimum HP00 is
attained by a function in A, 7), i.e.,
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Theorem 4.6. There exists a function C(P, x) in A, 7) and displacement u in
Wq'2(Q, R3) for which

— div(C(A, x)e(u)) = f, (4.30)

and

HP00 = F{ u), (4.31)

where

(I + Q(x))ct(x) : <t(x) < K2, (4-32)

almost everywhere.

Similarly, there is a connection between the minimizer C(P, x) of the homogenized
design problem HP00 and nearly optimal configurations. To make the connection con-
sider a countable dense subset {pi}^1 of the nonnegative functions in C°°(f2). For a
finite collection of these functions Sm = {Pe}eLi, the following optimal design problems
are introduced:

PM = inf F( u), (4.33)
C(P.x) in C(A,7)

subject to the constraints:

J pi(x.)\a\2dx. < ^1 -I- K1 J pt(x)dx, for pe in SM, (4-34)

where u is the W01'2(fi,R3) solution to the state equation

— div(C(A, x)e(u)) = f (4.35)

and <7 = C(A, x)e(u). It is clear that as M tends to infinity, the constraints given in the
design problems PM approach the constraint given by (1.8). The problems PAI share the
same feature as the problem P°° in that they are optimal design problems over admissible
configurations of N linear elastic materials. The connection between the minimizer of
HP00 and nearly optimal configurations is given in the following theorem.

Theorem 4.7. Given a minimizer C(P, x) of HP°°, then there is a sequence of configu-
rations and associated controls {CA/ (P, x)}^=1 in C(A, 7) such that for all P in VV(A),

the sequence {CM(P,x)}^=1 G-converges to C(P,x) and the stresses <rA/ satisfy the
constraints (4.34). For this case, one has

lim F(um) = HP°°. (4.36)
M —+00

Moreover, given any e > 0, there exists an index J > 0 such that for all M > J,

PM < F(um) <PM + e (4.37)

and
lim Pm = HP°°. (4.38)

M —*00
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4.1. Proofs of Theorems 4.1, 4.2, and 4.5. The proof of Theorem 4.1 is given for
the problem RP°°, noting that the properties of RPL are established in the same way.
The inequality RP°° < P°° follows, noting that Ad°°(K, A, 7) C QAd°°{K, A, 7). A
special sequence of controls with elastic tensors in ^4d°°(A", A, 7) is constructed. Con-
sider a minimizing sequence {CB,ra(A, x)}^Lx in QAd°°(K, A, 7) for the problem RP°°.
The associated sequence of elastic displacements is denoted by {un}J|<L1 and RP°° =
linv^oo F(un). For each n there exists a sequence of elastic tensors {Cn,fe(A, x)}j^j
in Ad°°(K, A, 7) for which C"'k(A, x), G converges to CB,n(A, x). The associated dis-
placements un,k in W0' (fi;R3) satisfy the state equation

- div(Cn'fc(A,x)e(un'fc)) = /. (4.39)

For a given n there exists an index kn and elastic tensor in Ad°°(K, A, 7) such that

\F(un'kn) — F(un)| < 1/n, (4.40)

and
— div(Cn,fe"(A, x)e(u"'fcn)) = f. (4.41)

Passing to a subsequence if necessary and appealing to the fundamental property of G
convergence given in Sec. 2, there exists a function CB(A, x) in QAd°°(K, A, 7) for which

{C™'fc"(A,x)}^=1, G converges to CB(A,x). (4.42)

The displacement associated with the effective elasticity C£(A, x) is denoted by u and

- div(CE(A, x)e(u)) = f. (4.43)

Properties 1, 2, and 3 of Theorem 4.1 follow immediately, noting that the objective
function F(-) is continuous with respect to G convergence.

To prove Theorem 4.2, we start by showing that 7~Ll{K — t,A,7) c QAdL(K, A, 7).
Given C(P, x) in HL(K — t, A, 7) there is a sequence {Cn(P, x)}^! in C(A,7) G
converging to C(P, x) for every P in J\f(A). The associated stresses are given by
an = C"(A,x)e(u") and cr = C(A:x)e(u). Application of Theorem 3.1 gives

K- / Pjrfx > (K — t)2 / pjdx
J Q J O

f PJ(QJ Q
> I Pi(Q + I)c : &dx

Q

= lim
n—► oc

f Pj\an\2dx. (4.44)

From (4.44) it is evident that there exists an index N such that {C"(P, x)}^^ c
AdL(K, A, 7); hence C(P, x) is in QAdL(K, A, 7). Next we show QAdL(K,A,^) C
Hl(K, A, 7). Given C(P, x) in QAdL(K, A, 7), there is a sequence {Cra(P, x)}^Lx in
AdL(K, A, 7) that G converges to C(P, x). The associated stresses are given by an =
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Cn(A, x)e(un) and a = C(A, x)e(u) and an application of Theorem 3.1 gives

K2 [ pjdx > lim I pj\(jn\2dx
J n Jn

= [ pj(Q + I)<7 : adx (4.45)
Jn

and C(P, x) is an element of 'HL(K, A, 7).
Lastly, it is noted that Theorem 4.5 follows immediately from Theorem 3.2.
4.2. Proofs of the properties of the homogenized design problems. In this section the

properties of the homogenized design problems given by Theorems 4.3, 4.4, 4.6, and
4.7 are established. Proofs of Theorems 4.6 and 4.7 are given noting that the proofs
of Theorems 4.3 and 4.4 follow the same lines. A special sequence of elastic tensors in
C(P, 7) is constructed. This sequence will be used to establish Theorems 4.6 and 4.7.
To construct this sequence, consider a minimizing sequence {CB'™(P,x)}^Lj for HP°°.
The associated set of elastic displacements for the sequence {CE,Tl(A, x)}^Lj is denoted
by {u71}^! and HP°° = lim^^ F(un).

For each n there exists a sequence of elasticity tensors {Cn'fe(P,x)}g?=1 in C(P,7)
such that Cn,A:(P, x), G converges to CB,n(P, x) for every P in A/"(A). The associated
displacements un'k in W^'^fijR3) satisfy the state equation

- div(Cn,fc(A, x)e(un'fc)) = f, (4.46)

and we set an,k — Cn,fc(A,x)e(u"'fc). For every nonnegative differentiate function p,
the constraint (4.27) together with Theorem 3.1 gives

lim / p\an'k\2dx= [ p(Q" + I)crn : andx < K2 [ pdx, (4.47)
°° J a Jn J n

where an(x) = CE'n(A, x)e(un) and

N
Q» + I = Y, SB,n(A, x)A2ViC£:'n(A, x)S£'"(A, x). (4.48)

»=1

A countable dense subset {pe}(^-i of the set of nonnegative differentiable functions con-
tinuous on the closure of the structural domain is introduced. Given n, put Sn = {pej^-i',
then there exists an index kn for which

[ pe\an'kn\2dx < K2 f pg(l + l/n)dx, for every pe in Sn (4.49)
Jn Jn

|F(un'fc") - F(un)| < 1/n, (4.50)

where un,fcn is the H^01,2(fi;R3) solution of

- div(Cn'fcn (A, x)e(un,fc")) = f (4.51)

and crn = C"'fcn(A,x)e(un,fcn). Passing to a subsequence if necessary and appealing
to the fundamental property of G convergence given in Sec. 2, there exists a function
CB(P,x) in C(A,x) for which

{Cn'fc"(P,x)}~=1, G converges to CB(P,x) (4.52)
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for all P in M(A). The sequence {(Cn,fc"(A,x)}^ constructed above satisfying (4.49-
4.52) is called a configuration minimizing sequence and it is evident that
limn_>00 F(u"'fcn) = HP00.

The displacement associated with the effective elasticity CE(A, x) is denoted by u,
where

— div(C*E(A, x)e(u)) = f, (4.53)

(7 = CE(A, x)e(u) and
N

Q + I = ^ S£(A, x)A^ViC£(A, x)S'b. (4.54)
i—1

We proceed to establish Theorem 4.6. For each pe in {p(}'^1, it follows that

[ p^(Q + I)ct : adx = lim f pe\an'kn\2dx
Jn n^°° Jn

< K2 f pedx. (4.55)Jq
Thus by density of {pe}(^=1, it is evident that CE(P, x) is in 7i°°(K, A, 7). Theorem 4.6
follows from the continuity of F(-) and (4.50).

To establish Theorem 4.7, one considers the design problems PM given by (4.33).
It is first shown that PAI < HP°°. Consider the configuration minimizing sequence
{(C",A;n(P, x)}^=1. It is evident that given the index M, one has that for all n > M,
that Cn'k"(A,x) is admissible for PM, and PM < F(un'fen). Sending n to infinity shows
that PM < HP00. Noting that PM is monotone increasing with M and bounded above
implies the existence of limM->oo PM■ Next it is shown that HP°° — limm_»00Pm.
Given M > 0, one can choose CM(P, x) in C(A, 7) with associated displacement uA/ in

Wo1'2(ft; R3) for which

[ PkWM\2dx < K2 [ pk( 1 + 1 /M)dx, for pk in SM (4.56)
Jq Jq

and
— div(CM(A, x)e(uM)) = f, (4.57)

where
PM < F(um) < PM + 1/M. (4.58)

From the fundamental property of G convergence and passage to subsequences if neces-
sary, there exists an effective elasticity C (P,x) in QC(A,7) such that {CM(P, x)}^=1

G converges to CE(P, x) for all P in A/*(A). The associated displacement u in Wq'2(Q-, R3)
solves

— div(CB(A, x)e(u)) = f. (4.59)
A 4  ^Here limM—00 F(u ) — F(u) and arguing as above one sees that C (A, x) is in

A, 7). Observing that HP°° < F(u) = limM->ooi F(uM) together with (4.58)
gives the set of inequalities

HP00 < lim F(uM) < lim PM < HP00. (4.60)
M-* 00 M—> 00
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One concludes that HP°° = limA/^oo PM — F{u) and that C (P, x) is a minimizer of
HP°° and Theorem 4.7 follows.
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