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Memory is facilitated when the retrieval context resembles the learning context. The brain structures underlying
contextual influences on memory are susceptible to stress. Whether stress interferes with context-dependent memory is
still unknown. We exposed healthy adults to stress or a control procedure before they learned an object-location task in
a room scented with vanilla. Memory was tested 24 h later, either in the same or in a different context (unfamiliar room
without the odor). Stress administered prior to encoding abolished the context-dependent memory enhancement found
in the control group. Thus, these findings represent the first demonstration of impaired context-dependent memory
following stress.

Information is better recalled when the retrieval environment
resembles the previous learning environment (Tulving and
Thompson 1973; Smith and Vela 2001). In a classic example of
contextual effects on memory, Godden and Baddeley (1975) asked
divers to learn lists of words either on dry land or underwater and
tested the memory for these words subsequently either in the
same or the opposite environment. Those divers who had to recall
the words in the original environment remembered significantly
more words than those required to change environments. Recent
studies suggest that the hippocampus and the prefrontal cortex are
likely candidates for context-dependent memory in the brain
(Wagner et al. 1998; Kalisch et al. 2006; Rasch et al. 2007).
Interestingly, both of these structures express a high density of
receptors for glucocorticoids (cortisol in humans), the steroid
hormones that are released from the adrenal cortex in response
to stress, and are highly sensitive to stress (de Kloet et al. 2005;
Wolf 2008). Memory functions that rely on the integrity of the
hippocampus or prefrontal cortex, such as spatial or working
memory, are often impaired when stress or cortisol was adminis-
tered before learning (Lupien et al. 1999; Schwabe et al. 2007;
Schoofs et al. 2008; but see also Nater et al. 2007 and Schwabe et al.
2008a for reports of enhanced memory following prelearning
stress). Moreover, stress and cortisol suppress memory-related
neuroplasticity processes, such as long-term potentiation, in both
the hippocampus and the prefrontal cortex (Diamond et al. 2007).
In the same line, rodent studies argue that stress before training
impairs spatial memory due to a stress-induced suppression of
hippocampal spine plasticity (Diamond et al. 1999, 2006). Thus, it
could be predicted that stress impairs the beneficial effect of
congruent learning and retrieval environments on memory per-
formance. This prediction, however, has not been tested yet.

In the present study, we examined the influence of stress on
context-dependent memory in 72 young adults (36 women; age
18–35 yr, M 6 SEM: 25.0 6 0.5 yr). Participation was restricted to
healthy nonsmokers. Women that used oral contraceptives (OCs)
were excluded because OCs change the cortisol stress response
(Kirschbaum et al. 1999). Participants were asked to refrain from
meals, drinking alcohol or caffeine, and severe physical exercise
within the 2 h before the experiment. All subjects provided
written informed consent for their participation in the protocol
as approved by the ethics committee of the German Psychological
Society (DGPs). Participants were exposed to a stress or control

procedure before they learned an object location task in a room
scented with a vanilla odor. On the following day, retention
performance was tested either in the same room where learning
had taken place and again with the vanilla odor present (congru-
ent context) or in a different room without the odor (incongruent
context), resulting in four experimental conditions (9 men and 9
women per condition): stress/congruent context, stress/incongru-
ent context, control/congruent context, and control/incongruent
context.

In the stress condition, participants were exposed to the
socially evaluated cold pressor test (SECPT) as described elsewhere
(Schwabe et al. 2008b). Briefly, participants immersed their hand
up to and including the wrist for up to 3 min (or until they could
no longer tolerate it) in ice water (0°C–2°C). They were monitored
by an unfamiliar person and videotaped during hand immersion
as social evaluation is critical for stress induction (Dickerson and
Kemeny 2004). Participants in the control condition submerged
their hand up to and including the wrist for 3 min in warm water
(35°C–37°C); they were neither monitored nor videotaped. To
assess the efficacy of the SECPT, saliva samples were collected by
means of Salivette (Sarstedt) collection devices immediately before
as well as 1 min, 20 min, and 35 min after cessation of the SECPT
or control condition. Free cortisol concentrations were measured
from saliva using an immunoassay (IBL). Moreover, blood pressure
measurements were taken immediately before, during, and imme-
diately after the SECPT or control condition, and subjects rated
immediately after the SECPT or control condition on a scale from
0 (‘‘not at all’’) to 100 (‘‘very much’’) how stressful, painful, and
unpleasant they had experienced the previous situation.

Twenty-five minutes after the SECPT or control condition,
participants went to another room where they were presented
with a computer version of the well-known card game ‘‘memory’’
(also known as ‘‘concentration’’). This interval between stress and
learning had been chosen because cortisol reaches peak levels at
about 20–30 min after stress (Schoofs et al. 2008; Schwabe et al.
2008b). Subjects saw a configuration of 15 card pairs (5 pictures 3

6 rows) showing colored pictures. First, all cards were shown as
gray squares (‘‘laid face down’’). Next, participants could choose
two cards and turn them face up. If the two cards showed the same
picture, subjects could turn the next two cards. If they were not
the same, the second card was turned face down again and
subjects had to continue their search for the matching card.

Participants were requested to turn over all pairs of matching
picture cards as fast as possible. Pictures were taken from the
International Affective Picture System (Lang et al. 1997) and
varied in emotional valence from neutral to positive and negative.
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Negative pictures (arousal ratings taken from Lang et al. [1997],
M 6 SEM: 6.8 6 0.3) were associated with significantly higher
emotional arousal than positive pictures (4.5 6 0.1), which were
more arousing than neutral pictures (2.9 6 0.1; P < 0.001).
Participants completed four trials of the memory task. They were
asked to memorize the picture locations as these would be tested
later. The spatial arrangement of the cards was randomized across
subjects but constant for each subject. During learning we
presented a vanilla odor as earlier studies showed that odors are
very potent context cues facilitating memory (Rasch et al. 2007).

Twenty-four hours later, participants returned to the labora-
tory and completed one further trial of the memory task. Impor-
tantly, retention testing took place either in the same, congruent
context (same room and same odor) or in a different, incongruent
context (new room in a different part of the university building
without the odor). Memory performance was expressed as (1) the
number of hits (correct card-pair locations without error) in the
test trial on day 2 relative to the number of hits in the last training
trial on the previous day and (2) the time needed to complete the
memory game on day 2, minus the time needed to complete the
memory game in the last training trial 24 h before. All testing took
place between 1:00 p.m. and 5:30 p.m. to control for the diurnal
rhythm of cortisol (Kirschbaum and Hellhammer 1994).

Significant increases in salivary cortisol (stress 3 time points
of measurement interaction: F(3,189) = 21.23, P < 0.001; see Fig. 1),
systolic and diastolic blood pressure (both F(2,128) > 30, both P <

0.001; see Table 1) as well as the subjective ratings of stressfulness,
painfulness, and unpleasantness (all F(1,64) > 120, P < 0.001; see
Table 1) indicated the success of the stress induction by the SECPT.
The physiological and subjective stress responses were comparable
in the congruent and incongruent context groups and not
influenced by participants’ sex (all P > 0.15). All subjects except
four women and two men (mean duration: 70 sec) underwent the
SECPT for the full 3 min. The subjective ratings, blood pressure,
and cortisol levels of these 6 participants were, however, not
significantly different from the other subjects in the stress group.

All participants improved over the four learning trials (for
both hits and time to complete the task both F(3,198) > 80, both P <

0.001); irrespective of sex, stress, and context condition (all P >

0.12). On average, participants scored 11 hits (SEM: 0.3) and

needed 50 sec for task completion (SEM: 2.5 sec) in the last
learning trial. Performance for neutral, positive, and negative
pictures was comparable in the final learning trial (between 70%
and 75%; F(2,128) = 0.93, P = 0.40).

In the retention test 24 h later, participants of the control
group showed significantly better memory performance, ex-
pressed as percentage of hits, if the retrieval context matched
the learning context (t(34) = 2.53, P < 0.02). This memory
enhancing effect of congruent learning and testing contexts
disappeared when subjects were stressed before learning (t(34) =

0.19, P = 0.85; context 3 stress interaction: F(1,65) = 4.34, P = 0.04;
see Fig. 2). Interestingly, the effects of stress and context depended
significantly on the emotionality of the presented pictures (stress 3

context 3 picture emotionality interaction: F(2,128) = 3.80, P <

0.03). Stress abolished the context effect on memory most clearly
for neutral pictures (F(1,64) = 8.85, P < 0.01). A comparable trend
was found for positive pictures (F(1,64) = 2.93, P = 0.09), whereas
memory for negative pictures remained virtually unaffected by
stress and context (P > 0.90; see Fig. 2). The main effects of stress,
context, and picture emotionality did not reach statistical signif-
icance (all P > 0.13).

All participants completed the memory task faster when the
learning and retrieval contexts were congruent (F(1,64) = 7.58, P <

0.01; D time for task completion (M 6 SEM; in seconds): 13.9 6 3.1
in congruent vs. 29.3 6 4.4 in incongruent context), while there
were no effects of stress or picture emotionality in the time needed
to complete the memory task (all P > 0.17). Overall, memory
performance was unaffected by participants’ sex (all P > 0.15).

To summarize, our findings support the hypothesis that stress
administered prior to encoding impairs context-dependent mem-
ory. Memory performance in the control group was enhanced
overall by about 30% when the retrieval context resembled the
learning context. This beneficial context effect disappeared when
participants were stressed before learning. Importantly, since the
stress-induced elevations in cortisol, sympathetic, and subjective
arousal were over at the time of retention testing 24 h after
learning, the observed effect is most likely due to stress effects
on the integration of context cues in the memory trace rather than
on the retrieval of the context. A theoretical context for our
findings can be found in Easterbrook’s (1959) cue utilization
hypothesis, which assumes that increasing levels of emotional
arousal result in a restriction of the range of cues that are attended
to. In our study, stressed subjects might have focused primarily on

Figure 1. Salivary cortisol concentrations immediately before as well as
1, 20, and 35 min after the socially evaluated cold pressor test (SECPT)
or control condition. The gray bars denote the timing and duration of
the treatment (SECPT vs. control condition) and the learning phase,
respectively. Error bars indicate standard errors of the means. **P < 0.01.

Table 1. Participants’ ratings of stressfulness, painfulness, and
unpleasantness, as well as systolic and diastolic blood pressure
responses indicated the success of the stress manipulation

Stress Control

M SEM M SEM

Subjective assessment
Unpleasant 67.57 4.62 1.67 1.02
Stressful 51.35 4.95 3.33 1.05
Painful 70.00 4.50 0.56 0.39

Systolic blood pressure
Pre 116.62 2.45 119.83 2.64
During 133.14a 3.62 114.31 3.82
Post 112.25 2.29 113.05 2.26

Diastolic blood pressure
Pre 65.55 1.43 67.08 1.38
During 81.19a 2.13 65.55 1.15
Post 64.83 1.31 65.00 1.17

Boldface: significantly higher in the stress than in the control group
(P < 0.001).
aSignificant difference within the stress group (P < 0.01).
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information related to thememory taskand less tocontextcues. This
interpretation fits well to recent studies showing that stress modu-
lates multiple memory systems in favor of rather simple, caudate
nucleus-dependent stimulus–response learning and at the expense
of hippocampus-dependent ‘‘cognitive’’ learning which requires the
integration of multiple cues (Kim et al. 2001; Schwabe et al. 2007).

Specific learning episodes are automatically embedded
within a temporal, spatial, and sensorimotor context. This in-
tegration of contextual information into the memory trace is
known to rely on the hippocampus (Moscovitch et al. 2005). Thus,
our findings suggest that participants stressed before learning do
not benefit from the contextual cues when tested for their
memory one day later because of reduced hippocampal function-
ing. This interpretation is in line with electrophysiological evi-
dence showing a reduced neuronal plasticity 20–30 min after
stress exposure (Joels et al. 2006; Diamond et al. 2007). It is also in
agreement with human fMRI evidence of reduced hippocampal
activity following stress (Pruessner et al. 2008) or pharmacological
administration of the stress hormone cortisol (Oei et al. 2007).

Importantly, while stress disrupted the context-dependent
memory enhancement, the memory for the object-location task
per se, which is thought to rely on medial temporal lobe (MTL)
structures, was not affected by stress. At first glance, this might
appear to be in conflict with previous reports suggesting that stress
prior to learning influences MTL-based memory performance.
However, the literature on the effects of prelearning stress is very
heterogeneous with some studies showing impairing effects
(Kirschbaum et al. 1996; Lupien et al. 1997), while others found
enhancing effects (Nater et al. 2007; Schwabe et al. 2008a) or no
effects at all (Domes et al. 2002). Moreover, these studies tested
participants in the same context where learning had taken place,
thus, they did not take the influence of the learning/testing
environment into account. The fact that stress impaired the use
of the context as a cue for memory, whereas memory per se
remained unaffected by stress, suggests that both functions rely on
medial temporal lobe structures differing in their sensitivity to stress.

Interestingly, the effects of context and stress on memory
depended on the valence and arousal of the presented pictures.
Context effects were strongest for low arousal (neutral) and
weakest for high arousal (negative) pictures. Usually, memory is
better for high arousal than for low arousal stimuli (Payne et al.
2006; Buchanan and Tranel 2008; Schwabe et al. 2008a). In line
with this view, memory tended to be better for negative than for

positive and neutral pictures in the in-
congruent context/control condition.
Surprisingly, the congruency between
learning and retrieval contexts made
memory for low arousing pictures not
only similar to but even better than
memory for high arousing pictures. A pos-
sible explanation for this could be the fact
that the processing of high arousing in-
formation relies on different brain struc-
tures than the processing of low arousing
information (e.g., amygdalar-hippocampal
vs. prefrontal cortex-hippocampal net-
works [LaBar and Phelps 2002; Kensinger
and Corkin 2004]). These structures
make memories more stable on the
one hand but prevent beneficial influen-
ces, e.g., of context congruency, on the
other hand.

While stress disrupted the context
effect for memory expressed as correctly
recalled card-pair locations (hits), the
context effect for the time needed to

complete the memory task remained unaffected by stress. Similar
to other authors who used the same object-location task (Rasch
et al. 2007; Benedict et al. 2008), we suggest that accuracy
parameters are more sensitive to the influence of memory mod-
ulators, such as stress, than speed parameters.

In the present study, the learning context was made up of an
odor and a spatial environment. It is important to note that we did
not aim to separate the contributions of these context compo-
nents, but to create a distinct context that may support memory.
Nevertheless, previous research suggested that both the memory
for odors and the memory for spatial arrangements rely on the
hippocampus and adjacent cortices (O’Keefe and Nadel 1978;
Burgess et al. 2002; Fortin et al. 2004; Levy et al. 2004). Thus, it is
tempting to speculate that there is a common mechanism under-
lying the impact of stress on odor context-dependent and
spatial context-dependent memory enhancement, namely the
effect of stress (hormones) on the integrative function of the
hippocampus.

Finally, our findings could also be interpreted in light of
studies on mood- or state-dependent memory (Lewis and Critchley
2003). According to this view, the presence or absence of stress
could be construed as an internal, biological context. As no stress
was induced on the test day, this internal context was different for
the stress group resulting in incongruent learning and testing
contexts in stressed participants tested in congruent spatial and
odor environments. Though this interpretation cannot fully
account for our findings, future studies are required to include
subjects that are re-exposed to stress before retrieval testing to
dissect the potential interactions between internal and external
context elements.

To conclude, our results suggest that stress can interfere with
our ability to integrate context information into a memory trace.
These findings might improve our understanding of the patho-
genesis of psychiatric disorders, such as the post-traumatic stress
disorder in which the failure to connect the traumatic event with
the appropriate (temporal and spatial) contextual information is
a common pathological hallmark (Rauch et al. 2006).
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Figure 2. Percent of hits (correct card-pair locations) in the retention test on day 2 relative to the
number of hits in the last training trial 24 h before as a function of stress (socially evaluated cold pressor
test vs. control condition) and context condition (incongruent vs. congruent context). Note that this
measure can yield values >100% if more card-pair locations are recalled in the retention test than in the
last training trial. Error bars indicate standard errors of the means. *P < 0.05.
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