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INTRODUCTION 

 

Stress not only affects the wellbeing of commercial 

chickens, it also results in an economic cost to the industry 

that cannot be ignored. In general, captive chickens are 

exposed to a variety of stressful conditions in commercial 

poultry facilities. Some of the routine management practices 

themselves are stressful to the birds, and these are coupled 

with environmental pressures (Otu-Nyarko, 2010). Stress 

refers the way an organism responds to environmental 

stimuli that it perceives as a real or anticipated threat to its 

survival or wellbeing (Harvey et al., 1984). Environmental 

stressors, such as temperature and fear, have deleterious 

effects on the productive performance of laying hens 

(Mushtaq et al., 2013). In particular, heat stress depresses 

egg production (Muiruri and Harrison, 1991), egg weight 

(Balnave and Muheereza, 1997), and shell quality 

(Mahmoud et al., 1996). This is generally accompanied by a 

suppressed of feed intake, which is a likely cause or the 

decline in production. Therefore, understanding 

environmental conditions is crucial to successful poultry 

production and welfare. 

There have been several attempts to measure stress 

responses in animals (Gutierrez, 2013). However, 

conventional methods for measuring stress are not 

necessarily good indicators of welfare because they detect 

stress only after it has negatively affected the animals. One 

of the major challenges in assessing physiological responses 

to stress is that collecting data from livestock is often 

stressful in its own right (Freeman, 1976). Therefore there 

is a push to measure stress non-invasively and early enough 

to enable the farmer to remove the stressor before it has an 

adverse effect. The sound produced by animals is a 

candidate bio-signal that can be easily measured from a 

distance, and will not thereby cause any additional stress for 

the animals (Blahová et al., 2007). Furthermore, in recent 

years, sound analysis has become an increasingly important 

tool for interpreting the behavior, health condition, and 

wellbeing of animals (Steen et al., 2012; Chung et al., 

2013a, b; Lee et al., 2014).  

The field of bioacoustics, in particular, the study of 

animal vocalizations, has received increasing attention in 
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recent years with the advent of new recording and analysis 

technologies (Otu-Nyarko, 2010). Bioacoustics is the study 

of the acoustic characteristics and biological significance of 

sounds emitted by living organisms (Tefera, 2012). Birds 

are one of the few animal groups known to exhibit vocal 

learning. They rely on acoustic communication for 

territoriality, mate choice, offspring recognition, alarm 

signaling, and individual recognition to make their presence 

known to one another (Waldvogel, 2000). Such avian 

expressiveness can be used as a tool to understand the bird’s 

wellbeing especially under stressful conditions. 

In this paper, we develop a non-invasive, inexpensive, 

and automatic online-monitoring prototype that monitors 

the avian vocalizations in a commercial poultry facility and 

notifies the producer of a stressful situation when it occurs 

in the coop. The proposed system includes a detection and 

classification model that arranges three binary-classifier 

support vector machines (SVMs) hierarchically. The model 

begins by selecting an optimal acoustic feature subset from 

the sound emitted by the laying hens in the chicken coop. 

This process occurs offline, and it is unnecessary during the 

subsequent real-time online process. The detection and 

classification module detects the stress-related sound and 

classifies it into subsidiary sound types that are arranged 

hierarchically. For instance, the detected sound might be 

caused by physical stress from low or high temperatures, or 

mental stress resulting from fear. Finally, an experimental 

evaluation was performed using real sound data from an 

audio-surveillance system. The accuracy of the stress 

detection approached 96.2%, and the stress classification 

was validated, confirming that its recall and precision 

measures were satisfactory. 

 

MATERIALS AND METHODS 

 

Sample sound collection  

The experiment was conducted in a commercial poultry 

production farm located in Jinju, South Korea. A total of 

120 chickens, specifically, 44-week-old Hyline brown 

layers, were randomly housed in battery type metal wire 

cages. The dimensions for each cage were 60×60×40 cm. 

The cages were located in a controlled chamber (4×4.2×2.6 

m) with constant temperatures set at 10°C±2, 21°C±2, and 

34°C±2 during the entire period of the study. Each 

individual birdcage offered ad libitum access to feeding and 

drinking stations. The experiment consisted of 4 groups 

with 15 replications, and each replication included 2 birds 

per cage. Each group was exposed to physical stressors by 

changing the environmental conditions, that is, with 

temperature changes of 10°C±2, 21°C±2, and 34°C±2. One 

group was exposed to mental stressors resulting in fear. This 

was accomplished by hitting the cage with a stick while the 

temperature remained at 21°C±2. 

The sounds emitted by the brown layers were recorded 

with a digital camcorder (Sony HDR-XR160, Tokyo, Japan) 

that was placed inside the chamber facing the cages for at 

least 30 to 60 minutes. The recorded video files were 

converted to a MP3 file by using a free video to MP3 

converter, available online (v. 5.0.17 build 903 

www.dvdvideosoft.com). The converted MP3 files were 

then digitalized using Cool Edit (Adobe, San Jose, CA, 

USA) in a PC with a standard soundcard (Realtek AC97) at 

16 bits and a 44.1 kHz sampling rate. The sounds collected 

were classified using a manual labeling method. This 

procedure is based on an acoustic analysis combined with a 

visual spectral analysis to extract specific sounds from the 

entire recording. A human operator was tasked with 

listening to the recorded files in their entirety and making 

and describing every sound. Labeling was done offline to 

extrapolate only those sounds that could be classified as 

calls from the operator’s visual observation of the 

spectrogram and auditory confirmation. 

 

Acoustic features and feature subset selection method 

The universal sound features set was initially 

established from the popular features found in acoustic 

literatures. The following features were derived from the 

time domain: Root mean square (RMS), power, energy, 

absolute extremum, intensity, shimmer, jitter, harmonic-to-

noise ratio (HNR), and pitch. In addition, the following 

features were derived from the frequency domain: Formant 

F1 to F9, and the power spectral density (PSD) P1 to P39. A 

brief summary of these sound features is provided in what 

follows (Boersma, 2002; Slocombe and Zuberbühler, 2006; 

Guyer, 2009): 
 

Time domain features:  

i) RMS: The RMS is an amplitude modulated by a 

Gaussian random process. 

ii) Power: The power is defined as 
2

1

2
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t

t
dttxtt , 

where x(t) is the amplitude of the sound and (t1,t2) is the 

time range. 

iii) Energy: The energy is defined as 
2

1

2 )(
t

t
dttx , where 

x(t) is the amplitude of the sound. 

iv) Absolute extremum: The absolute extremum refers 

to the absolute value of the maximum amplitude from the 

sound. 

v) Intensity: The sound intensity is the sound power per 

unit area.  

vi) Shimmer: The shimmer is the average absolute 

difference between the amplitudes of consecutive periods, 

divided by the average amplitude. 

vii) Jitter The jitter is the average absolute difference 

between consecutive periods, divided by the average period. 

viii) HNR: The HNR measures the ratio of the harmonic 
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signal power and the noise power in the observation 

ix) Pitch: The pitch is the relative concept of frequency. 
 

Frequency domain features:  

i) Formant F1 to F4: Formants are characterized by the 

frequency of the peak, the resonance factor, and the relative 

amplitude level of the sound. The frequency of acoustic 

resonance was extracted between 0 to 5,000 Hz. 

ii) PSD, PSD1 to PSD39: The PSD is the average power 

for the sound within a certain time and frequency range, 

expressed as HzPa /2 . We used 39 PSDs that were 

extracted every 100 Hz between 100 to 4,000Hz. 
 

Selecting attribute (or feature) subset efficiently for 

pattern recognition is an important issue (George and Bo, 

2008). Attribute selection involves selecting a subset of 

attributes from a feature set in order to provide a compact, 

precise, and fast recognizer, with minimal performance 

degradation, by removing the attributes that are ineffectual, 

redundant, or least-used (Hall, 1999). Reducing the 

dimensionality of the data reduces the size of the hypothesis 

space and allows algorithms to operate faster and more 

effectively. In this paper, we used correlation-based feature 

selection (CFS), which has been verified as the best 

attribute subset selection method (Hall, 1999; Yu et al., 

2010). The CFS uses the features’ predictive performances 

and inter-correlations to guide its search for a suitable 

feature subset. It can drastically reduce the dimensionality 

of datasets while retaining or improving the performance of 

learning algorithms. At the heart of the CFS algorithm is a 

heuristic for evaluating the worth or merit of a subset of 

features. This heuristic takes into account the usefulness of 

individual features for predicting the class label, along with 

the level of inter-correlation among them. The CFS first 

calculates a matrix of feature-class and feature-feature 

correlations from the training data and then searches the 

feature subset space using a best first search. The version of 

CFS used in this paper includes a heuristic that considers 

locally predictive features and avoids a re-introduction of 

redundancy. 

 

Binary classifier support vector machine 

A SVM is presented in the proposed section, warranting 

a briefly review of some of the basic literature on SVMs 

(Cristianini and Shawe-Taylor, 2000; Lee et al., 2013). In 

order to explain the principles for SVMs, we shall examine 

the simplest case, a two-class problem, where the classes 

are linearly separable. The goal in this case is to separate 

the two classes using a function that is induced from the 

available examples. Many possible linear classifiers can 

separate the data, but only one can maximize the margin. 

This linear classifier is called the optimal separating 

hyperplane. Consider the problem of separating the set of 

training vectors that belong to two separate classes, 

 

}1,1{,)},,(,),,{( 11  yRxyxyxD nll ,   (1) 

 

with a hyperplane, 

 

<w,x>+b = 0.                                (2)  

 

If the set of vectors is separated without error and the 

distance between the vectors closest to the hyperplane is 

maximal then, this set is defined as optimally separated by 

the hyperplane. Separating the hyperplane in canonical form 

satisfies the following constraints: 
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The distance d(w, b; x) of a point x from the hyperplane 

(w, b) is 
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Hence, the hyperplane that optimally separates the data 

is the one that minimizes the following: 

 

minimize 
2
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The solution to the optimization problem from Equation 

(5) is given by the saddle point of the Lagrange function, 
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where α denotes the Lagrange multipliers.  

The hard classifier is then given by 

 

f(x) = sgn (<w
*
, x>+b).                       (7) 

 

The approach here described for a linear SVM can be 

extended for the creation of a nonlinear SVM to classify 

linearly inseparable data (Cristianini and Shawe-Taylor, 

2000). 

 

System for recognizing stress levels in hens 

The proposed automatic stress recognition system is 

composed of three modules (Figure 1): the preprocessor, the 

feature generator, and the stress detector and classifier. 

During preprocessing, the real sounds of laying hens are 

obtained from an audio sensor or a CCTV camera. During 

feature generation, various acoustic sound features (from 
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both time and frequency domains) are first extracted from 

the recorded sounds emitted by the chickens. Subsequently, 

the optimal acoustic feature subsets are selected by means 

of the CFS algorithm. This process is unnecessary during 

the on-line process in the proposed real-time system. The 

third module invokes the stress detector and classifier to 

detect the stress sounds and classify them hierarchically into 

subsidiary sound types, such as the sounds associated with 

physical stress resulting from low and high temperatures 

and mental stress as a result of fear. In this study, we used a 

multi-class hierarchical SVM with a one-against-all 

classification structure. Figure 2 shows the overall 

architecture of the SVM-based stress recognition system.  

 

RESULTS AND DISCUSSION 

 

In our experiments, we used 407 temperature-induced 

sound samples (149 at 10°C±2 and 258 at 34°C±2), 114 

fear-induced samples, and 136 normal sound samples (from 

the thermal comfort zone at 21°C±2). Figure 3 shows the 

respective waveforms and spectrograms for normal and 

stressed sound samples for Korean laying hens using Praat 

5.3.52 (Boersma, 2002). In spectrograms, the amplitude of a 

frequency is coded by increasingly darker shades of grey. 

The different amplitudes of certain frequency ranges are the 

result of resonance- and filter-properties from the vocal 

tract (Schrader and Hammerschmidt, 1997). We extracted 

various acoustic features (in both time and frequency 

domains) using Praat from actual hens’ vocalizations. To 

select the optimal acoustic feature subset, we used the CFS 

from Weka 3.6 (http://www.cs.waikato.ac.nz/ml). The 

acoustic- feature subset obtained is (F1, F3, RMS, Mean 

Pitch, Max. Pitch, Shimmer, Jitter, PSD38). Notice that the 

dimension of the selected optimal feature subset is reduced 

from 54 to 8. The proposed system was realized by using a 

PC (3.5 GHz Intel core i7, 8 GB memory), and Weka 3.6 

was used for the sequential minimal optimization to solve 

the SVM. Furthermore, we used a ten-fold cross validation 

in our experiments. 

For the performance evaluation of the proposed method, 

we used three important formulae to measure the detection 

accuracy: the stress detection rate (SDR), false positive rate 

(FPR), and false negative rate (FNR). The formulae are 

given as follows (Han et al., 2012): 
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Figure 1. Overall structure of the stress recognition system. CFS, correlation-based feature selection; SVM, support vector machine. 

 
Figure 2. Architecture for the stress detection and recognition 

module based on the hierarchical SVM. SVM, support vector 

machine. 
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In the above equations, I is an individual stress sound 

sample, and N is a normal sound sample. T represents stress 

sound samples that are correctly classified as such by the 

system. P indicates normal sound samples that are 

misclassified as stress samples, and F indicates stress sound 

samples that are misclassified as normal.  

Our experimental results show that the SDR for the 

proposed system is 96.2%, with the FPR and FNR 

averaging 9.6% and 3.8%, respectively. The detector in this 

experiment is identified as SVM 1 in Figure 2. We used a 

Puk-kernel, and the trade-off constant C was set at 4.5 in 

this experiment. A summary of the detection results is 

provided in Table 1. 

Furthermore, we classified the stress vocalizations from 

the laying hens into three hierarchical subsidiary sound 

types: physical stress as result of a low temperature, 

physical stress as a result of a high temperature, and mental 

stress from fear. To measure the classification accuracy of 

the proposed system, precision and recall were used as 

performance measurements (Han et al., 2012) with their 

respective formulae as follows: 

 

,100Precision 



FPTP

TP  

100Recall 



FNTP

TP                      (11)  

 

Table 1. Performance measurement for stress detection 

Stress  

 detectors 

Optimal subset: 

(F1, F3, RMS, Mean pitch, 

Maximum pitch, Shimmer, Jitter, PSD38) 

Dimension: 8 

SDR (%) FPR (%) FNR (%) 

SVM 1 (C = 4.5) 96.2 9.6 3.8 

RMS, root mean square; PSD, power spectral density; SDR, stress 

detection rate; FPR, false positive rate; FNR, false negative rate; SVM, 

support vector machine; C, trade off constant. 

   
                (a) Normal sound                          (b) Stress sound at a low temperature 

   
          (c) Stress sound at a high temperature                     (d) Mental stress sound (fear) 

Figure 3. Waveforms and spectrograms from normal and stressed sound samples acquired from Korean laying hens. 
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In a given class, the number of correctly classified 

objects is the number of true positives (TP). The number of 

falsely identified objects is the number of false positives 

(FP). The number of objects from a class that are falsely 

labeled as belonging to another class is the number of false 

negatives (FN). Precision refers to the ratio of TP to the 

sum of TP and FP. This determines the number of correctly 

identified objects. Recall is the ratio of TP to the sum of TP 

and FN. This determines the number of misclassified 

objects in a class.  

Our experimental results show that the average 

classification accuracy for the proposed system is 96.7%, 

with precision and recall averaging 96.7% and 97.1%, 

respectively. The classifiers in this experiment are identified 

as SVM 2 and 3 in Figure 2. We used a normalized 

polynomial kernel, and the trade-off constant C was set at 

3.8 and 4.5 for SVM 2 and SVM 3, respectively. The 

classification results are provided in Table 2.  

By way of summarizing our experimental results, an 

optimal acoustic feature subset (F1, F3, RMS, Mean pitch, 

Maximum pitch, Shimmer, Jitter, PSD38) was selected from 

the sound emitted by hens in a coop. Incidentally, this 

represents the first algorithmic attempt to find useful 

acoustic features in the feature subset space to recognize the 

stress calls of laying hens, as far as we know. The stress 

detection accuracy of our proposed system was 96.2%, with 

the FPR and FNR averaging 9.6% and 3.8%, respectively. 

In addition, the average classification accuracy of the 

proposed system was 96.7%, with precision and recall 

averaging 96.7% and 97.1%, respectively. Even sound data 

acquired with an inexpensive microphone can detect stress 

accurately and efficiently without causing any additional 

stress to the laying hens. Moreover, our method can be used 

in a commercial poultry production farm, either as a 

standalone solution or to complement other known methods. 

To the best of our knowledge, this system has never been 

investigated before. Moreover, this study might confirm that 

an analysis of laying hens’ sounds is a creditable method for 

understanding the current health condition of livestock. 

It is well known that the efficiency of poultry 

production can be adversely affected by high ambient 

temperature. Some studies have further reported that 

decreases in the environmental temperature (i.e., stress 

resulting from the cold) negatively influence some indices 

of the performance and circulatory systems in chickens 

(Blahová et al., 2007). In addition, Elrom (2000) noted that 

high levels of fear adversely affect bird plumage, egg 

production, egg shell quality, growth, and feed conversion 

efficiency. Therefore, it is of considerable importance to 

detect and classify stress into subsidiary sound types such 

as the physical stress resulting from changes in temperature, 

and the mental stress resulting from fear. Finally, even were 

a new stress class to emerge, it could be easily adapted for 

incremental updating and scaling in our proposed system 

without reconstructing the entire system. 

 

CONCLUSION 

 

Early detection of health anomalies is an important 

issue in the management of group-housed livestock. In 

particular, failure to detect stress in laying hens in a timely 

and accurate manner can be a serious and limiting factor for 

achieving efficient reproductive performance. In this study, 

we developed a low-cost, non-invasive, and automatic on-

line prototype that monitors the vocalizations in a 

commercial poultry facility to notify the producer of 

stressful situations in the coop. Offline, the proposed system 

preprocesses an optimal acoustic-feature subset (F1, F3, 

RMS, Mean pitch, Maximum pitch, Shimmer, Jitter, 

PSD38) from the sound emitted from laying hens. On-line, 

a recognition module detects the stress sounds and classifies 

them hierarchically into subsidiary sound types such as 

physical stress from changes in temperature and mental 

stress resulting from fear. In our experiments, we found that 

the stress detection accuracy of the proposed system is 

96.2%, and the stress classification measures were 

satisfactory. 
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