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Abstract

In this work, we propose a novel method for predicting stress within a multiscale lattice optimization framework. On

the microscale, a scalable stress is captured for each microstructure within a large, full factorial design of experiments.

A multivariate polynomial response surface model is used to represent the microstructure material properties. Unlike the

traditional solid isotropic material with a penalization-based stress approach or using the homogenized stress, we propose

the use of real microscale stress components with macroscale strains through linear superposition. To examine the accuracy

of the multiscale stress method, full-scale finite element simulations with non-periodic boundary conditions were performed.

Using a range of microstructure gradings, it was determined that 6 layers of microstructures were required to achieve

periodicity within the full-scale model. The effectiveness of the multiscale stress model was then examined. Using various

graded structures and two load cases, our methodology was shown to replicate the von Mises stress in the center of the

unit lattice cells to within 10% in the majority of the test cases. Finally, three stress-constrained optimization problems

were solved to demonstrate the effectiveness of the method. Two stress-constrained weight minimization problems were

demonstrated, alongside a stress-constrained target deformation problem. In all cases, the optimizer was able to sufficiently

reduce the objective while respecting the imposed stress constraint.

Keywords Structural optimization · Homogenization · Stress constraint · Multiscale optimization ·
Additive manufacturing · Lattice microstructures

1 Introduction

In engineering design, maximizing the strength-to-weight

ratio of components has always been a primary objective.

Reducing the weight of a component under stress con-

straints can often lead to a significant reduction in costs

and increase the performance of the entire assembly. The

design methodologies employed in the past were often lim-

ited by the manufacturing processes available at the time.

Until recently, subtractive manufacturing, where compo-

nents are manufactured by removing material from a solid

block, imposed severe constraints on the design of com-
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ponents, limiting the potential performance improvements

that could be made. With the advent of additive manufactur-

ing (AM) processes (Ngo et al. 2018), where components

are built layer-by-layer, many of these constraints have

been lifted. This has led researchers to reformulate old

design methodologies to suit the advantages posed by AM

better. Examples of this are multiscale optimization meth-

ods. Here, parameterized periodic microstructures are used

to vary the material properties throughout a discretized

domain. As shown by Ashby (1983), the material proper-

ties of periodic microstructures are functions of their relative

densities and configuration. By varying the density and

microstructure configurations throughout the domain, the

extremum of a given objective function, such as compli-

ance, is sought after. Multiscale optimization methods are

commonly performed across two scales and can lead to the

formation of metamaterials. Here, the macroscale properties

are derived from the arrangement of the periodic microstruc-

tures, rather than the bulk material properties. Multiscale

structures have been shown to exhibit extreme material

properties. For example, Sigmund (2000) proposed a class
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of two- and three-dimensional composite microstructures

with bulk moduli close to the theoretical limits, as defined

by the Hashin-Shtrikman bounds (Liu 2010).

An ideal optimization framework would possess the abil-

ity to go from optimized design straight to manufacture

and real-world application with minimal human interven-

tion and limited, if any, post-processing. To enable this,

stress is an important factor to consider during the optimiza-

tion, rather than as an afterthought. Optimized structures

without stress considerations are of limited practical use

and so the inclusion of stress constraints has been stud-

ied extensively for classical topology optimization (TO)

problems (Gebremedhen et al. 2019; Yang et al. 2018; de

Troya and Tortorelli 2018; Holmberg et al. 2013a, b; Hyun

et al. 2013; Bruggi and Duysinx 2012; Le et al. 2010; Parı́s

et al. 2010). The inclusion of stress in optimization how-

ever can be problematic. In TO, the “singularity” problem

describes a phenomenon where the optimum solution lies

in a degenerate subspace, inaccessible by gradient-based

optimization approaches (Sved and Ginos 1968; Cheng and

Jiang 1992). Several solutions have been proposed to this,

most notably the “qp” method, as introduced by Bruggi

(2008), or the ε-relaxation technique proposed by Cheng

and Guo (1997). Stress constraints are also problematic due

to the local nature of stress. Ideally, stress constraints should

be imposed locally, one for each cell, as implemented by

Duysinx and Bendsøe (1998). However, this formulation

can lead to thousands of constraints depending on the dis-

cretization. Due to the highly nonlinear response of stress,

computing the gradients of large numbers of stress con-

straints is very inefficient. Duysinx and Sigmund (1998)

proposed the use of a global constraint to overcome this.

By aggregating the individual cell stresses throughout the

domain into a single value, the computational expense can

be greatly reduced. The reduction in effort however comes

at a cost to accuracy. As the aggregation function essen-

tially smears the stress distribution, the optimization loses

local stress control. Clustered aggregation (Parı́s et al. 2010;

Holmberg et al. 2013b; Le et al. 2010) approaches aim

to provide greater control of the local stresses by splitting

the domain into several clusters and computing aggregated

stress values for each cluster.

Due to their importance, stress constraints have also been

studied within multiscale optimization frameworks. Arabne-

jad and Pasini (2012) optimized hip implants using graded

orthotropic microstructures. By using the homogenized

stiffness tensor of the microstructures, the stress on the

microstructure resulting from macroscale strains was com-

puted, in order to predict yield. Using the inverse homog-

enization method, Collet et al. (2018) proposed the use

of an energy-based stress method for avoiding stress con-

centrations in solid isotropic material with penalization

(SIMP)-based two-scale TO. While the authors were able

to optimize the microstructures to reduce stress concen-

trations, the macroscale was not considered, and the opti-

mization was performed through the application of arbitrary

strain fields. Coelho (2019) also performed optimization on

the microscale to optimize microstructures under stress con-

straints. By using the qp method to avoid stress singularities,

the authors performed TO to derive optimal microstruc-

tures for various load cases. Yu et al. (2019) developed

a stress-constrained optimization for 2D shell-lattice infill

structures. The authors proposed the use of two stress con-

straints, the von Mises yield criterion for the solid outer shell

layer and the Tsai-Hill yield criterion, for the lattice infill.

Cheng et al. (2019) applied a modified Hill’s yield criterion

to optimize structures using a cubic graded lattice subject

to stress constraints. Using polynomial functions to gener-

ate models of the elastic properties and the anisotropic yield

criterion, the authors were able to experimentally validate

their models.

In this work, we present a multiscale stress formulation to

determine the stress within microstructures without the use

of a homogenized stiffness tensor. By introducing a novel,

scalable stress matrix, we can determine the stress within

the microstructures directly using the macroscale strains. To

our knowledge, this has not been achieved in literature to

date. For example, in Cheng et al. (2019) and Arabnejad

and Pasini (2012), the researchers use the homogenized

stiffness tensor term to determine the homogenized stress.

In Section 2, we present the microstructure homogenization

process to obtain the elastic properties, followed by the

introduction of a novel scalable stress measure. Section 3

outlines the numerical validation performed using FEA

simulation to determine the accuracy of the multiscale

stress model. Finally, in Sections 4 and 5, we apply our

methodology to several multiscale optimization problems

before drawing conclusions.

2 Homogenization of lattice material
properties

In this work, a periodic lattice microstructure, as introduced

by Imediegwu et al. (2019), is employed. The lattice is

parameterized by the radii of seven cylindrical members

within a periodic unit cell. As shown in Fig. 1, four diagonal

members (numbered 1–4) connect each opposing vertex

of the cell and three members (numbered 5–7) align to

the principal axes. By varying the radius of each member

individually, the material properties of the microstructure

can be altered, which in many cases gives rise to anisotropic

material properties.

To derive the material properties of the periodic

microstructures, this work leverages the asymptotic homog-

enization (AH) method (Francu 1982; Bendsøe and Kikuchi
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Fig. 1 Lattice microstructure parameterization

1988). The advantage of using the AH method is the large

reduction in the computational expense associated with sim-

ulating the periodic structure. Representing the lattice unit

cells as homogeneous solids eliminates the need for explicit,

full-scale FEA of the multiscale structure during the opti-

mization. The effectiveness of the AH method has been

demonstrated widely in topology optimization (Groen and

Sigmund 2018; Fan and Yan 2019; Pasini et al. 2018; Yi

et al. 2016), composites (Bacigalupo et al. 2016), plate

structures (Cai et al. 2014), and several other fields. Further-

more, Wang et al. (2018) were able to confirm the validity

of the AH method through FEA and experiments.

The AH method links the macroscale and microscale

through their respective characteristic dimensions, often

referred to as the slow and fast variables. The slow variable,

representing the macroscopic coordinate, is defined as x and

the microscopic fast variable is defined as y = x
ξ

, where ξ

(0 < ξ ≪ 1) indicates the ratio of the size of the periodic

unit cell to the macroscale structure. With these variables, a

two-scale displacement field can be represented through the

asymptotic expansion

u(x, y) = u0(x, y)+ ξu1(x, y)+ ξ2u2(x, y)+O(ξ3) (1)

where u is the exact displacement field, composed of the

macroscopic displacement u0 and the microscopic pertur-

bations caused by the periodic nature of the microscale.

Thus, it follows that the displacement field varies ξ−1 times

faster with the microscopic variable y compared with the

macroscopic variable x. Provided there is a large scale of

separation between the macroscopic and microscopic vari-

ables, terms higher than the first order may be neglected,

enabling the effective material properties from a periodic

microstructure to be imposed on the macroscale. The exact

scale of separation required is further examined in Section 3.

Due to the layout of the lattice microstructure with indepen-

dently varying member radii, it is possible to achieve fully

anisotropic material properties. The homogenized stiffness

tensor EH , containing 21 independent terms can be used

to describe the homogenized material properties of the

periodic microstructure, defined as

EH =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

E11 E12 E13 E14 E15 E16

E22 E23 E24 E25 E26

E33 E34 E35 E36

E44 E45 E46

sym. E55 E56

E66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2)

By imposing periodic boundary conditions (PBC) on the

microstructure, EH can be obtained by solving the equation

(Hollister and Kikuchi 1992; Arabnejad and Pasini 2012)

EH
ijkl = 1

|�|

∫

�

EijmnMmnkld� (3)

where E is the stiffness tensor of the microstructure bulk

material, � is the domain of the microstructure, M is the

structural tensor relating the microscopic and macroscopic

stress defined as

εij = M ijklεkl (4)

M ijkl = 1

2
(δikδj l + δilδjk) − ε∗kl

ij (5)

where ε and ε are the macroscopic and microscopic strains

respectively and δ is the Kronecker delta function. The term

ε∗kl corresponds to the microscopic strain field resulting

from the kl component of the macroscopic strain tensor.

Using the virtual strain (ε1
ij (v)), the term ε∗kl is then

obtained by solving the equation

∫

�

Eijnoε
1
ij (v)ε∗kl

no (u)d� =
∫

�

Eijklε
1
ij (v)εkl(u)d� (6)

As linear theory is assumed, εkl can be defined as the

linear combination of 6 unit strains for three-dimensional

problems. In this case, the 6 unit strains are defined using

Voigt notation as

ε1 =

⎡

⎢
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0

0

0
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⎥

⎥

⎥

⎦
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⎡

⎢
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0
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0
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⎥

⎦

(7)

For a comprehensive derivation of the homogenization

process, the reader is referred to Hollister and Kikuchi

(1992).
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2.1 Microscale stress

In standard SIMP-based TO, stress is penalized for

intermediate design variables in a similar way to the

penalisation applied to the stiffness tensor (Duysinx and

Bendsøe 1998; Holmberg et al. 2013b; Yang et al. 2018).

In stress-constrained lattice-based optimization, the stress

has been derived using the homogenized stiffness tensor

(Cheng et al. 2019; Arabnejad and Pasini 2012). In this

work, we present a method for calculating the real stress

within the microstructures using the macroscale strains.

Due to the local nature of stress, the homogenized stress

results in unreliable stress predictions of the microscale. To

ensure more reliable predictions of the microscale stress, a

multiscale stress methodology is proposed in this work.

Using the strain fields, ε∗kl , from (6), stress fields

within the microstructure can be determined for each strain

imposed. Using Hooke’s law, the stress can be obtained

from the equation

σ = Eε∗kl (8)

The stress resulting from each unit strain defined in (7) can

then be defined in vector form using Voigt notation as

σ n = [σ n
1 , σ n

2 , σ n
3 , σ n

4 , σ n
5 , σ n

6 ] n = {1, . . . , 6} (9)

where σ n is the stress resulting from the nth unit strain

imposed, as defined in (7). The 6 stress vectors can then be

assembled into a stress matrix, �, defined as

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

σ 1
1 σ 1

2 σ 1
3 σ 1

4 σ 1
5 σ 1

6

σ 2
1 σ 2

2 σ 2
3 σ 2

4 σ 2
5 σ 2

6

σ 3
1 σ 3

2 σ 3
3 σ 3

4 σ 3
5 σ 3

6

σ 4
1 σ 4

2 σ 4
3 σ 4

4 σ 4
5 σ 4

6

σ 5
1 σ 5

2 σ 5
3 σ 5

4 σ 5
5 σ 5

6

σ 6
1 σ 6

2 σ 6
3 σ 6

4 σ 6
5 σ 6

6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(10)

where each row corresponds to the stress vector σ n resulting

from the nth strain vector εn. As linear theory is assumed

throughout this work, the stress matrix, � can be used to

calculate the stress within the microstructure as a result of

any arbitrary strain imposed on the microstructure. For an

imposed strain, ε̃, the scaled stresses, �, are defined as

�ij = (� ⊙ ε̃)ij (11)

where ⊙ indicates row-wise multiplication. It is important

to note that the equation above represents scaling of the

stresses using the real strains observed on the macroscale.

We are able to achieve this as we are assuming linear theory

and ε are unit strains. Finally, to determine the stress vector

resulting from the imposed strain, the scaled stresses are

superimposed according to

σ̃ =
6

∑

i=1

�ij (12)

where σ̃ is the stress resulting from an arbitrary strain

ε̃ imposed on the microstructure. Equations (11) and 12

can be combined and written compactly as σ̃ = �T ε̃.

Due to the large number of microstructures simulated in

this work, as discussed in Section 2.2, it is infeasible to

store the entire � field within each microstructure. To

reduce the computational expense, � is only stored at the

center of the domain for each microstructure. Maximum

stresses were also considered as an alternative to storing

the stress in the center of the microstructures. However, it

was found that a very fine mesh was required to achieve

convergence for the maximum stress due to the presence of

artificial stress concentrations. These stress concentrations

arise from the rapid change in material properties across

cell boundaries, combined with the sharp edges that are

formed due to the hexahedral mesh used. Although nodal

averaging, as shown in Imediegwu et al. (2019), was

employed, a very fine adaptive mesh would be required

to completely remove the artificial stress concentrations.

Due to the vast array of microstructures being simulated

as part of the DOE, it is impractical to mesh and simulate

the microstructures using such fine meshes. Furthermore,

a key criterion that was required from the chosen metric

was obtaining smoothly varying gradients. The stress in the

center of the domain can be expected to vary smoothly

with the change in microstructure permutations. However,

due to the local nature of stress, the maximum stress might

not appear in the same location for every microstructure

permutation, leading to potentially large discontinuous

changes in the gradient. While the stress at the center of each

microstructure may not predict the exact maximum stress,

the main goal of this work is to show that it is possible to

replicate the real stress within the microstructures resulting

from macroscale strains, and apply these stresses to stress-

constrained optimization problems. As the method proposed

here relies on capturing the stress at the center of the

unit cell, it is only applicable to lattice designs where

the material passes through the center of the unit cell.

In particular, it requires that all the design variables are

defined through the center to ensure it is possible to obtain

gradients. However, it may be possible to modify and

extend this methodology for use with other unit cell designs,

by choosing alternative locations for the stress capture.

The accuracy of the stress measure is further examined in

Section 3.
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2.2 Response surfacemethodology

The material properties of various permutations of lattice

microstructures were determined using FEA simulations.

The individual permutations of the microstructures were

generated using a full factorial design of experiments (DOE)

using 7 levels of radii for each structural member, leading

to 77 (823,543) permutations. The radii levels were selected

evenly within the range 0.05 ≤ ri ≤ 0.38, allowing

for fully dense structures. As shown by Imediegwu et al.

(2019), due to the 3 planes of symmetry present within

the microstructure, only 40,817 microstructures are unique,

known as parent microstructures. The remaining 782,726

child microstructures can be derived using rotations and

reflections of their respective parents. By obtaining the

material properties for the parent microstructures, the child

microstructures can easily be derived, greatly reducing the

computational expense of the microstructure simulations.

The FEA simulations were carried out using the open-

source partial differential equation (PDE) solver FEniCS

2019.1.0 (Alnæs et al. 2015). To avoid remeshing for

each microstructure, a fixed hexahedral mesh was used.

Following a convergence study of the stiffness tensor

and stress terms, the domain was discretized using 1

million equal-sized elements. Cells containing material

were assigned a Young’s modulus E = 2 GPa and Poisson’s

ratio ν = 0.3 using the material assignment algorithm

outlined by Imediegwu et al. (2019). Any cells deemed to

be void were assigned E = 100 Pa to avoid numerical

instabilities.

The material properties of isotropic and anisotropic

cellular solids are functions of their relative densities,

known as the scaling law (Ashby 1983; Koudelka et al.

2011). Due to the anisotropic material properties of

the microstructures employed in this work, the material

properties are modelled as functions of radii rather than

density, using multivariate polynomial functions. The

general form of multivariate polynomials can be defined as

ŷ = β0 + β1

(

∏k
i=1 x

ni

i

)

+ · · · + βj−1

(

∏k
i=1 x

ni

i

)

k
∑

i=1

ni ≤ m
(13)

where ŷ is the dependent variable, m denotes the order

of the polynomial, k = 7 is the number of independent

variables, β are the coefficient terms, and j is the number

of coefficient terms in the polynomial. Various degrees

of polynomials were tested to fit the discrete DOE to

ensure accurate approximations while limiting overfitting.

A 6th-order polynomial was found to provide the best

trade-off to create the response surfaces of EH , � and

the volume v. By generating these response surface models

to describe the lattice material properties, the discrete

material property space is transformed into a continuous,

differentiable property space, which enables the use of

gradient-based optimization techniques. The number of

coefficients can be calculated using j = (k+m)!
k!m! = 1716.

The polynomials were fitted by solving a series of least

squares problems. The response surfaces generated can be

defined as

EH
ij ≈ Ê

H

ij (r1, r2, r3, r4, r6, r7)

�ij ≈ �̂ij (r1, r2, r3, r4, r6, r7)

v ≈ v̂(r1, r2, r3, r4, r6, r7)

(14)

where the hat variables are the continuous, 7-dimensional

response surface models (RSMs) representing the respective

microstructure properties. Due to the major symmetry in

the stiffness tensor, 21 RSMs were created to assemble EH

and 36 RSMs were generated to construct 	. A response

surface was also created to model the volume, v, of the

microstructure permutations with respect to the member

radii. The average R2 values obtained for response surfaces

generated can be found in Table 1.

2.3 Macroscale yield criterion

To predict the yield of the microscale lattices, the von Mises

yield criterion is used. The von Mises criterion has been

used widely in literature, both in classical TO (Duysinx and

Bendsøe 1998; Hyun et al. 2013; Liu et al. 2019) and in

multiscale optimization (Yu et al. 2019; Collet et al. 2018;

Coelho 2019), where yield is predicted to occur when the

von Mises stress exceeds the yield strength of the material.

The von Mises stress criterion can be defined as

σ vm = 1√
2

(

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2

+6(σ 2
4 + σ 2

5 + σ 2
6 )

)0.5

≤ σ y

(15)

where σ y is the yield strength of the material and σi, i =
1, .., 6 are the components of the stress vector obtained

using

σ = �̂
T
ε̃ (16)

where ǫ̃ is the macroscale strain obtained by solving the

PDE defining the macroscale system.

Table 1 Table showing average R2 values for response surface models

generated

Property Number of models Average R2

EH 21 0.996

� 36 0.994

v 1 0.999
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Since stress is a local measure, the simplest formulation

of the stress constraints on the macroscale involves

introducing a stress constraint for every cell in a discretized

domain. The local stress constraints can be defined as

ge =
(

sf σ vm

σ y

)

e

≤ 1 e = 1, . . . , N (17)

where N denotes the number of cells in the domain and

sf is the chosen safety factor. However, due to the large

computational cost associated with computing the gradient

of a large number of nonlinear stress constraints, this

problem setup is highly inefficient. While it is possible

to re-define the constraint as max(g) ≤ 1, this function

is non-differentiable and so is incompatible with gradient-

based optimization algorithms. To overcome this problem,

constraint aggregation methods have been proposed in

literature. The two most commonly used aggregation

functions are the P-norm (Duysinx and Sigmund 1998;

Liu et al. 2019) and Kreisselmeier–Steinhsauser (KS)

(Kreisselmeier and Steinhauser 1979; Martins and Poon

2005) functions. The P-norm function was utilized in this

work and can be defined as

gpn =
(

N
∑

e=1

g
p
e

)

1
p

≤ 1 (18)

where gpn is the aggregated “pseudo-maximum” value of

stress and p is the aggregation parameter controlling the

accuracy and non-linearity of the aggregation function. The

P-norm function has the property

lim
p→∞

gpn(g, p) = max(ge) (19)

As the aggregation parameter is increased, the function

provides more accurate predictions of the maximum stress

within the domain. However, this also leads to the function

becoming more non-linear and can cause numerical issues

during the optimization. For finite values of p, the P-

norm function leads to overly conservative estimates with

gpn(g, p) > max(g). To account for this property, an

adaptive correction method, as proposed by Le et al. (2010),

is employed. The corrected P-norm value can be defined as

max(g) ≈ γ Igpn = g
γ
pn ≤ 1 (20)

where I ≥ 1 is the iteration number, g
γ
pn is the scaled P-

norm value, and γ I is the current adaptive correction factor

defined as

γ I = α
σ

vm,I
max

gI
pn

+ (1 − α)γ I−1 α ∈ (0, 1] (21)

where α is a continuity term controlling the level of

contribution from the previous iteration to avoid large

changes in the scaling. Initially, α is set to 0.5. As the

optimization converges, the ratio
σ vm

max

gpn
and by extension γ

should converge to a single value. When the change in γ

is less than 1%, α is set to 1, removing the influence of

previous iterations.

3 Numerical validation

To validate the stress method introduced in the previous

section, full-scale FEA was performed using ABAQUS

v6.14 with non-periodic boundary conditions (BCs). As

shown in Section 2, the multiscale methodology relies on a

large scale of separation between the macro- and microscale

structures, to ensure periodicity on the microscale is

enforced. Due to computational, time, and manufacturing

limits, the microstructures cannot be made infinitesimally

small in comparison with the macroscale structure as

assumed by the homogenization theory. In order to compare

the von Mises stresses predicted from the multiscale method

proposed in this work with the actual stress within a

full-scale model, convergence studies were first performed

to identify the minimum relative size of microstructures

required to achieve periodicity within the microstructure.

While there have been studies in literature examining

this, the studies have been conducted using uniform

microstructures where a single microstructure permutation

is distributed throughout the macroscale domain. Recently,

Cheng et al. (2019) examined the convergence properties

of a uniform cubic microstructure and found that 6

microstructures along each edge of a cube were required

to achieve convergence for displacement. To examine

the impact of spatially varying microstructures on the

convergence, full-scale FEA was performed using various

graded distributions of microstructures. To reduce the

computational expense of the FEA model, only the face to

face members, r5, r6, and r7 in Fig. 1, were simulated. To

ensure a fair comparison, additional response surfaces were

generated using the 3-member lattice design, following the

procedure outlined in Section 2. These face to face member

response surfaces were used in the following sections

to compare the accuracy of the multiscale stress method

against full-scale model results. While the general behavior

of the 7-member lattice shown in Fig. 1 and the 3-member

lattice used in this section will differ, these differences are

accounted for through the � matrix.

3.1 Homogenization convergence

A 1000 mm3 cube was used for all the convergence studies.

A force of 80 N was distributed on the top surface (y =
H ) with fixed BCs (ux = uy = uz = 0) along the bottom

(y = 0). The bulk material properties applied during

the homogenization process in Section 2 were also used

for the FEA model with E = 2 GPa and ν = 0.3. The

convergence properties were examined by increasing the
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Table 2 Table showing grading functions used

Type Direction r5 r6 r7

Linear
x 0.1 +

(

x
5L

)

0.1 0.1

y 0.1 0.1 +
( y

5H

)

0.1

Sine
x 0.1 + sin( xπ

L )
5

0.1 0.1

y 0.1 0.1 + sin( yπ
H )

5
0.1

number of layers of microstructures within the cube, from

two to ten layers, for a selection of graded microstructures.

There were two types of grading applied, a linear grading

and a sinusoidal grading. In both cases, the grading was

applied in the x- and y-directions independently. The linear

and sine grading function equations are shown in Table 2.

The corresponding graded structures are shown in Fig. 2.

These grading functions were chosen to simulate a variable

lattice geometry. While the exact distribution of lattices

observed during an optimization will be highly problem

dependent, the grading functions were used to determine the

robustness of the proposed methodology, when subject to a

variable lattice geometry. The magnitudes of the functions

were chosen to ensure that the lattice truss radii fall in radii

range defined in Section 2.2.

Figure 3 shows the convergence of the normalized max-

imum displacement for a varying number of microstructure

layers. In each case, the displacement converges to within

2% when using six layers compared with the ten-layer

case. These results are in line with the results observed

by Cheng et al. (2019) for a uniform microstructure and

suggests that the distribution of microstructures within the

macroscale structure has limited impact on the relative size

of microstructure required to achieve periodicity on the

microscale.

3.2 Multiscale stress vs. full-scale stress

To examine the accuracy of the multiscale stress method,

the von Mises stress predicted using the multiscale method

was compared with the stresses observed from full-scale

FEA using various microstructure distributions. In total

eight cases were tested, a compressive load and a shear

load, individually applied to the four graded structures

shown in the previous section. The geometry and BCs used

for assessing the convergence of the microscale properties

were replicated for these analyses. Using six layers of

microstructures, the von Mises distribution through a single

column of the microstructure was used to examine the

accuracy of the multiscale model as shown in Fig. 4. Due

to the large computational cost of including additional

layers and based on the result from the convergence study

shown in Fig. 3, six layers of microstructures were chosen Fig. 2 Microstructure grading
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Fig. 3 Displacement

convergence for uniform, linear,

and sine graded structures

to study the stress response of the full-scale model. The

multiscale model was evaluated using the python library

FEniCS 2019.1.0 (Alnæs et al. 2015). A mesh convergence

study was conducted, and 27,000 hexahedral elements were

required for the multiscale model and an average of 30

million tetrahedral elements were used for the full-scale

Fig. 4 Example of the multiscale (homogenized material properties)

and full-scale models (modelling individual lattices) with contours

showing stress

models. A 2.7-GHz quad-core CPU with 16 GB of memory

was used to run the multiscale model, with a total compute

time of 1 min. The full-scale FEA models took on average

120 min, which includes the model generation, meshing,

and the FE system solve. The full-scale model was solved

using 32 Intel Xeon E5 cores with MPI and 64 GB of

memory. This large disparity in mesh size and compute

times highlights the significant advantage of using the AH

method.

As shown in Figs. 5 and 6, the multiscale stress model

is able to replicate the von Mises stress in the center of

the microstructures from the full-scale FEA simulations to

within 10% in six out of eight cases tested here. In both

the load cases, periodic distributions of von Mises stress

can be seen, with peaks and troughs in stress forming due

to the interaction of the vertical and horizontal members.

In the compressive case, the horizontal members provide

additional load paths, reducing the stress in the center of the

unit lattice. In the shear case, the stress peaks depend on

the microstructure configuration. For example, the relatively

thin horizontal members in the linear-y and sin-y graded

structures lead to stress spikes in the lattice centers, and

the large horizontal members in the linear-x and sin-x cases

produce to troughs in von Mises stress. For a more thorough

examination, the six individual stress components used to

construct the von Mises have been plotted in Figs. 7 and 8.

An important feature to note in these figures is the impact

of edge effects. As there is a breakdown in periodicity at

the domain boundaries, the multiscale method cannot make

accurate predictions of the field variables in this region.

Examples of this can be seen in the regions y = 10 mm

and y = 0 mm within Fig. 7b and d, with the deviation

of σyy , σxx in Fig. 8a or σxy in Fig. 8d. From Figs. 7

and 8, we observe that that the multiscale stress method is

able to effectively predict the dominant stress components

(σyy in compression and σxy in shear) and replicate their
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Fig. 5 Load case: compressive -

comparing von Mises stress

predicted using the multiscale

model against full-scale FEA

models for various graded

microstructures (lines, full-scale

von Mises stress; dashed lines

multiscale von Mises stress)

Fig. 6 Load case: shear -

comparing von Mises stress

predicted using the multiscale

model against full-scale FEA

models for various graded

microstructures (line, full-scale

von Mises stress; dashed line,

multiscale von Mises stress)
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Fig. 7 Compressive load -

comparing the six individual

stress components predicted

using the multiscale model

against full-scale FEA models

for various graded

microstructures (line, full-scale

stress; dashed line, multiscale

stress)

magnitude in the center of the unit cells for both load cases.

The error (for the dominant terms) in the center of the unit

cells in the middle of the structure is less than 10% for

all the compressive cases and the shear load cases for the

linear-x and sin-y graded structures, when compared with

the full FEA results. In the linear-y and sin-x graded cases

under a shear load, the multiscale method overpredicts the

magnitude of stress by 20% and 40% respectively. Based on

these plots and the contour plots shown in Figs. 5 and 6, it

is clear that the peak stresses often occur in the structural

members themselves or at their intersection. As the current

methodology is restricted to capturing the stress in the

center of the unit cell due to computational limitations,

it cannot accurately represent these stresses. However, in

future research, there is scope to include additional points

of stress capture, allowing for better replication of the

interaction of the structural members and thus the peak

stresses that occur in the lattices. In this work, the focus

is aimed at replicating the real stress at the center of the

microstructures, and applying these stresses to optimization

problems. As shown through the von Mises distributions

in Figs. 5 and 6, as well as the individual components of

stress shown in the Figs. 7 and 8, the multiscale stress

method has been shown to be effective at predicting the

stress in the center of periodic lattice microstructures and

gives confidence in its use in optimization problems.

4Macroscale optimization

A common approach in multiscale optimization is to map

microstructures onto TO results using the microstructure

densities. In this work, we directly optimize the domain

using the response surface models generated to represent the
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Fig. 8 Shear load - comparing

the six individual stress

components predicted using the

multiscale model against

full-scale FEA models for

various graded microstructures

(line, full-scale stress; dashed

line, multiscale stress)

microstructure properties (stiffness tensor and stress). The

optimizer is able to independently vary the radii (density)

of the 7 structural members shown in Fig. 1, within each

cell in the domain. In this work, the design variables for the

optimization are the N × 7 radii, defining each member of

each microstructure that makes up the macroscale domain.

The design variables used in the optimization can be defined

as a matrix

χ =

⎡

⎢

⎣

r1,1 r2,1 r3,1 r4,1 r5,1 r6,1 r7,1

...
...

...
...

...
...

...

r1,e r2,e r3,e r4,e r5,e r6,e r7,e

⎤

⎥

⎦
(22)

where each row corresponds to the vector of microstructure

radii within each cell and each column represents one

of the 7 structural members shown in Fig. 1. The

flowchart shown in Fig. 9 outlines the stress-constrained

optimization methodology proposed in this work. From

the flowchart, it can be seen that the approach taken in

this work does not involve simultaneous optimization of

the micro- and macroscale topologies. The optimization is

performed by employing a predetermined microstructure

design, shown in Fig. 1, for which a full factorial DOE

is created prior to the macroscale optimization. The

discrete DOE is converted into a continuous response

surface model which allows for the use of gradient-based

optimization techniques and avoids the need to simulate

every microstructure encountered during an optimization.

During the optimization, the optimizer is able to vary the

radii of the microstructures in each macroscale cell, to

generate a range of material properties which are defined

by EH , v, and �. As this optimization approach selects

microstructures to tailor the distribution of EH , it can in

some ways be compared with free material optimization

techniques (Zowe et al. 1997). In this work, we consider the

problem of minimizing a volume subject to a global stress

constraint, obtained using the P-norm formulation defined
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Fig. 9 Flowchart showing optimization process

in Section 2.3. The optimization problem can be defined as

minimize
χ

V =
N

∑

e=1

ve

subject to: KU = F

1 − γgpn ≥ 0

0 < rmin ≤ r i ≤ rmax i = 1, . . . , 7

(23)

where K is the global stiffness matrix of the structure, U is

the nodal displacement vector, F is the load vector, V is the

total volume, v is the cell volume, and N is the total number

of cells. The member radii are bound by rmin = 0.08 and

rmax = 0.38, to ensure the response surface models outlined

in Section 2.2 remain valid. The global stiffness matrix is

assembled using the element stiffness matrices, ke, which

are defined by

ke =
∫

�e

BT Ê
H

B∂�e (24)

where B is the strain-displacement matrix, �e is the cell

volume, and Ê
H

is the stiffness tensor obtained from the

response surface model generated from the microstructure

simulations. The optimization is terminated once the change

in objective function over three iterations is less than

0.001.

Zhu et al. (2017) were able to demonstrate the capability

of multiscale structures to optimize target deformation

problems. Here, we are additionally including stress

constraints into target deformation problems to ensure

the final geometries do not yield. The target deformation

problem can be defined as

minimize
χ

η = (U − U t )
T β(U − U t )

subject to: KU = F

1 − γgpn ≥ 0

0 < rmin ≤ r i ≤ rmax i = 1, . . . , 7

(25)

where U and U t are the actual and target displacements,

respectively; β is a function defining the subdomain over

which the target deformation is required. The objective

function, η, measures the error between the target and
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achieved displacements over the subdomain. Once again,

the optimization is terminated when the change in the

objective function is less than 0.001 over three successive

iterations.

To solve the optimization problems outlined above, the

open source interior point optimization package IPOPT

3.12.12 (Wächter and Biegler 2006) was utilized. The

gradients of the objective function and constraint required

for the interior point method are obtained using the

algorithmic differentiation (AD) python library dolfin-

adjoint 2019.1.0 (Farrell et al. 2012).

4.1 Helmholtz filtering

In TO, the problem of checkerboarding is well known

(Sigmund and Petersson 1998). Poor numerical modelling

leads to the formation of void and solid elements in a non-

physical alternating checkerboard fashion. Additionally,

Sigmund and Petersson (1998) discussed the mesh-

dependent nature of optimized geometries. Regularization is

often used to circumvent these issues with density (Bourdin

2001) and sensitivity filters (Sigmund and Petersson

1998) being most commonly used. Recently, Lazarov and

Sigmund (2011) presented a filtering method based on

the solution of Helmholtz equations. The filtered design

variables r̃ can be obtained by solving the Helmholtz-type

PDE

r̃ i = r i + κ2∇2r̃ i i = {1, . . . , 7} (26)

where κ is defined as the filter radius. In this work,

κ has been set to 2D where D is the cell width used

in the mesh. Due to the inherent penalization of lattice

microstructures, the multiscale formulation outlined in

Section 2 does not guarantee smoothly changing design

variables (member radii) through the design domain. For

the purposes of manufacturing and stress concentrations,

avoiding discontinuous changes in the design variables is

crucial. While the Helmholtz filter used serves a purpose of

producing checkerboard free geometries and avoids mesh

dependency, in the context of multiscale lattice optimization

it also ensures smooth continuous structures within this

optimization framework.

5 Results and discussion

To test our formulation, we employ three problems. The

first two test cases were defined to ensure a stress

constraint violation at initialization, to force the optimizer

to simultaneously reduce the objective function and stress

constraint violation.

5.1 Box problem

The first example used to validate the multiscale stress

method optimization is a box problem. The problem domain

is a cube supported at the bottom four corners, as shown

in Fig. 10a. A distributed load of 70 N is applied over a

4 mm2 area in the center of the top surface. The domain

is discretized using 27,000 hexahedral elements. The safety

factor, sf , is set to 1.5 and p is set to 16 to allow for

better local control of the stress. The p value was chosen

based on experience, with the higher values of p found

to cause numerical instabilities and convergence issues

and lower values leading to overly conservative designs.

The convergence plots for the volume fraction and stress,

shown in Fig. 10, show the volume fraction converging

to 0.28, which represents a weight saving of over 70%

compared with that of a solid structure, while respecting

the stress constraint of 33.3 MPa. The maximum stress

increases rapidly at the beginning of the optimization as

the volume fraction is reduced, leading to the formation of

large stress concentrations. From iteration 30 and onwards,

material is added to reduce the stress constraint violation.

The combination of employing an adaptive stress constraint,

which constantly scales the p-Norm value and due to the

Fig. 10 Box problem setup and optimization convergence
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highly non-linear stress function resulting from the p-Norm

formulation, the optimizer requires over 180 iterations

before the stress constraint is respected. A potential solution

to improve the convergence may be to initialize the

problem with a low p value and progressively increase

the value over course of the optimization. Alternatively,

the continuity term, α, could also be tuned to avoid large

changes in the adaptive scaling factor. It should be noted

that this objective function value and corresponding lattice

distribution, discussed below, are dependent on the chosen

safety factor and p value. Higher safety factors or lower

p values will lead to more conservative designs and alter

the optimum lattice distribution. However, a full-design

study exploring the impact of these parameters is outside

the scope of this paper. The optimized distribution of the

lattice members is shown in Fig. 14. For further clarity,

the thresholded distribution of the diagonal lattice members

is shown in Fig. 11 and the volume fraction is shown in

Fig. 12. It is interesting to note that the principal stresses are

aligned to the direction of the structures formed by each of

the diagonal members. The structures themselves are also

seen to align to the microstructure member directions on

the microscale. For example, member 1 is aligned along

the same direction on the macroscale and the microscale

as seen in Figs. 11a and 1 respectively. In Fig. 13, the

principal stresses have been overlaid on the cross section of

the high-density regions formed by member 1 to highlight

the alignment of the members in the direction of the

principal stresses. By aligning the members in such a

way, the optimizer is able to create efficient load paths to

reduce the stresses induced within the microstructures while

minimizing the overall volume fraction. In Figs. 12 and 14,

the four corners are shown to contain the highest volume

fractions, with the member radii reaching rmax . Due to the

fixed BCs in the four corners, these areas are prone to stress

concentrations, which are alleviated by the highly dense

lattices.

5.2 MBB beam problem

The second stress-constrained volume minimization exam-

ple is a 3D Messerschmitt–Bölkow–Blohm (MBB) beam

problem, as shown in Fig. 15a. A total load of 2000 N is

applied along the top surface with 2 fixed supports at each

end of the beam. The domain is discretized using 90 × 18

× 18 hexahedral elements. The safety factor sf is set to

1.5 and the P-norm aggregation parameter, p, is set to 16.

The convergence history for the volume fraction and stress

are shown in Fig. 15. The volume fraction is initialized at

0.95 and converges to 0.3, with the stress simultaneously

being reduced from 55 to 33.3 MPa. The initial oscilla-

tions in the maximum stress arise from a large reduction in

volume fraction, causing spikes in the maximum stress. As

Fig. 11 Box problem – optimal distribution of diagonal lattice

members with threshold = 0.14
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Fig. 12 Box problem – volume fraction with threshold = 0.5

with the box problem, the optimizer begins to add mate-

rial after 40 iterations to reduce the stress concentrations.

The von Mises distribution and principal stress directions

are shown in Fig. 16. The optimized lattice distribution is

shown in Fig. 17. The symmetry of the microscale members

is once again present on the macroscale, as highlighted by

the diagonal members surrounding the supports in Fig. 17.

Comparing the distribution of members in Fig. 17 and the

principal stress directions shown in Fig. 16b, the propen-

sity of the principal stress and members to align along the

same direction is once again clear. For example, member

6, which is aligned in the y-direction, is dominant directly

above the supports where the stress travels directly down.

Another notable feature is the distribution of the diagonal

members. Members 1 and 4 appear on the left above the

supports with members 2 and 3 mirrored on the right. Here,

the diagonal members are aligned to most efficiently trans-

fer the load to the supports from the area of high density in

the center of the upper surface. As the angle of the principal

stresses reduces closer to the horizontal, member 5, which

is aligned to the x-axis, begins to dominate. The optimizer is

Fig. 13 Box problem – principal stresses directions overlaid on the

thresholded r1 distribution along the plane x + z = 10

Fig. 14 Reconstruction of optimized box

biased toward using the face to face member in this case, as

it has a smaller contribution to the volume fraction of each

unit cell. Therefore, despite the principal stress not being

fully aligned to the horizontal, the horizontal member can

be seen to dominate between the high-density regions of the

diagonal members and upper surface. As with the box prob-

lem, the regions of highest volume fraction are found near

the supports due to the stress concentrations that arise as a

result of the fixed BCs, as shown in Fig. 16a. By pushing the

member radii to their maximum in this region, the optimizer

Fig. 15 MBB beam problem setup and optimization convergence
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Fig. 16 MBB beam problem – von Mises stress distribution and

principal stress directions

is able to reduce the stress induced on the microstructures

and ensure the constraint is obeyed.

5.3 Target deformation

The final problem solved in this work is a target deformation

optimization with stress constraints, with application to the

design of morphing structures. To induce a load on the beam

geometry shown in Fig. 18a, fixed Dirichlet BCs of ux =

0.3 mm are specified at each end. The target deformation

Fig. 17 Lattice reconstruction

of optimized MBB beam

Fig. 18 Target deformation problem setup and optimization conver-

gence

is a sine wave in the y-direction, defined according to the

function

y = 0.25 sin

(

2π(x − 15)

L

)

+ 0.25, 0 ≤ x ≤ 60 (27)

where y is the displacement (in mm) of the beam in the y

direction, L is the length of the beam, and x is the distance

along the beam. The wave is defined to achieve a maximum

displacement of 0.5 mm in the center of the beam. The target
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Fig. 19 Target, constrained, and unconstrained displacements

deformation is only specified along the top surface of the

beam and sf is set to 1 for this problem. The aggregation

parameter p is set to 16 and the beam is discretized using

60 × 15 × 15 hexahedral elements. The plots depicting the

objective function and maximum von Mises stress through

the optimization are shown in Fig. 18. As a comparison,

an unconstrained problem was also set up with the same

parameters. While there are no sudden spikes in the stress

during the optimization of the stress-constrained case as

seen in previous problems, the stress convergence is much

more oscillatory. This is caused by a frequent change in

α leading to jumps in the adaptive scaling. This problem

may be alleviated by further reducing the threshold at which

the continuity term changes, or by including intermediate

values of α. As expected, the unconstrained case leads to a

better objective function. While the unconstrained problem

reaches a maximum displacement of 0.498 mm with an

RMS surface error of 1.35 × 10−6 mm, the distribution of

member radii leads to stress concentrations with a maximum

von Mises stress of 134 MPa. The target, constrained and

unconstrained displacements can be seen in Fig. 19. As

shown in Fig. 20, the inclusion of the stress constraint

has the effect of smearing the geometry, removing the

stress concentrations and resulting in a maximum von Mises

stress of 44 MPa. Despite the reducing the maximum stress

within the structure, the constrained solution reaches a

maximum displacement of 0.51 mm with an RMS surface

error of 2.01 × 10−6 mm, demonstrating the effectiveness

of the novel multiscale stress model introduced in this

work. The optimized distributions of lattice member radii

for the constrained and unconstrained cases are shown in

Fig. 20. In the unconstrained case, the optimization results

in an intricate compliant mechanism which restricts the

displacement at either end of the beam while allowing

for the extension in the center. On the other hand,

the constrained solution appears to be heavily “filtered”

compared with the unconstrained case. The distribution of

the members is more homogeneous and with a lack of

detail. This effect prevents the stress concentrations that

arise from thin members, as seen in the unconstrained

case. In the constrained problem, the optimizer limits the

Fig. 20 Lattice reconstruction of unconstrained and constrained target deformation solutions
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variation in member thickness to reduce the stress induced

on the microstructures while ensuring the structure deforms

as required.

6 Conclusion

In this work, we propose the use of real microscale stress

components to perform stress-constrained optimization

using graded lattice structures. Stress matrices were

captured using the six independent strains applied during

the homogenization process of the lattice microstructures.

It was shown that it is possible to replicate the stress

within the microstructure resulting from large-scale strains,

through the superposition of the strain-scaled stress

matrix. To validate this methodology, full-scale FEA

was performed using non-periodic BCs and a simplified

microstructure model. First, the scale of separation (number

of microstructure layers) required to achieve periodicity was

studied. It was determined that a minimum of six layers

of microstructures are needed to replicate the conditions

specified by the AH theory. Using this result, various

graded microstructures were individually subjected to a

compressive and a shear load to compare the predictions

made by the proposed methodology with those from full-

scale FEA. In six out of the eight cases tested, the

multiscale stress model was able to replicate the von

Mises stress in the center of the unit cells to within

10% of the values predicted by the full-scale modelling.

The predictions of individual stress components were also

presented. It was observed that the multiscale stress method

is able to replicate the dominant stress components with

reasonable accuracy, at the center of the lattice cells.

Three numerical examples were then tackled using the

proposed stress methodology. The first two examples were

weight minimization problems, subject to maximum stress

constraints. In both cases, the optimizer was able to reduce

the weight (volume fraction) by over 60%, while respecting

the imposed stress constraints. Examining the optimized

structures, it was found that the principal stresses were

aligned in the direction of the individual microstructure

members, to create efficient load paths, reducing the excess

strains imposed on the microstructures. The macroscale

distribution of the individual microstructure members was

also found to replicate the direction of the members

on the microscale. Lastly, a target deformation problem

was solved with and without stress constraints. In both

cases, the optimizer was able to achieve the required

deformation, without violating the stress constraint in the

stress-constrained case.

Future research should be directed toward extending

the proposed methodology by including additional points

of stress capture to better represent the stresses found in

the lattice struts and their intersections, as these are often

locations of stress maxima. It may also be possible to

include additional models to represent the behavior of the

lattices at boundaries of the macroscale domain where there

is a breakdown in the assumption of periodicity.
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