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�e automated detection of stress is a central problem for ambient assisted living solutions. �e paper presents the concepts and
results of two studies targeted at stress detection with a low cost heart rate sensor, a chest belt. In the device validation study (� = 5),
we compared heart rate data and other features from the belt to those measured by a gold standard device to assess the reliability of
the sensor. With simple synchronization and data cleaning algorithm, we were able to select highly (>97%) correlated, low average
error (2.2%) data segments of considerable length from the chest data for further processing. �e protocol for the clinical study
(� = 46) included a relax phase followed by a phasewith provokedmental stress, 10minutes each.We developed a simplemethod for
the detection of the stress using only three time-domain features of the heart rate signal. �e method produced accuracy of 74.6%,
sensitivity of 75.0%, and speci�city of 74.2%, which is impressive compared to the performance of two state-of-the-art methods run
on the same data. Since the proposed method uses only time-domain features, it can be e�ciently implemented on mobile devices.

1. Introduction

Stress is commonly de�ned as a feeling of strain and pressure
[1]. �ere is evidence that stress is linked with many diseases,
playing a crucial role in the development of cardiovascular
diseases [2], diabetes [3], or asthma [4], and it also signi�-
cantly in�uences the later course of these diseases. Stress is
related to life style; therefore, especially formobile automated
lifestyle counseling and analysis services, the need arises to
identify stress automatically during daytime, using physio-
logical data from various sensors. If stress could be reliably
and automatically identi�ed, this could directly help users
manage stress situations, and it could also be used in medical
intelligence applications, for example, in re�ning blood glu-
cose predictions for diabetics during daytime under in�uence
of stress. However, the availablemethods for automated stress
detection based on low price, ubiquitous sensors, are yet
immature. Telemonitoring and self-management systems [5–
9] extend the horizons of traditional health care using only
point of caremeasurement data, but the proper interpretation
and reliability of the results depend on the reliability of the
measured data and the sensor itself.

�e two crucial questions related to this problem are as
follows:

(i) Whether low price physiological sensors are reli-
able enough compared to “gold standard” devices
accepted by and used in clinical practice.

(ii) Which sensors and algorithms can provide a reliable
method for stress detection, at an a�ordable price and
minimal user interaction.

�is paper describes our e�orts and results in answering
these questions.�e rest of this paper is organized as follows.
Section 1 gives an overview on applicable technologies and
related research. In Section 2, we describe our methods for
a small scale device validation and the methods used in
the main clinical study that compared heart rate variability
(HRV) features between relaxation andmental stress periods.
We also present here a simple stress detection algorithm.
Section 3 presents themeasurement results of the two studies,
with the latter comparedwith two state-of-the-art algorithms.
We conclude the strengths and weaknesses of this study and
the newly designed stress detection algorithm in Section 4.

�emost commonly used physiological markers of stress
are as follows:

(i) Galvanic skin response (GSR): using changes in skin
conductivity. During stress, resistance of skin drops
due to increased secretion in sweating glands [10].
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(ii) Electromyogram (EMG): measuring electrical activ-
ity of the muscles. Stress causes di�erences in the
contraction of the muscles which can be used to
identify stress [11, 12].

(iii) Skin temperature: changes in temperature of the skin
are related to the stress level [13].

(iv) Electrical activity of the heart: the most commonly
used stress marker parameters derived from the
electrocardiograph (ECG) are the heart rate (HR) and
the heart rate variability (HRV) [14].

Stress can also be detected using other, less commonmarkers
like accelerometer [15], key stroke dynamics [16], or blinking
[17]. It is also common to use a combination of several
markers at the expense of an increased system cost and user
involvement. Fernandes et al. used GSR and blood pressure
(BP) markers [18] for determining stress. Sun et al. describe
mental stress detection using combined data fromECG,GSR,
and accelerometer [19]. De Santos Sierra et al. in [20] used
GSR and HR. Rigas et al. used ECG, GSR, and respiration
for detecting stress while driving [21]. Wijsman et al. used
ECG, respiration, GSR, and EMG of trapezius muscles for
mental stress detection [22]. Riera et al. combined EEG and
EMG markers [23]. Singh and Queyam used GSR, EMG,
respiration, and HR [24] for detecting stress during driving.
Pupil diameter, ECG, and photoplethysmogram were used as
markers by Mokhayeri et al [25]. Baltaci and Gokcay used
pupil diameter and temperature features in stress detection
[26], while Choi used HRV, respiration, GSR, EMG, acceler-
ation, and geographical location [27].

New noncontact methods have also been developed
recently to measure stress states. Some of them are hyper-
spectral imaging technique [28], human voice [29, 30], pupil
diameter [31], visible spectrum camera [32], or using stereo
thermal and visible sensors [33].

However, observing several markers for identifying stress
requires an increasing number of input sensors which in turn
increases the overall price and lowers applicability. Prices
for heart rate meters range from $70 to $500 USD; GSR
devices range from $100 to $500 USD, while EMG devices
have price ranges from $450 USD up to $1750 USD. Systems
combiningmultiple sensors are pricedmuch higher. For such
systems prices fall between $550 USD and $5700 USD, which
already can be considered excessive for a mass telemedical
lifestyle counseling application. �erefore, in an ambient
assisted living (AAL) system, the number of input sensors
should be kept minimal. In the rest of the paper, we focus
on the simplest and most researched sensor input, that is, the
electrical activity of the heart.

As for the reliability of HRV sensors, there are still
surprisingly few reviews reported in the literature to date
on the validation of the information content of low cost
sensors compared to a clinically accepted “gold standard”
device. Some devices that were tested for validity are the
SenseWear HR Armband [34], the Smart Health Watch [35],
the Actiheart [36, 37], the Equivital LifeMonitor [38], and
the PulseOn [39]; and also the Bioharness multivariable
monitoring device from Zephyr has been tested for validity
[40, 41] and reliability [41, 42]. In all cases, a gold standard

device was used simultaneously with the device under test as
a method for validating data. However, the validated devices
above are high-end devices with a considerable price which
present an obstacle for the penetration of telemedicine. For
example, the Bioharness device has a price around $550 USD,
whereas the price of low cost heart rate meters varies from
$70 USD to $100 USD. �e lack of reliability tests of low cost
devices was our motivation for our device validation study.

For automated stress detection, several methods have
been published which use only HRV. In 2008, Kim et al.
collected HRV data from sixty-eight subjects [43]. HRV data
were collected during three di�erent time periods.High stress
decreased HRV features. A maximum classi�cation accuracy
of 66.1% was achieved. Melillo et al. in 2011 used nonlinear
features of HRV for real-life stress detection [44]. HRV
data were collected two times, during university examination
and a�er holidays, on 42 students. Most of HRV features
signi�cantly decreased during stress period. Stress detection
with classi�cation accuracy of 90% was reported using two
Poincaré plot features and Approximate Entropy. One year
later, using the same data, they designed a classi�cation tree
for automatic stress detection based on LF and pNN50 HRV
features with sensitivity of 83.33% [45]. In 2013, Karthikeyan
et al. created stress detection classi�ers from ECG signal and
HRV features [46]. Vanitha and Suresh used a hierarchical
classi�er to classify stress into four levels with a classi�cation
e�ciency of 92% [47] in 2014. In 2015 Munla et al. used an
SVM-RBF classi�er to predict driver stress with an accuracy
of 83% [48].

2. Methods

�e main goal of this study is the development of a reliable,
robust, low price stress detection method suitable for mobile
health applications. �e study included two distinct phases.
In the �rst phase (device validation study) we tested the
reliability of a low cost telemedical heart rate sensor against an
accepted medical device. In the second phase we performed
and evaluated a clinical study, using the validated telemedical
sensor.

2.1. Device Validation Study

2.1.1. Sensor Selection and Measurement Protocol. Among
many low cost devices, we have chosen and analyzed
CardioSport TP3 Heart Rate Transmitter device, a simple
commercial chest belt, as a source of heart rate data, because
this is one of the few devices that can measure both heart
rate and millisecond accurate RR time interval data. Since
this device does not have its ownmemory for storing data, we
used a Nexus 7 tablet with Android version 4.4.2 to connect
to the device with the bluetooth 4.0 protocol and store the
measured data on the tablet. �e reference “gold standard”
device was a Schiller MT-101/MT-200 Holter device which
was designed for clinical use (see Figure 1).

Five healthy male volunteers used the two devices simul-
taneously during a 24-hour long period in order to make
the measurements (see Figure 1). For chest belt sensors, the
temporary detachment or dislocation of the sensor during
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Figure 1: �e Schiller MT-101/MT-200 device (a) and the CardioSport TP3 Heart Rate Transmitter device (b).

physical activity or sleep is a common source of errors
according to our experiences. �ough this problem could be
mitigated by using tapes for �xing the device �rmly to the
body, we felt that such discomfort would not be tolerated in a
real AAL situation, so we did not use tapes and used only the
daytime 12 hours of the overall signal for analysis. A�er the
monitoring period, we collected the devices and stored the
measured data in a uni�ed database.

�e protocol was reviewed and approved by the insti-
tutional ethics review board in January 2014. �e volun-
teers expressed their informed consent to participate and
expressed that they understand the goals of the study before
the experiment.

�e comparison of the measured data was a hard task
due to the di�erent designs of the gold standard and the
telemedical device. However, we wanted to compare signals
directly in the time domain and also to develop a data
cleaning algorithm for the removal of the noisy parts of the
CardioSport device measurements, without using the gold
standard data. As the chest belt is not �rmly attached to the
body, even a slight movement of the device could sometimes
cause signal loss (especially during sleep). �erefore, we
created a so�ware module for synchronization and data
cleaning before any further analysis. Data cleaning meant
to remove obviously bad data (artifacts) and to keep only
“good” data segments of su�cient length, because, as a rule
of thumb, both HRV and Poincaré plot computation require
data chunks of at least 5 minutes. Even though the data
cleaning algorithm removes lots of data from the original
signal, such a procedure poses no great obstacles for further
calculations since we still have enough “good” data during
daytime.

2.1.2. Synchronization Procedure. Since the time stamps of the
measured records can shi� due to device bu�ering, we used
a simple procedure to synchronize the data measured by the
CardioSport device with thosemeasured by the gold standard
device in order to facilitate their comparison. �e algorithm

uses a sliding window that passes from the beginning of the
chest belt signal to the end and calculates the absolute error
between the two signals. When sliding is over, the location
of the sliding window with the minimum absolute error is
considered as the point where the two signals should be
synchronized. �is applies only if the correlation of the data
in the sliding window and the same amount of data from
the gold standard are higher than a minimum set by the
user. If these conditions are met, the algorithm copies data
from the sliding window into a newly generated third signal
which represents the chest belt signal fully synchronized with
the gold standard signal. If conditions are not met, the third
signal is �lled with zeros. At the end, the algorithm extracts
all the highly correlated segments from the third signal
skipping zero values. Also, a �le with all themerged segments
is generated for general analysis. �e algorithm uses the
following 5 main parameters, with their values determined
empirically in parentheses:

(i) Window size: how much data is copied from the
signal into the sliding window (default: 200).

(ii) Window shi� step: number of samples by which we
shi� the slidingwindow in each iteration (default: 50).

(iii) Absolute error window: how much data will be used
to calculate the minimum absolute error (default:
200).

(iv) Maximum error distance: number of samples by
which we shi� the absolute error window in order to
�nd the minimum absolute error (default: 1000).

(v) Minimum correlation: minimum correlation,
expressed as a percentage, required for the two
signals to consider data in the chest belt signal
accurate (default: 97%).

2.1.3. Statistical Analysis and Data Processing. We performed
time- and frequency-domain analysis and computed the
correlation and mean absolute percentage error of the two
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measurements.We also compared the slope of the scatter plot
diagrams of the two measurements.

�e time- and frequency-domain analysis for HRV was
performed in Kubios HRV analysis so�ware, while the rest of
the analysis was performed in Microso� Excel.

We developed a simple data cleaning algorithm to be used
in a real telemedical scenario, for automatically �nding good
parts of the signal, even without gold standard data. �is
means �nding gaps and abnormal values and skipping them.
First, we compare the timestamp of each data item with the
timestamp of the previous one. If the di�erence between
the timestamps is bigger than 3 seconds, we mark this data
as a gap. �ree seconds is used for gap detection because
the chest belt has a bu�ering system that can tolerate short
detachments of the device from the body. If more than 3
seconds is used, some data could be missing which could
cause errors in further data analysis. In the second step we
identify abnormal values in the signal. It is important to
emphasize that we do not modify the data in any way as
this could potentially result in false results in the subsequent
analysis. Instead, abnormal values are treated the same way
as gaps. �e abnormal values are identi�ed by observing the
mean value of 20 contiguous samples (10 previous and 10
following ones). If this mean value di�ers from the value of
the current sample by more than 300, we consider it invalid
and mark as gap/error in the signal. Finally, we extract the
good segments from the signal with a length of more than 5
minutes.

2.2. Clinical Study

2.2.1. Measurement Protocol. 46 healthy volunteers, mostly
university and high school students (27 men and 19 women;
average age: 24.6 years), participated in the experiment. �e
experiment was divided into two parts with a duration of 10
minutes each, so the whole procedure lasted for 20 minutes.
In the �rst part, the participants were asked to try to relax in
upright sitting position while listening to relaxation music.
�e second part of the experiment was amental task designed
to serve as a source of mental stress.We used the Stroop color
test smartphone game [49] which is commonly applied to
induce mental stress in similar studies. In this game, the user
must connect colors to labels at an ever increasing pace. Since
controlled breathing and posture have been reported before
in�uencing HRV features, we asked the participants not to
control their breathing and to sit still in the same position
during the whole experiment. �is was also necessary to
prevent the detachment of the chest belt from the body. RR
intervals were recorded using the CardioSport TP3 Heart
Rate Transmitter. �e participant was asked about her/his
subjective stress levels on a relative scale three times, that
is, before the experiment, a�er the relaxation part, and a�er
the game playing part. �e answers along with her/his age
and gender were recorded in a simple questionnaire (see
Appendices A-B). �e reason for such questions was that,
though less expected, game playing may be more relaxing for
some people than music, and only if we actually succeeded
in raising the stress level in the second part compared to the
�rst part, canwe expect any algorithmormethod to detect the

stress. A�er the recording, the device was unmounted from
the participant.

�e protocol was reviewed and approved by the insti-
tutional ethics review board in January 2014. �e volun-
teers expressed their informed consent to participate and
expressed that they understand the goals of the study before
the experiment.

A�er the experiment all data was stored in a uni�ed
database, and the data cleaning algorithm described in
Section 2.1 was run on both 10-minute parts of each record.
�ose participants whose records contained no “clean” seg-
ments of at least 5 minutes in both parts were excluded
from the further analysis. Similarly, we excluded those who—
despite our e�orts for provoking stress in the experiment—
reported no increase of stress level due to game playing.

2.2.2. Statistical Analysis. We used the Kubios so�ware pack-
age for getting HRV features and later we analyzed and
compared data using the MedCalc so�ware and Microso�
Excel. Wilcoxon paired-samples test was used as a tool for
determining signi�cant changes between the two parts of the
experiment for the measured values of the HRV features and
a � value of < 0.05 was considered as signi�cant. Correlation,
percentage di�erences, average percentage di�erences, and
minimum percentage di�erences were also calculated for all
the observed HRV features.

2.2.3. Stress Detection Algorithm. We developed a simple
algorithm to detect stress that uses only time-domain HRV
features.�e reason for excluding frequency-domain features
is that they require muchmore computing power to calculate
than time-domain features, an argument that we should
consider in a solution designed for mobile devices. We used a
combination of the mean HR, pNN50, and RMSSD features
to identify stress. A sliding window over the HR signal was
divided into four equal parts.We tested various lengths of the
sliding window and the shortest width of the window that
achieved good result was 560 RR intervals with shi� of 20
RR intervals in each step. We used brute force technique to
�nd best threshold values for each HRV feature. As a result,
stress is detected by the algorithm if the mean heart rate in
the fourth part compared to the �rst part increases by more
than 5%, and RMSSD and pNN50 values decrease by more
than 9% in the fourth part compared to the third part. We
must emphasize here that this algorithm does not detect rest
state. So for the sake of calculating accuracy, speci�city, and
sensitivity, rest state is considered if stress was not detected.
�e state of the subject a�er stressor is also not recognized.
�erefore, instead of detecting the subject’s physiological state
of stress, the purpose of our algorithm is to detect those
stressful events which have negative impact on the subject’s
current state but which may or may not lead the subject into
a stressful state. A series of stressful events instead of a single
major event can also gradually put the subject into a stressful
condition. In a binary classi�cation model this could lead to
the false conclusion that only the last event was the one which
caused stress, while all the previous events are not taken into
consideration and remain hidden.
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Figure 2: Flow chart of stress detection algorithm.

We note that though it is true that the HRV features
may be due to other factors such as depression and mood,
we postulate that these factors do not change during the
experiment. In contrast, the proposed method uses a well-
de�ned change in the HRV features to detect the beginning
of the (induced) stressful state; therefore we expect no false
positive stress detections due to such factors.

Figure 2 shows a summary �ow chart of the proposed
stress detection algorithm which implements the above pro-
cedure.

In order to test the power of this algorithm, we compared
its performance to two state-of-the-art algorithms from the
same author, Melillo et al. [31, 32], on the same dataset.

2.2.4. Performance Comparison to a Linear HRV Algorithm.
�e algorithm described in [45] uses the pNN50 feature
from the time domain and the LF feature from the frequency
domain to create a simple classi�cation tree. Stress is detected
if LF < 899.58 and pNN50 > 0.9873 or if LF > 277.28 and
pNN50 < 0.9873. Restful state is detected if LF > 899.59 or
if LF > 277.28 and pNN50 < 0.9783.

For extracting the LF and pNN50 features, we used the
same so�ware as the authors of this algorithm, Kubios. Our
experiment consisted of two 10 minutes long periods so we
extracted two 5 minutes long segments from relaxation part
and two 5-minute segments from game playing part. If stress
was detected in any one of them, we marked the whole 10-
minute part as STRESS. If both parts were detected as REST,
then whole 10-minute part was marked as REST.

2.2.5. Performance Comparison to a Nonlinear HRV Algo-
rithm. Astress detectionmethod based onnonlinear analysis
[44] was the next algorithm we used. �is algorithm uses
three nonlinear features: Poincaré plot SD1, Poincaré plot
SD2, and Approximate Entropy (En). According to the
method, stress is found if10.64 + 203.99 ⋅ SD1 − 108.74 ⋅ SD2 − 8.26 ⋅ En (0.2)
> 0. (1)

Table 1: Signal durations a�er the synchronization process.

Subject
number

#1 #2 #3 #4 #5

Duration
(hh:mm:ss)

2:06:18 10:53:28 8:45:40 10:30:17 7:46:56

To reconstruct this algorithmwe usedMicroso� Visual C# to
calculate Approximate Entropy based on formula described
by authors. A sliding window was used to scan the whole
relaxation part as well as the game playing part. If stress was
found in any step, we marked the whole 10-minute period
as STRESS and, similarly, if rest was detected on all steps of
whole part, we marked that part as REST.

In order to compare the performances of the three meth-
ods, we computed the accuracy, speci�city, and sensitivity for
each of them. For this, we registered a true positive result if
the method marked the game playing part as STRESS, a true
negative result if the relax music part was marked as REST,
a false positive result if the relax music part was marked as
STRESS, and a false negative result if the game playing part
was marked as REST.

3. Results

3.1. Device Validation Study: Comparison with the Gold
Standard. A�er running the synchronization process, we got
segments of highly correlated data. Figure 1 shows how the
lengths of signal segments are distributed. We can see that
most segments are 3–18 minutes long. �e longest segment
that is highly correlated with the gold standard data is 110
minutes long. �e default parameter settings minimize the
number of overly short (<5min) segments. Most of the bad
segments (Figure 3) are shorter than one minute, and only
one bad segment was 60 minutes long.

�e synchronization procedure resulted in highly (>97%)
correlated synchronized data segments with various dura-
tions. Table 1 shows the overall duration of signals. Subject #1
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Figure 3: Distribution of highly (a) and low correlated (b) segment lengths for all subjects a�er synchronization procedure.

Table 2: Time-domain results a�er the synchronization process.

Subject number
Mean RR (ms) STD RR (ms)

Schiller CardioSport Error Schiller CardioSport Error

#1 738.27 755.47 2.28% 123.34 125.09 1.40%

#2 704.04 720.42 2.27% 91.35 93.47 2.27%

#3 907.63 928.88 2.29% 90.40 92.83 2.62%

#4 854.53 874.50 2.28% 144.74 148.00 2.20%

#5 937.01 958.97 2.29% 107.18 109.41 2.04%

Average 850.80 870.69 2.28% 108.42 110.93 2.11%

had the lowest usable time with only 2 hours and 6 minutes.
�emost probable reason for such a low time is the chest hair
which reduced the contact between electrodes and the skin.
For this reason, this subject was excluded from calculation of
average results.

Table 2 shows results in time domain for the Schiller and
the CardioSport devices a�er using our algorithm for the
synchronization of signals. �e time-domain analysis shows
pretty close values for both mean RR values and standard
deviation. �e formula used for computing the standard
deviation of RR intervals is as follows:

STD RR = √ 1� − 1
�∑
�=1
(RR� − RR)2. (2)

Averagemean RR values for Schiller and CardioSport devices
are 850.80 and 870.69, respectively. Average STD RR for the
Schiller device is 108.42 and it is 110.93 for the CardioSport
device.

�e frequency-domain analysis is presented in Table 3.
�e absolute power was compared for very low frequency
(VLF: 0–0.04Hz), low frequency (LF: 0.04–0.5Hz), and high
frequency (HF: 0.15–0.4Hz) and ratio between low frequency
and high frequency (LF/HF). �e results show no signi�cant
di�erence between Schiller and CardioSport device values.

�e average mean absolute percentage error (MAPE)
between the two signals is 2.32% with a high average corre-
lation of 99.67%.

3.2. Device Validation Study: Data Cleaning Method. We run
the data cleaning algorithm described in Section 2 on the
data recorded by the chest belt. �e duration of the resulting
signal is shown in Table 4. Similar to the synchronization
process, we got a very short duration for one subject and we
excluded this subject from further analysis. It is important
to note that, due to the noise on Schiller device records, we
had to remove noisy parts from the “gold standard” signal
as well. �erefore, even though the signal was recorded for
12 hours continuously, the overall duration is much less. �e
calculation shows that, in the worst scenario, only 45% of
the signal can be used for analysis using this data cleaning
method. However, in the best scenario, this number reaches
95%. �is leads to a conclusion that results are quite subject
dependent.

Table 5 shows the results of data analysis in the time
domain a�er removing bad parts with the data cleaning
algorithm. We can see that the mean RR intervals for the
Schiller and theCardioSport devices are 851.14 and 871.23 and
the standard deviations are 104.61 and 106.35, respectively. In
general, the CardioSport device has slightly greater values but
they are very close.
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Table 3: Frequency-domain analysis a�er the synchronization process.

Subject number

Schiller CardioSport Error

Absolute power (ms2) Absolute power (ms2) % % % %

VLF LF HF LF/HF VLF LF HF LF/HF VLF LF HF LF/HF

#1 7937.6 3086 1578 1.956 8444 3224 1330 2.4235 6.00 4.28 18.65 19.29

#2 5431.5 626.6 245 2.557 5723 659.3 250.9 2.6281 5.09 4.96 2.35 2.71

#3 4251.2 1927 494.4 3.898 4543 2055 538.8 3.8146 6.42 6.23 8.24 2.19

#4 12682 1790 636.5 2.813 13514 1869 621.5 3.0077 6.16 4.23 2.41 6.47

#5 6139.8 1212 476.7 2.542 6465 1274 481.4 2.6459 5.03 4.87 0.98 3.93

Table 4: Signal durations a�er the data cleaning process.

Subject
number

#1 #2 #3 #4 #5

Duration
(hh:mm:ss)

1:28:10 11:20:03 6:15:38 9:27:07 4:29:44
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Figure 4: Comparison of CardioSport and Schiller device a�er data
cleaning.

�eminimum, maximum, and average percentage errors
on the whole signal were calculated using a 5 minutes long
sliding window with one-minute shi� step (Table 6). Only
one subject had a very high maximum error value of 33.86%.
By visual examination, we determined that the cause of this
high error percentage was in fact the presence of artifacts in
the “gold standard” Schiller device measurements. Despite
that, average error values are at a very low level of 2.20%.

Figure 4 demonstrates the typical relationship between
the CardioSport and Schiller measurements using a scatter
plot for subject #5. All slope values are close to 1. �e lowest
slope value is 0.9757, while the highest value is 1.0184. �e
average mean absolute percentage error (MAPE) between
the two signals was 2.62% with a high average correlation of
98.76%.

3.3. Clinical Study. Five subjects were excluded from further
analysis because they reported a decrease (instead of the
expected increase) of their stress level while playing the
Stroop game. As an explanation, some participants reported
that playing the game was much more joyful than relaxation
music.Others reported that the game kept theirmind focused
and that the relaxation music brought them back to their
problems and duties of the day. Some also reported anxiety
about the experiment itself which vanished while playing.
A�er removing these records, we run the data cleaning
algorithm which identi�ed 10 noisy records, probably due
to too much movement. �ese were also excluded, so the
active dataset decreased to 31 subjects’ records (20 men and
11 women; average age = 24.7 years).

Table 7 shows � values of the Wilcoxon paired-samples
test, for the relax versus stress parts, for the relevant HRV
features (� = 31).

We found a statistically signi�cant di�erence for the
following time-domain features: mean RR (� = 0.0001),
mean HR (� = 0.0001), pNN50 (� = 0.0103), NN50
(� = 0.0128), RMSSD (� = 0.0255), and HRV triangular
index (� = 0.0456). In frequency domain, two features

showed statistically signi�cant di�erence: HF (ms2) with � =0.0054 and LF (ms2) with � = 0.0128. �e VLF (%) feature
was also close but not signi�cantly di�erent (� = 0.0745).
In nonlinear analysis, the SD1 feature showed a statistically
signi�cant di�erence (� = 0.0268). �e average percentage
di�erences and the minimum percentage di�erences are
shown in Table 8.

Table 9 shows the correlations between the important
features during the relaxation part of experiment. We
can see very high positive correlation (higher than 0.9)
between the following features: NN50 and RMSSD (0.94818),
pNN50 and RMSSD (0.935664), and pNN50 and NN50
(0.98966). Poincaré plot SD1 feature was highly correlated
with HF (ms2) feature. Only one very high negative corre-
lation was found between features mean RR and mean HR
(−0.99452).

Figure 5 shows, as an example, the values of an observed
feature (mean HR) for the relaxation period and the game
playing period, respectively.

3.4. Clinical Study: Stress Detection Performance Compared
to Other Methods. �e accuracy, sensitivity, and speci�city
values for correctly detecting stress are shown in Table 10 for
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Table 5: Time-domain analysis a�er the data cleaning process.

Subject number
Mean RR (ms) STD RR (ms)

Schiller CardioSport Error Schiller CardioSport Error

#1 707.80 724.03 2.24% 136.04 138.63 1.87%

#2 700.40 716.70 2.27% 91.33 93.24 2.05%

#3 899.20 920.97 2.36% 99.67 99.77 0.10%

#4 846.46 866.25 2.28% 139.26 142.33 2.16%

#5 958.49 981.00 2.29% 88.16 90.08 2.13%

Average 851.14 871.23 2.29% 104.61 106.35 1.66%

Table 6: Minimum, maximum, and average percentage error.

Subject
number

Minimum error Maximum error Average error

#1 0.08% 3.50% 1.50%

#2 0.01% 7.71% 2.12%

#3 0.04% 33.86% 3.22%

#4 0.13% 6.72% 1.92%

#5 0.07% 5.11% 2.22%

Average 0.06% 13.35% 2.37%

Table 7: Statistical signi�cance of the observed features ordered by� value.
Feature � value
Mean RR 0.0001

Mean HR 0.0001

HF (ms2) 0.0054

pNN50 0.0103

NN50 0.0128

LF (ms2) 0.0128

RMSSD 0.0255

Poincaré plot, SD1 0.0268

HRV triangular index 0.0456

VLF (%) 0.0745

STD RR 0.1583

HF (%) 0.1583

Poincaré plot, SD2 0.2725

LF/HF 0.4565

VLF (ms2) 0.4565

TINN 0.5967

Power (n.u.)-HF 0.7390

Power (n.u.)-LF 0.7539

STD HR 0.9687

our algorithm, the linear algorithm proposed byMelillo et al.,
and the nonlinear algorithm proposed by the same authors.

4. Discussion

Stress is a very complex subject and measuring stress is not
an easy task. �ere are many markers that could be used,
many algorithms that could be applied, and many forms of

Table 8: Average percentage di�erence and minimum percentage
di�erence for the features computed from the HR signal.

Feature
Average percentage

di�erence
Minimum percentage

di�erence

Mean HR 6.88 0.94

RMSSD 27.86 3.98

pNN50 72.76 3.88
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Figure 5: Mean HR feature for all subjects during relaxation and
while playing game.

stress which could be observed. Heart rate variability, being
simple and noninvasive, has recently become one of the most
popular methods for detecting stress. Still, this is not an
easy task, since HRV is not a single value; rather, it consists
of many features that can be observed in time domain and
frequency domain or using nonlinear analysis. �e literature
generally reports that, under mental stress, the mean RR,
pNN50, STD RR, and RMSSD features decrease, while the
mean HR and LF features increase signi�cantly. However,
signi�cant di�erences for the same features and sometimes
even opposite results (e.g., LF feature) are also reported. One
probable cause for this inconsistency in literature could be
the fact that stress is not the only condition that in�uences
changes in HRV. Physical activity, body posture, breathing,
age, gender, and illnesses all have a great in�uence on HRV.
In this paper, we analyzed various HRV features in order to
�nd those that change signi�cantly under mental stress and
proposed a simple stress detection algorithm.
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Table 9: Correlation of observed features during relaxation part.

Mean RR Mean HR RMSSD NN50 pNN50 HRV t.i. LF (ms2) HF (ms2) P.P., SD1

Mean RR 1.00

Mean HR −0.99 1.00

RMSSD 0.29 −0.28 1.00

NN50 0.38 −0.37 0.95 1.00

pNN50 0.48 −0.47 0.94 0.99 1.00

HRV t.i. 0.25 −0.25 0.78 0.77 0.75 1.00

LF (ms2) 0.08 −0.09 0.15 0.17 0.16 0.28 1.00

HF (ms2) 0.20 −0.20 −0.09 −0.03 0.00 −0.21 0.33 1.00

P.P., SD1 0.12 −0.13 −0.01 0.01 0.03 −0.15 0.51 0.89 1.00

Table 10: Performance comparison of the three stress detection
methods.

Feature Melillo linear Melillo nonlinear Our method

Accuracy 61.29% 50.00% 74.60%

Sensitivity 61.29% 29.03% 75.00%

Speci�city 61.29% 70.97% 74.19%

In the device validation study, we tested the reliability
of a low cost heart rate meter. �e CardioSport TP3 heart
ratemeter devicewas used simultaneouslywith a professional
ECG recorder (Holter) device.We compared the results using
standard deviation, correlation, and scatter plot diagram
with slope of the regression line which are commonly used
in literature [36, 40, 50]. However, before we analyzed the
results, we used a simple data cleaning algorithm to eliminate
noisy parts without using any data correction. �e data
cleaning process reduces the overall duration of the signal but
it increases its quality. A�er data cleaning, all results of the
CardioSport device were very close to the Schiller device with
an average correlation of 98.73%. �e downside of the data
cleaning algorithm is that it will delete sections of the signal
even with the slightest detachment. Hopefully, with advance
in wearable sensors, new forms of heart rate monitors like
rings or bracelets with �rmer attachment to body will be
available.

In the next step, we demonstrated how a simple mental
stressor can in�uence HRV features signi�cantly. Our �nd-
ings are not very di�erent from previous research, showing
that HRV can indeed be used as an indicator of mental
stress. We found that, under the in�uence of mental stress,
mean HR increased, while mean RR, pNN50, RMSSD, and
HRV triangular index decreased. Contrary to the results from
literature, we did not �nd a statistically signi�cant di�erence
in STD RR feature (� = 0.1583). �is could be explained
by the fact that we analyzed only 10 minutes in each part of
the experiment, while STD RR feature describes long-term
variability. A limitation of our study is that we only analyzed
the in�uence of mental stress. Physical or emotional stress
could in�uence observed features in a completely di�erent
way.

For some subjects, the experiment failed to provokemen-
tal stress which is of course a shortcoming of the experiment
setup; however, it would be very hard to design a method
that is successful in all cases. �e Stroop test was chosen
because it is easy to implement and is generally accepted in
the literature for such purposes. Since it increases the speed
of the game proportionally with the user’s results, it should
increase the stress level regardless of the subjects’ cognitive
level. We believe that other factors, such as the subject’s prior
experience and motivation for playing computer games, are
harder to control.

As a conclusion of this study we created a robust stress
detection algorithm. Unlike other stress detection algorithms
which use several stress markers [51, 52], we used only HRV
features for stress detection but with relatively high stress
identi�cation ratio. We were able to get an accuracy rate of
74.60%, somewhat below the 85% reported by the algorithm
in [53]; however, the latter uses the full electrocardiogram
(ECG) measurement compared to using only RR intervals in
our case.

If we compare our algorithm with other algorithms for
stress detection using only HR and HRV parameters, we
can say that we achieved higher identi�cation rate than
the algorithm in [43] and a worse result than [48] or [45]
and around 15% worse compared to [44, 47] but we used
only time-domain features for stress identi�cation instead of
frequency-domain features or using nonlinear analysis which
are much more expensive to calculate.

Since performance of particular algorithm depends on
multiple parameters like type of stressor, number of subjects,
methods used, and so forth, we compared the performance of
our algorithmwith two state-of-the-art algorithms. Although
our algorithm showed lower declared accuracy, the compar-
ison of its performance on the same dataset showed much
better results than the algorithm that uses nonlinearHRV fea-
tures [44] and slightly better performance than the algorithm
that uses linear HRV [45] features for stress detection. We
think that the poor performance of the two tested methods
could partly be due to the fact that our stressor, the Stroop
game, was not as strong as the university exam stressor used
for the development of theMelillo algorithms or driving [48].
Such results show that the same algorithm can give very
di�erent results on di�erent dataset meaning that comparing
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strictly by accuracy values is not good indicator if comparison
is not performed on the same dataset.

A weakness of the proposed algorithm is that it only
detects events that provoke stress for a particular subject. It
cannot classify the current state of a subject in givenmoment.
However, this was not the intention of our algorithm from
the beginning and we propose using combination of our
algorithm with typical classi�cation algorithms for achieving
greater insight into stressful events and a subject’s current
state.

A strength of our algorithm is that an event or a series
of stressful events could be detected before entering into a
stressful state de�ned by classi�cation algorithms. �e user
could be informed by sound, vibration, or other kinds of alert
when stressful event happens, leading to greater awareness
about daily stressors. Also, this algorithm is very simple and
easy to implement inmobile environments due to the fact that
all HRV features are chosen only from time domain.

5. Conclusions

From this research we can conclude that even a simple low
cost heart rate monitor device can detect features that change
signi�cantly under the in�uence of mental stress. Using these
results we created a simple stress detection algorithm that
is being integrated in the Lavinia lifestyle counseling mobile
application [54] for further testing and re�nement in real-life
stress situations. If stress detection proves to be reliable for
larger samples, it will be used in the blood glucose prediction
models developed for diabetics.

Appendix

A. The Instructions for the Clinical Study

Experiment: Measuring Physiological E
ects of Heart Rate
Parameters during Various Situations

Instructions to Participants. During this experiment we will
measure physiological parameters of various situations. First,
we will measure parameters during listening to relaxation
music and then we will measure the same parameters during
playing simple Android based game usingmobile phone. You
will need to �ll data in the questionnaires three times: before
experiment starts, a�er the relaxation music stops, and at the
end of experiment. If you feel any discomfort during this
experiment, you can stop at any time:

Personal Data

Name or code: —

Age: —

Gender: M/F

How to Play. In this game screen is divided in four parts.
In each part word is shown with di�erent color. Words are
color names like red, blue, purple, black, green,. . .. You need
to touch the word which is colored in the color of the word.
For example, if word red is colored with black, then you skip

it, but if the word red is colored in red color, then you need to
press that word. If you make a mistake, game ends. You need
to get as high score as possible. For every choice, you have
only a limited amount of time. If time runs out, game is over.
You can play as many games as you can during 10 minutes:

Example

Red
Green

Blue
Black

Correct Incorrect

Word red is colored red so this is correct choice.

Word green is colored with black color so this is
incorrect choice.

Word blue is colored with orange color so this is
incorrect choice.

Word black is colored with blue color so this is
incorrect choice.

B. Experiment Data and Questionnaire

Experiment Data

Date: —

Protocol

Give person the paper with experiment
description. Let him/her read whole description
(including “how to play” section). Ask if they
understand the experiment. Tell the person
that in this experiment they will �rst listen
one relaxation song and then they will play
simple game. Show the person how to play
game shortly if necessary. Explain to person
that during whole experiment he/she will need
to wear chest belt for collecting heart rate data.

Ask the person to put chest belt. Ensure privacy
for person to put chest belt on.

Time (hh:mm): —

Establish bluetooth connection between chest
belt andAndroid device.Write down timewhen
this occurs.

Time (hh:mm): —

Ask the person about current perceived stress
level from 1 to 10 where 1 is no stress and 10 is
maximum stress level and write down perceived
stress level

Time (hh:mm): —
Perceived stress level: —

Tell the person to relaxwhile listening relaxation
music. Start playing relaxation music and write
the exact start time (when you hit the play
button)

Time (hh:mm): —
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When music stops, write down the time of the
event. Ask the person about perceived stress
level a�er listening the song from 1 to 10 where 1
is no stress and 10 ismaximum stress level.Write
down perceived stress level

Time (hh:mm): —
Perceived stress level: —

Ask person to play Android based game for the
next 10 minutes. Write the start time and set
countdown timer to at least 10 minutes.

Time (hh:mm): —

At the end of 10 minutes, tell person to stop
playing and write down the time. Ask person
about perceived stress level a�er playing game
from 1 to 10 where 1 is no stress and 10 is
maximum stress level. Write down perceived
stress level

Time (hh:mm): —
Perceived stress level: —

Abbreviations

AAL: Ambient assisted living
BP: Blood pressure
ECG: Electrocardiograph
EMG: Electromyogram
GSR: Galvanic skin response
HF: High frequency
HR: Heart rate
HRV: Heart rate variability
LF: Low frequency
MAPE: Average mean absolute percentage
NN50: �e number of pairs of successive

beat-to-beat or NN intervals that di�er by
more than 50ms

pNN50: �e proportion of NN50 divided by total
number of NNs

RMSSD: �e square root of the mean of the squares
of the successive di�erences between
adjacent intervals

RR (interval): R wave to R wave interval
VLF: Very low frequency.
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