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Stress Detection Using Physiological Sensors  

Riccardo Sioni and Luca Chittaro, University of Udine 

Psychologists have studied emotions since the 19th century, but there is still no universally 

accepted definition of emotions and how they are generated. However, more than a century of 

research shows that emotions and physiology are related. Many studies employ physiological 

data such as electrodermal, cardiovascular, and muscular activity to measure participants’ 

affective states, including those related to stress. Other instruments such as questionnaires and 

scales can be used to assess affective states. However, these cannot be administered to users 

without interrupting the task they are carrying out, thus affecting their emotions. In addition to 

the possible biases that can affect any type of self-reporting, the intrinsic ambiguity of 

describing emotions in writing could undermine such instruments’ reliability. Thus, developing 

systems that can detect stress through physiology is particularly appealing, and not just for 

experimental studies.  

Such systems have many possible real-world applications. For example, they could be used to 

measure and reduce stress and frustration levels in workers who use computers. They could also 

help users reach and maintain a certain optimal stress level; for example, those being trained to 

respond to emergency situations could benefit from personalized and progressive exposure to 

simulated stressors of increasing magnitude.1 In all cases, accurate recognition of stress is 

crucial to the application’s success. However, the design and evaluation of a stress-detection 

system must always consider each physiological signal’s strengths and weaknesses as defined by 

current sensors’ technological limitations as well as issues intrinsic to human physiology. 

Measuring Stress  

In everyday language, stress typically indicates strain caused by physical or psychological 

pressures at work, at school, or in personal life as well as by one’s environment. From this point 

of view, stress can be seen as a defensive process to protect oneself from potential injury and 

threats to emotional well-being. Thus, it is not surprising that stress is related to the capacity to 

adapt and respond to various circumstances. In the psychology literature, anxiety is often 

defined as a negative emotion related to stress characterized by different physiological 

responses, e.g., cardiac acceleration and fast, shallow breathing.2  

The physiological responses related to stress and anxiety are controlled by the autonomic 



nervous system (ANS), which regulates important bodily activities including digestion, body 

temperature, blood pressure, and many aspects of emotional behavior.3 The ANS is organized 

into the sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS). The 

SNS controls activities that are mobilized during emergency situations, which characterize the 

fight-or-flight response. The PNS controls the basic functions of rest, repair, and restoration of 

energy stores (rest-and-digest activity).3 

Electrodermal activity 

Electrodermal activity (EDA) sensors measure changes in the electrical conductivity of the skin 

surface. Changes in EDA can be produced by various physical and emotional stimuli that trigger 

variations in sweat-gland activity. Unlike other bodily functions, EDA is controlled exclusively by 

the SNS,
4
 making it an ideal physiological signal for stress measurement. Moreover, current EDA 

sensors are unobtrusive and allow for reliable signal recordings. 

The EDA signal can be split into two different components. Skin conductance level (SCL) refers 

to the tonic component of the EDA signal—the electrical conductivity at a given point in time. 

Skin conductance response (SCR) is the phasic component of EDA—the amount of EDA change 

that occurs in response to a given stimulus.
3
 SCR usually measures physiological responses to 

discrete events such as a short and intense burst of noise, whereas SCL is useful for measuring 

more generalized arousal over a time interval.4 Many studies have successfully employed SCL 

and SCR as stress indicators during the presentation of a range of stressful stimuli, showing that 

these signals are a valuable tool for stress assessment.4 However, EDA alone cannot provide 

definitive information about stress and anxiety: other physiological signals or instruments such 

as self-reports are required to discern between positive and negative high-arousal states. 

As an example of EDA application, a user study evaluated the effectiveness of three stress-

induction techniques applied to a virtual environment (VE) that reproduced a fire emergency.1 

The first technique augmented the VE with a bar indicating the health of the user’s avatar. The 

second augmented the VE with aversive audio-visual stimuli, including a preset heartbeat sound 

and a red aura flashing in sync with the user’s heartbeat (see Figure 1). In the third technique, 

the frequency of the audio heartbeat and aura flashes were artificially increased when users 

were in an anxiety-inducing situation, creating the illusion of a physiological change. Combining 

EDA with a subjective assessment revealed that the third technique induced the most anxiety in 

study participants.  



 

Figure 1. Virtual environment reproducing a fire emergency. A red aura flashes in sync with a 

user’s heartbeat. 

Cardiovascular system activity 

Cardiovascular system activity can be measured through various physiological signals. In the 

computer science literature, blood volume pulse (BVP) and electrocardiography (ECG) are the 

most frequently employed signals. BVP is related to the amount of blood flowing into the 

peripheral vessels, such as those in fingers or earlobes, and is generally measured through a 

photoplethysmograph (PPG). The ECG signal measures the electrical activity of the heart 

through electrodes placed on the chest. The main disadvantage of measuring heart rate (HR) 

through a PPG is that the sensor is sensitive to the user’s motions. Some PPGs are designed to 

be placed only on the fingers, so there could be artifacts in BVP signals caused by keyboard, 

mouse, or game-controller use. In such cases, we use controllers that can be operated with a 

single hand (for example, the Nintendo Wii Nunchuck), leaving the other hand free for sensor-

data recording. ECG electrodes are more robust against motion artifacts, but they must be 

placed in direct contact with the skin of the user’s chest, which is less practical and could be 

uncomfortable for some users. 

HR can easily be calculated from BVP or ECG signals by counting the number of peaks per 

minute. Increases in HR are generally related to emotional activation and are considered a 

correlate of arousal4 and anxiety.2 Other HR-related features are used as more precise measures 

of certain characteristics of ANS activity, such as heart rate variability (HRV), which describes the 

variability of HR over time. In general, HRV analysis takes into consideration the frequency 

power of low-frequency (LF, 0.01−0.08 Hz) and high-frequency (HF, 0.15−0.5 Hz) bands. 

Increases in LF and in the LF/HF ratio have been related to anxiety.2 Similar to EDA, 

cardiovascular activity measures must be associated with other information about users’ 

emotional valence (i.e., the level of perceived pleasantness or unpleasantness of users’ 

emotions) to distinguish between negative high-arousal emotions such as anxiety and positive 

ones like excitement. 

One cardiac feature we employ is blood volume pulse amplitude (BVPA), which is the distance 



between the local maximum and minimum of the BVP signal, and is negatively correlated with 

arousal.5 As an example, a study focused on a VE that simulated a full emergency landing and 

evacuation of a commercial aircraft (see Figure 2).5 The VE was designed to induce fear—

another negative emotion that, similar to anxiety, is related to stress and is characterized, 

among other physiological effects, by cardiac acceleration and increased EDA.2 The study 

included BVPA, paired with EDA and self-report data about perceived fear, to successfully detect 

emotional arousal and fear in VE users. 

Figure 2. A fear-inducing aircraft emergency simulation. (a) The user is drowning after opening a 

door below water level. (b) Flight attendants call passengers to the front exits. (c) An injured 

passenger sits close to the user.  

Facial muscle activity 

Muscle activity is measured through electromyography (EMG), which detects the electrical 

discharges caused by contractions of muscle fibers. Muscles like zygomaticus major (located in 

the cheek; responsible for smiling), corrugator supercilii (located in the forehead; responsible for 

frowning) and orbicularis oculi (located around the eye; responsible for blinking and winking, 

and contracting when smiling), help distinguish between positive and negative high-arousal 

emotions related to excitement and stress, respectively.3  

Muscle activity is measured by placing electrodes on the skin above the considered muscles 

(surface EMG). Analysis of facial muscle activity can help assess other physiological responses 

relative to stress, such as the startle response, i.e., a complex of bodily reactions to a strong, 

rapid, and unexpected stimulus.
4
 Among the bodily expressions of the startle response (for 

example, quickly closing the eyes, accompanied by contracting various muscles), 



psychophysiology has mostly focused on the eye-blink startle response, which is typically 

measured as the magnitude of the EMG recorded from the orbicularis oculi region.4 As with 

ECG, surface EMG can be cumbersome and uncomfortable for some users, especially in the case 

of facial EMG. Furthermore, actions like talking or coughing, which involve the activation of 

various facial muscles, could trigger muscle activity that could mask signal components relevant 

to stress detection. For this reason, in our studies we ask users not to talk during experiences in 

VEs, and accurately take note of those users’ actions that can require subsequent signal 

corrections. 

As an example of EMG application,  we carried out an experiment during which we measured 

the activity of the corrugator supercilii muscle in two groups of users.6 The first group navigated 

a low-stress (see Figure 3a) and a high-stress (see Figure 3b) version of a VE reproducing a 

multifloor school building, and the second group navigated a low-stress (see Figure 3c) and a 

high-stress version (see Figure 3d) of a VE reproducing a train station. The high-stress version of 

the school building simulated a fire emergency, and the high-stress version of the train station 

involved a terrorist attack scenario. Results showed that in both the school building and the 

train station VEs, the mean EMG value for the corrugator muscle was higher when users 

experienced the high-stress version than when they experienced the low-stress version. As 

expected, these results indicate that more stressful experiences elicited more intense negative 

emotions.  

This study confirms that facial EMG is a valuable instrument for stress detection. However, a 

potential complication of EMG electrodes must be considered when performing stress detection 

during experiences with head-mounted displays (HMDs). While HMDs are useful to increase 

immersion and stress-inducing effects, they can cover the corrugator muscle area of the 

forehead where electrodes should be placed. 

 

 

 

 

 

 

 

 

 

 



Figure 3. Two virtual environments: (a) low-stress and (b) high-stress versions of a multilevel 

school building, and (c) low-stress and (d) high-stress versions of a train station. 

Respiratory system activity 

Respiration is strongly related to cardiovascular system activity, and is mainly influenced by 

changes between calm and excited states.7 The respiratory signal can be recorded using an 

elastic band placed on a user’s midsection. More complex setups employ two elastic bands 

placed on the person’s chest and abdomen, because interpersonal differences in breathing lead 

some individuals to produce more abdominal distension making a belt placed on the chest 

insensitive to breathing.
8
 Using two bands, however, may increase users’ discomfort. Stress-

related emotions such as anxiety generate faster and shallower breathing.2 Respiratory rate (RR) 

and respiratory amplitude (RA) are employed as measures of SNS activity; RR, however, is 

regarded as one of the least sensitive metrics for respiratory data analysis.7 Standard deviations 

of these measurements, as well as other measurements of their variability, have been 

frequently used to characterize respiratory variability, which seems to be negatively correlated 

to anxiety.
8
 

Other signals and emerging techniques 

Other physiological signals can be employed for stress detection, but are generally less practical 

than those discussed here. For example, both electroencephalography (EEG) and task-evoked 

pupillary response (TEPR)—a measure of changes in pupil diameter—are problematic. Placing 

EEG sensors is time-consuming and requires accurate skin preparation for optimal detection, 

including scratching a user’s scalp with an abrasive gel and applying conductive paste on the 

head. Promising research focuses on dry EEG sensors, i.e., sensors that can be placed directly on 

the scalp without skin preparation, which could be a practical alternative to existing sensors. 



However, there are still issues related to users’ comfort and the cost of equipment, which could 

still be too expensive for small laboratories.9 Moreover, EEG and TEPR recording procedures can 

require presenting the stimulus a number of times to obtain the average response.
3
  

Brain activity analysis techniques that rely on optical sensors such as functional near-infrared 

spectroscopy (fNIRS) are emerging as alternatives to EEG. fNIRS is a noninvasive imaging method 

that measures relative changes in cerebral blood flow, which is correlated to localized neuronal 

activity. Optical techniques have also been proposed to detect stress through thermal video 

analysis of the face. Stress seems to be correlated with increased blood flow in the forehead and 

around the eyes, which dissipates convective heat that can be monitored through thermal 

imaging in real time. 

Applications of Automatic Stress-Detection  

In recent years, researchers have proposed various systems that use physiological signals to 

automatically detect stress as well as other emotions such as joy and surprise. Davor Kukolja 

and his colleagues provide an overview of the most recent and relevant systems, indicating the 

techniques used to extract and combine physiological features to detect stress and the systems’ 

detection accuracy.10 

Exposure therapy  

Exposure therapy is a technique intended to treat anxiety disorders that involves progressive 

exposure to the feared object or context to inhibit fear and overcome anxiety related to the 

object or content. Virtual reality exposure therapy (VRET) has been proposed as an efficient and 

cost-effective alternative to in-vivo exposure for the treatment of anxiety disorders. For 

example, VEs that simulate flying on airplanes have been used to treat aviophobia (fear of 

flying), and combat simulators (such as Virtual Iraq and Virtual Afghanistan) have been used to 

treat soldiers who suffer from post-traumatic stress disorder. VRET applications could exploit 

real-time monitoring of affective states in patients with anxiety disorders, providing valuable 

information to therapists and allowing for a more tailored and personalized treatment—for 

example, by dynamically adapting the experience to elicit the desired level of stress in patients. 

Training 

Training supports the acquisition of knowledge, competence, and skills through direct or 

indirect experience. During emergency training, for example, first responders can learn how to 

provide medical care by being immersed in VEs that accurately replicate a dangerous 

environment. Training can also help people develop coping skills to reduce anxiety and maintain 

an optimal level of performance under stress. This particular method is called stress inoculation 

training (SIT).  

By feeding information back to users about their affective state (biofeedback), applications can 



enable users to learn how to change their physiological activity to improve their health and 

performance. Biofeedback is sometimes integrated into serious games for training. As an 

example, we developed a biofeedback application to influence the affective state and behavior 

(such as body gestures, facial expressions, and vocal expressions) of a 3D virtual character 

shown on a screen.11 The more relaxed the user is, the more relaxed the character is (see Figure 

4a); if the user is stressed, the character shows clear signs of stress and cannot complete a task 

in the game (see Figure 4b). In a similar way, biofeedback has been employed to provide soldiers 

with explicit feedback about their arousal level when immersed in stress-inducing combat VEs to 

practice stress-management skills such as tactical breathing—as in, for example, Canada’s 

Immersion and Practice of Arousal Control Training (ImPACT) program.12  

Biofeedback has also been employed in the treatment of anxiety disorders to support 

relaxation training by exploiting users’ stress levels to control a racing video game (Relax & Race; 

https://itunes.apple.com/us/app/pip-relax-race/id839560263?mt=8) or to affect the 

appearance of a VE.13 In the video game, the more relaxed the users are, the faster they race; in 

the VE, relaxation can reduce the intensity of visual and audio stimuli. As recently shown, 

biofeedback can also be integrated in training applications for inducing stress instead of 

promoting relaxation.1 Dynamic adaptation of VEs through physiology has been proposed to 

tailor game difficulty in relation to users’ stress, helping them maximize engagement: too much 

of a challenge could increase users’ frustration and stress, whereas not enough of a challenge 

would induce boredom. 

 



Figure 4. Two affective states of a virtual character employed in our biofeedback application. (a) 

The character is completely relaxed and working at his desk. (b) The character is stressed and 

cannot work. 

Monitoring worker performance and health  

Various studies have observed a relationship between stress and work performance.14 Systems 

that automatically detect workers’ stress levels could be integrated into workplace computers to 

dynamically manipulate the state of applications and adapt workload to workers’ stress level. 

Alternatively, these systems could use workers’ stress level to provide assistance in the form of 

suggestions or support. Real-time information about stress level is particularly relevant in 

emergency situations—for example, stress detection can enhance collaboration among soldiers 

in military deployments and among first responders after natural disasters. Such applications of 

stress detection, which are useful in real-life human collaboration, could also be used in 

emergency training simulations. 

Enhanced remote communication 

Automatic stress monitoring can be employed to enhance remote communication. Text-, audio-, 

and video-based applications have been augmented with information about anxiety to enhance 

nonverbal communication—for example, Conductive Chat 

(http://affect.media.mit.edu/projects.php?id=749). This approach has been proposed for 

remote video-mediated assistance applications, which report workers’ stress levels to 

instructors to optimize assistance activity, as well as in distance-learning applications to provide 



teachers with information about their students’ stress level. Stress detection can enhance 

interactions not only among humans, but also among humans and robots or embodied 

conversational agents (ECAs). 

Limitations and Future Research 

Physiological signals such as SCL, HR, and facial EMG can successfully detect a person’s stress 

level, but each physiological sensor has its weaknesses. Researchers are trying to address some 

of these limitations, such as developing reliable EEG sensors that do not require skin 

preparation. Further steps, however, are required to make physiological computing applications 

more practical for everyday use and widely accepted by the general public.  

To reach this goal, physiological sensors must be included in objects that people would not 

hesitate to use. For example, sensors have been added to objects such as PC mice (EDA 

electrodes) and smartphones (optical sensors for BVP recording). A recent trend is the inclusion 

of such sensors in wearables, which, unlike other technologies, are designed to be in contact 

with users all day. Commercial devices such as the Samsung Gear S and the Apple Watch 

measure users’ HR and EDA in real time; although their sensors are currently limited to fitness 

activity tracking, future and more sophisticated versions of these devices will likely be more 

accurate, supporting the detection of stress and other emotions.  

Issues intrinsic to human physiology have a critical impact on the development and 

evaluation of automatic stress-detection systems.15 Very few physiological signals are related to 

a single emotion; for example, although EDA can be safely considered a correlate of 

physiological arousal, cardiovascular and respiratory systems are determined by both SNS and 

ANS activity. Thus, it is complicated to design a physiological computing system that exploits 

these signals to provide automatic stress detection with consistent accuracy. Signal artifacts 

caused by user movements might further reduce such accuracy or even prevent real-time stress 

detection. In addition, people can be stressed for different reasons: for example, stress in a user 

navigating a VE can be elicited by a malfunctioning controller, a difficult level, or an increase in 

room temperature as well as by audiovisual stimuli. 

To increase stress-detection accuracy, future systems should consider integrating additional 

physiological measures not yet exploited by physiological computing applications. For example, 

the eye-blink startle response might be useful, but this response is generally elicited through 

short bursts of intense white noise, which could distract users from meaningful events in the 

application. In a previous study, we found that a sound that is contextual to the application 

being used—for example, an explosion sound in a VE reproducing an emergency (see Figure 

3b)—can elicit an eye-blink startle response with a magnitude very close to the one elicited by 

white noise.16 Thus, the use of certain contextual sounds could extend the number of computer 

applications in which eye-blink startle response could be naturally applied. 

Novel methodologies are needed to improve the evaluation of physiological computing 



systems. For example, current studies assess accuracy through confusion matrices, mean error, 

or mean successful detection rates. A recent experiment we carried out suggests that 

researchers should also consider the use of placebo conditions, in which a sham instead of a real 

treatment is administered to participants.11 A placebo version of a stress-detection system 

determines users’ stress levels pseudorandomly instead of taking into account physiological 

sensor readings. Unlike traditional control conditions, placebo conditions require users to be 

unaware of the nature of placebo stress detection. In medical studies, placebo conditions are 

commonly employed to account for factors such as users’ suggestibility. The purpose of the 

placebo condition is to experimentally evaluate whether the proposed treatment is superior to 

the sham treatment. For example, an effective biofeedback system for relaxation training should 

present feedback that users perceive as significantly more accurate with respect to the placebo 

version, and should allow for easier and faster relaxation training. 

 Ultimately, stress detection based on physiological sensors can bring real benefits both to 

researchers, who can obtain a richer and more comprehensive picture of how individuals are 

affected by technology in user studies, as well as end users, who could benefit from new 

computer applications that are sensitive to their stress level and provide a more tailored and 

effective experience. However, designing and bringing such applications to mass markets will 

strongly depend on progress in sensor technology, data analysis, and evaluation methodologies, 

aimed at increasing the comfort as well as the accuracy of stress measurement. 
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