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Abstract

A formulation based on integral equations is proposed in order to analyse the

edge-stress problem in composite laminates subjected to uniaxial extension.

The integral equations are obtained by employing a direct approach founded

on the reciprocity theorem. Once the fundamental solutions are known, the

proposed formulation allows a straightforward solution of the problem by the

boundary element method. The enforcement of displacement and traction

continuity along the interfaces leads to a set of linear algebraic equations

providing the problem solution. Some numerical applications are presented

and good agreement between the results obtained with the proposed method

and the existing ones is shown. The stress singularity arising at the laminate

free edges is investigated determining its power and strength.

Introduction

A great effort has been made in the research field in order to determine the

behaviour of interlaminar stresses in composite laminates which are widely

employed in the most advanced structural engineering technologies. One of the

events most frequently addressed is the interlaminar stress distribution under

uniaxial loading and particular care has been devoted to the study of the singular

behaviour of the stress field near free edges. Actually, due to the mismatch in

the elastic characteristics of the layers, a three-dimensional stress field, showing

high stresses at the interfacial zones, arises. Many authors*'** have dealt with

this matter and many techniques have been used to lead to the solution of the

problem. The methods employed to solve the laminate edge-stress problem vary

from finite difference* or finite elements?-* to the Galerkin method* or the use of

approximate closed-form analyses. *°-** in this paper, the elastic response of
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a multi-layered beam subjected to uniaxial extension is analysed according to

the boundary integral equation theory, ̂-1? The beam is supposed to be formed

by prismatic plies having different elasticity and general lay-up. Each ply is

considered homogeneous and in term of constitutive equation it is described by

a generalised orthotropic law having one principal axis parallel to the generators

of the beam lateral surface (cross-ply laminate). The boundary integral

equations governing the problem are directly obtained by applying the

reciprocity theorem^ using the fundamental solutions of orthotropic elasticity.

This approach gives a convenient basis for the application of the boundary

element method in order to achieve the solution. The proposed formulation

makes it possible to analyse the beam whatever the shape and the composition

of the section. Some applications are presented with the aim of testing the

method proposed and investigating, in terms of singularity power and strength,

the singular behaviour of the stress field at the free edges.̂ /w The results

obtained show the robustness and the efficacy of the present method, in which

some computational advantages with respect to other techniques are involved.

Definitions

Let the beam be considered as composed by prismatic layers having different

elastic properties and let it be referred to a co-ordinate system x., i=l,2,3, with

the x., axis parallel to the lateral surface generators of the beam having section

A and length /. The generic layer having section A^ and length / is considered as

homogeneous and orthotropic with material symmetry axes parallel to x-

(cross-ply laminate).

Figure 1 : Laminate configuration.

When a tensional load is applied at the beam's ends the displacements

s, , &, and s, at the generic point P of the beam may be assumed as

J2=u2(x,,xj (1)

^3 ~ Eg X]

where e^ is constant all over the beam section. The strain field associated with

the displacement system (1) is given by
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a/ax, o

o 5/5x2
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' =Du
(2)

while the stresses are

.0,2.

,2 ^

0 0

0

0 e +
(3)

33=[El3 ^23 0] 6 4- £3360=0*8 +£3360

Finally the governing field equations, i.e. the equilibrium equations, are

expressed as

D^a-0 in A^ ; D^a = t in F^

where t are the surface forces applied on the ply boundary F^ and

0 ou
D =

0

(4)

(5)

In the previous relation a, and (%% are the direction cosines of the outwardly

directed normal to the boundary.

Integral equations

The generic ply having section A^ is loaded on the surface by the force system t

which is constant along the x, axis. Let the elementary solid be subjected to a

fictitious system of body forces f] constant along x,, fj=f(x,,xj, and let ir be a

particular system of displacements satisfying the equilibrium equations

D^EDu +f =0 in A (6)

Moreover, let 6j, o] and tj be the strain, stress and traction fields related to Uj,

respectively. By applying the reciprocity theorem one has

J(tJu-uJt)dT. + Jf/u dA. = J(aj6-eJa)dA,
r. A, A,

and, taking into account that 633^ = 0, eqn (7), via eqn (3), becomes

(7)

(8)
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In the hypothesis that fj is a concentrated load applied at the point P^ and

directed along the j direction, from eqn (8) one obtains

(9)

r, A,

where

Cj = JfjdA.=-JtjdT. (10)

Ae F.

If the domain integral on the right-hand side of the eqn (9) is transformed into a

boundary integral, one obtains the following integral equation

(11)

r, r.

where

q*=[E,3Cti E^aJ (12)

Eqn (11) represents the general relation which gives for j=l,2 the integral

equations coupling the tractions and the displacements on the boundary of the

generic laminate ply. Once the generic ply has been discretized by means of

boundary elements, the displacements and the tractions u and t on its boundary

may be expressed in terms of their nodal values 5 and p by properly selected

shape functions defined along the element

u = N8 ; t = Np (13)

Therefore eqn (11) becomes

c*u(Po) + J(t*N6-u*Np)dr, = -8oJu*qdr, (14)

r, r,

in which

Generally eqn (14) presents four unknowns for each nodal point but nonetheless

one can write four integral equations at each nodal point because the latter is

common to the boundaries of the contiguous layers. Taking the interfacial

continuity conditions into account, one obtains a linear algebraic system the

solution of which provides the interlaminar displacements and tractions and

hence the stress and the displacements at each point of the beam.

Fundamental solutions

The fundamental solutions of the problem are related to the compliances of the

layer considered. Indeed the fundamental solutions depend on the roots of the

characteristic equation

C,, ̂  -2C,z + C,,/2))i + C22 = 0 (16)
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where the coefficients C^ are the compliances of the ply considered:

Fr» 1 — ir-i f\ ?\I L/ — IL ^1 /)

Assuming that the roots \ of the eqn (16) are distinct and positive in sign, as

generally happens, the fundamental solutions u. for j=1,2 are

in which

In eqn (18) cp^ and vy^ are defined as

(18)

(19)

q>ii(P,Po) = -

(20)

where

= x,(P)-x,(P,) ;

(21)

The fundamental solution stresses and the A^ coefficients are provided by

.,2 _

(22)

A,=-

^ = C,(\-XJ

(23)

Applications

To check the efficiency of the present method, numerical results are compared

to data available in the literature. In all the applications the elastic constants,

with respect to the principal material axes of each ply, for the high-modulus
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graphite/epoxy are used

E, = 137.9 GPa ; z = 14.5 GPa

GPa (24)

where L, T and Z refer to along fiber, transverse and thickness directions,

respectively. In the discretization linear elements and linear shape functions are

employed. The c.. coefficients at the ply corner points are evaluated, according

to eqn (10), by using Gauss quadrature formulas in the same way as all the other

influence coefficients. Notice that the enforcement of the free edge boundary

conditions requires taking into account a linear combination of the two

equations obtained for a load applied at the free edge interlaminar point and

directed along the x, axis.

Number of elements for each ply = 44

Figure 2: BEM discretization for a quarter of the beam section.

Two symmetrical four-ply laminates having width equal to 16-h, where h is the

ply thickness, and [0/90]̂  and [90/0]<, lay-ups have been analysed. The results,

obtained by discretizing a quarter of the laminate section as shown in figure 2,

are relative to unit axial extension.

2000

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: The ô  distribution for [0/90]̂  and [90/0]\ laminates.
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: 7%e c,, distribution for [0/90]̂  and [90/0]<, laminates.

In figures 3 and 4 the a^ and o,, distributions at the 0/90 interface of these

cross-ply laminates are plotted, respectively. This kind of laminates exhibits high

stress gradients near the free edge indicating that the stresses have the tendency

to be singular at the free edge location. It has been pointed out that the

singularity behaves like r* and hence near the free edge, where the singularity is

dominant, one can write

log a = log A - a log r (25)

where a and A are two constants indicating the power and the strength of the

singularity respectively, whereas r is the distance from the singularity point. In

figure 5 the results obtained applying the log-linear procedure to the [0/90],.

laminate are shown and they are compared in terms of singularity power a with

those of Raju et al* Good agreement between the present results and the

existing ones proves the efficacy of the proposed method.

1E+4

1E+3

a»[MPa]

a

Present

0.232

Raju et al.

0.202

-Region of nt

-A...A .

Present BEM
log c?zz =log A - a log r

(b-x,)/b

1E-3 1E-2 1E-1

Figure 5: Log-log plot for o,, along x̂  =hfora [0/90],, laminate.
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Conclusions

The present formulation allows one to analyse the multi-layered cross-ply

composite laminate subjected to uniaxial extension. The approach is based on

the theory of integral equations and it employs the boundary element method to

obtain a numerical solution of the problem. The satisfaction of displacement and

traction continuity along the interfaces leads to a linear system of algebraic

equations. The interlaminar stress field, obtained without any a priori

assumption, shows high gradients at the laminate free edges. This confirms, in

agreement with the literature, the presence of stress singularities at the ply's

corners. The determination of singularity power and strength is carried out and

good results are obtained despite the relatively small number of elements

employed. The future developments of the proposed formulation will focus

mainly on its application to angle-ply laminates and to absolutely general lay-

ups.
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