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We review recent progress in understanding phenomena like crumpling, in which elastic mem-
branes or sheets subject to structureless forces develop sharply curved structure over a small
fraction of their surface. In the limit of zero thickness these structures become singular. After
reviewing several related phenomena we note the physical elements that give rise to the singular
behavior: elasticity and the nearly inextensible behavior of thin sheets. This singular behavior
has counterparts in higher dimensions. Then we discuss the most basic of these singularities, the
vertex. We describe mathematical progress in describing the d-cone, a simple realization of a
vertex. We concentrate on the size of the core that governs the departure from singularity and
conclude that fundamental understanding is lacking. We point out further mysterious behavior
at the region where a d-cone is supported. We then discuss an emergent singularity that appears
when two or more vertices are present: the stretching ridge. We offer several accounts of the
scale of this singularity from qualitative scaling arguments to a formal asymptotic analysis. We
discuss recent experiments and theories about the interaction of ridges and vertices and review
the evidence that these ridges dominate the mechanics of crumpled sheets.
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FIG. 1 A loosely crumpled sheet of aluminized mylar, 2 meters in width and 10 microns in thickness, courtesy of Henry Frisch

I. INTRODUCTION

Imagine a piece of paper inside a large spherical container. Then imagine shrinking the container, so that the
paper inside must deform. The paper develops sharp points and bends: it crumples. No such sharpness appears if
one confines a thin wire or thread in the same sphere. These one-dimensional objects curl up uniformly as they are
confined, with none of the sharp structure seen in the paper. This review explores the origin and nature of these
sharp features that appear when a two-dimensional solid sheet or membrane is confined, as in Figure 1.

The sharp structure of crumpling is a form of energy focusing. As the sphere begins to shrink, the elastic energy
of deformation, initially smoothly distributed, becomes more and more nonuniform. It becomes concentrated in the
strongly bent regions. This concentration grows more and more pronounced if one repeats the experiment with thinner
and thinner sheets. Such spontaneous focusing of energy has been an important preoccupation of physics throughout
the 20th century. A classical example is strong turbulence (Nelkin , 1992), in which kinetic energy uniformly injected
into a fluid becomes progressively concentrated into regions of strong vorticity in space, and strong intermittency in
time. Strong vibrational excitations in a medium lead to focusing into shock waves (Robey et al. , 2002). Strong
mechanical forcing of solids leads to fracture: uniform perturbation creates a focused response (DeArcangelis et al.

, 1989). Dielectric breakdown of a solid under a uniform electric field is an analogous phenomenon (Gyure, Beale ,
1992) . Such focusing is paradoxical. Normally when some form of energy is allowed to distribute itself in space, it
tends towards a state of maximal uniformity. But in spontaneous focusing the reverse happens. The reasons for such
focusing are important to understand. Conceptually, we seek a common understanding of why focusing arises in these
different guises. Moreover, the concentrated energy seen in the examples above offers the potential for both benefit
and harm. Deeper understanding can aid in controlling both the benefit and the harm.

The focusing seen in a crumpled sheet offers neither great benefit nor great harm. However crumpling provides
a particularly clean and simple form of focusing. As shown below, crumpling occurs in any elastic manifold with a
small spatial extent in one or more direction. Thus by studying crumpling, one may hope to shed light on a larger
class of focusing phenomena. In the last decade there has been an upsurge of interest and activity in these focusing
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phenomena. The purpose of this paper is to review the remarkable fruits of this activity. The paper grew out of a
lecture series given at the Ecole de Physique et Chimie in Paris in 1999 and a summer school given at Altenberg,
Germany in 2002 (Wood , 2002).

A. history

Crumpled structure has fascinated people for many centuries. Painters and sculptors have long been attentive to
the ridges and gables in the flowing garments of their figures. First steps to a quantitative understanding came in
Euler’s analysis of incipient buckling in the 18th century (Euler , 1736). In this analysis, an initially unperturbed
shape is subjected to an infinitessimal buckling deformation. Under sufficient external load one finds a mode of
deformation that grows spontaneously in amplitude. This instability analysis gives information about initial stages
of the crumpled structure, but it does not describe focusing. Soon afterward the geometric connections between
compound curvature and strain were developed with great generality by Gauss (Millman, Parker, 1977). The formal
basis for understanding strongly-deformed membanes came at the turn of the twentieth century with the Föppl–von
Karman equations (Foppl , 1907; von Karman , 1956). Here the many constraints of mechanical equilibrium and
differential geometry were exploited to reduce the many degrees of freedom of a sheet to just two scalar fields: a
potential for the curvature tensor and a potential for the stress tensor. The two Föppl–von Karman equations in
principle determine these two fields under appropriate boundary conditions. The two equations are of fourth order in
derivatives and are in addition quadratic in the fields. In the years since World War II, several insightful approaches
extended the power of the Föppl–von Karman equations beyond the realm of infinitessimal buckling, and into the
regime known as postbuckling. Alexei Pogorelev (Pogorelov , 1988), Koiter, and Hutchinson, (Thompson et al. ,
1984) enabled the prediction of the discontinuous buckling events that lead to crumpled structure. The nonlinear
coupling in the Föppl–von Karman equations often leads to buckling events that are localized in the sheet. Such
localized buckling amounts to the gathering of energy from the entire surface into a small region. This is a form of
stress focusing that is an important precursor to the sharply focused structures treated in this paper. This subject
was developed extensively in the 1980s and 1990s using concepts such as homoclinic orbits taken from dynamical
systems theory (Lord et al. , 1997).

In the 1980’s the connections between curvature and strain were shown to be important in controlling the shapes
of thermally fluctuating membranes (Nelson et al. , 1989). The thermal fluctuations were shown to increase the
rigidity of the membrane, with effective bending and stretching elasticity constants that varied anomalously with
length scale (Guitter et al. , 1989). In this same period the numerical simulation of buckled membranes such as thin
cylinders (Kergosien et al. , 1994) advanced greatly and accurately captured the focusing phenomena and bends seen
experimentally.

In the 1990s several groups became interested in the scaling aspects of crumpled structure(Albuquerque, Gomes
, 2002). In the early nineties using simplified deformations, the Chicago group demonstrated that the interaction
between curvature and strain led to a scaling law for the focusing of energy (Lobkovsky et al. , 1995; Witten,
Li , 1993). The scaling law applies to the asymptotic limit of thin sheets. It shows that the energy is concentrated
principally in lines joining adjacent vertex points of maximal curvature. The energy is increasingly concentrated along
these ridge lines as the thickness decreases. It is predominately contained in a fraction of the sheet that decreases
in proportion to the 1/3 power of the thickness. The evidence for this scaling came from numerical simulations and
non-rigorous energy balance arguments. Lobkovsky (1996a) was able to analyze one simplified geometry using the
Föppl–von Karman equations. Applying standard methods of asymptotic analysis, he confirmed the 1/3-power scaling
law noted above and deduced a number of other scaling properties, together with reduced equations for the ridge
shape. Subsequently the Chicago group explored a variety of properties arising from the ridge singularities (Lobkovsky
and Witten , 1997), including an experimental study of the strength of crumpled material that was consistent with the
anticipated scaling law based on ridge energy (Matan et al. , 2002). In tandem with this work, a group at the Ecole
Normale Superieure in Paris was studying more fundamental singularities: the individual vertices (BenAmar, Pomeau
, 1997). They concentrated on a simplified geometry that they named the developable cone or d-cone. This is the
shape obtained by pushing a piece of paper into a supporting ring using a point force (Figure 2). When a flat sheet is
confined to a small volume such d-cones must appear. These are the vertices that terminate the ridges discussed above.
Inspired by the Ecole Normale work, the group of L. Mahadevan in Boston was able to draw powerful conclusions
about the shapes of d-cones using the fact that asymptotically these sheets become inextensible, with vanishingly
weak strain (Cerda, Mahadevan , 1998). They showed how the stored energy grows with increasing deformation,
and they showed several striking robust features of the shape. They explored the interaction of d-cones (Cerda et

al. , 1999). Later the Ecole Normale group showed that d-cones move on a surface in response to distantly applied
forces (Boudaoud et al. , 2000; Hamm et al. , 2004; Mora, Boudaoud , 2002). This group, and their collaborators in
Chile and Boston simultaneously deduced striking scaling information about how the wavelength of incipient buckling
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FIG. 2 Sketch of d-cone after Cerda, Mahadevan (1998); cf (Venkataramani et al. , 2000) Uncurved director lines are indicated.

depends on thickness in the presence of strain (Audoly , 1999; BenAmar, Pomeau , 1998; Cerda, Mahadevan , 2003;
Cerda et al. , 2002). These wrinkling phenomena proved applicable to a great range of structures flowing from the
nonlinear interaction between bending and strain (Belgacem et al. , 2002, 2000; Conti et al. , 2005; Sharon et al. ,
2002). These wrinkling effects are distinct from focusing, since they don’t describe the concentration of energy into
an indefinitely small subset of the sheet. Thus we will not discuss them further in this paper.

B. interface focusing

The crumpling phenomena that we shall discuss belong to a rich and growing class of interfacial deformation
phenomena. It seems worthwhile to review these phenomena to set the crumpling in context. We may classify these
phenomena according to the constitutive nature of the interface being deformed, its dimensionality and the nature
of the forces causing the deformation. The elastic membranes we described above are constitutively distinct from
liquid membranes such as lipid bilayers (Safran , 1994) . Liquid membranes are characterized by a bending stiffness,
but no shear modulus. They thus do not support static anisotropic shear stress within the membrane. There is no
preferred distance between two given points. Thus the basis for focused crumpling is absent for such membranes.
The rich variety of self-generated shapes in these membranes is thus quite different from the ones we will discuss.
Liquid membranes can show transient phenomena akin to elastic membranes, since they develop viscous shear stress
in response to flow (Boudaoud, Chaieb , 2001; da Silveira et al. , 2000; Debregeas et al. , 1998). While the membrane
carries no cost for changing the distance between two points statically, it does carry a cost for changing this distance
rapidly.

The surface being deformed may be either a free-standing membrane or the surface of a bulk liquid or solid. Surfaces
of bulk matter show a range of distinct focusing phenomena of their own. Fluids may be splashed onto a surface (Xu
et al. , 2005), or drawn into fine threads using viscous (Cohen, Nagel , 2002) or electrical (Ganan-Calvo , 1998; Shin et

al. , 2001) forces. Inhomogeneous gels can show rich buckling patterns at their surface owing to differential deswelling
(Chaieb, Melo , 1997; Matsuo , 1992) or delamination (Ortiz, Gioia , 1994; Tanizawa, Miura , 1978). Similar buckling
occurs in the forced deformation of the Earth’s crust owing to viscous stresses from the underlying mantle (Turcotte,
Schubert , 2001). These patterns often show apparent sharp concentration of stress.

Liquid crystals show some aspects of elasticity and they show some stress-focusing phenomena that are closely
analogous to those of elastic sheets. A smectic liquid crystal is a stack of fluid membranes held at a fixed separation.
If one of these membranes is curved, the membranes within must curve more and more tightly, extrapolating to a
focal point or line (Fournier, Virga , 1996).

Even the elastic membranes discussed below show a range of different deformation behavior according to the
nature of the deforming forces and boundary conditions. One inevitable kind of forcing comes from equilibrium
thermal fluctuations arising from exchange of thermal energy with the environment. As noted above, these thermal
fluctuations give a flat sheet a much increased thickness, and this thickness imparts an induced bending stiffness to
the sheet. Thermal fluctuations do not cause collapse or crumpling. By contrast, the forces imposed by a shrinking
container may be expressed as normal forces applied on the points of the membrane depending on its position in
space. As noted above, such forces when sufficiently strong do induce buckling and ultimately lead to crumpling. The
structures seen in crumpling can also be induced by applying constraints as well as by applying forces. For example,
the focusing seen in a d-cone is closely related to the conical structure produced by fastening two adjacent corners of
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a rectangular sheet together and then fastening the two adjacent edges together. Likewise, the ridge structures seen
in crumpling can be made by creating two such cones in a sheet, as explained below.

One major influence on the nature of crumpling is the dimensionality of the deformed object. We have noted that
one-dimensional objects do not crumple while two-dimensional objects do. As for higher-dimensional surfaces, one
may explore their response in the computer, as discussed below. An object in high dimensions has many ways to
bend, twist and stretch. It is natural to expect new forms of stress focusing there. Understanding these can deepen
our understanding of conventional crumpling. Moreover it enlarges our knowledge of how focusing can occur. Though
we lack physical realizations of these high-dimensional objects, many physical phenomena are naturally described in
spaces of different dimensions, such as the spaces used in string theory (Polchinski , 1998). Thus it is worthwhile to
find the types of focusing that may occur.

C. prospectus

The following sections survey the recent findings about the nature of stress focusing in thin elastic sheets. Our
emphasis is on the aspects that distinguish thin sheets from generic elastic bodies. Accordingly, we shall deal with
the limiting behavior as the thickness becomes arbitrarily small relative to other characteristic lengths of the sheet.
We begin our discussion in the next section by defining an elastic membrane and identifying its deformation energy.
We shall note that thin confined membranes should approach the ideal of isometry: deformations must preserve the
in-surface distance between adjacent points. With this motivation we discuss the classical consequences of isometric
deformation: at every point at least one of the two principal curvatures must vanish. We recall how this local condition
leads to global constraints: through each point passes a straight “director” line which must remain unbent to the
boundary of the surface. We next see how the existence of two conical regions with converging directors conspires to
create flat regions and a singular ridge line between the cone vertices. We then review how these properties generalize
to manifolds with more than two dimensions embedded isometrically in spaces with more than three. When the
embedding dimension is not too large, analogs of the unbent lines must appear. In a subset of these cases analogs
of the ridge line appear as well. The existence of these unbent lines and their analogs prevents confinement of an
isometric manifold into a region of limited linear size, such as a shrinking sphere. If such confinement is to occur, the
constraint of isometry must be broken somewhere in the sheet. That is, the sheet must stretch somewhere. Simple
arguments allow us to deduce the dimensionality of the required stretched regions.

In Section III we consider the simplest form of focusing seen in these sheets: the d-cone. We review the rich body
of information derivable by considering the isometric limit. Simple equations yield the shape of the buckled surface
and dictate certain invariants. A small idealization leads to a formulation in terms of Euler’s Elastica (Euler , 1736).
We discuss the core singularity and how its size should scale with thickness. We then compare these predictions
with experimental and numerical observations. These observations confirm the properties that are independent of
stretching but disagree with the predicted core thickness. We offer possible reasons for this disagreement. Next we
consider the effect of the constraining rim of the d-cone on the nearby membrane. We recall recent numerical evidence
of a striking geometric consequence. The mean curvature virtually vanishes at the contact line. We discuss the range
of situations in which this vanishing is observed to occur.

In Section IV we deal with the ridge singularity induced by two d-cones or vertices. After showing a variety of
ridge-producing configurations, we repeat several variational arguments that account for the degree of concentration
of energy. We consider the implications of ridge focusing for a crumpled sheet with many ridges. We discuss how the
energy of a ridge should depend on its bending angle. We then describe a variant of the ridge that shows different
scaling and compare these two forms of ridge scaling.

In Section V we consider the differential equations of static equilibrium that dictate the state of stretching and
bending of such membranes. These are the Föppl–von Karman equations mentioned above. We sketch the physical
ideas leading to these equations and indicate how stretching effects regularize the singularities of the isometric limit.
We recall the geometry known as the minimal ridge and recount Lobkovsky’s asymptotic analysis of this ridge via
the Föppl–von Karman equations. We discuss the scaling properties that emerge, emphasizing some striking nonlocal
aspects of the crossover from the immediate vicinity of a vertex to the ridge region beyond.

In Section VI we review experimental data on individual ridges. These experiments—mostly numerical—have
supported many of the scaling predictions of the previous section and have revealed unanticipated behavior. They also
give a concrete guide to when the asymptotic predictions begin to describe materials of nonzero thickenss. We discuss
exploration of ridge formation in more than three-dimensional space. To this end, we introduce a characterization
tool for inhomogeneous energy focusing: the density of energy profile. Using this tool we show that ridge-like focusing
occurs in higher-dimensional manifolds. We discuss numerical evidence supporting the predicted scaling properties of
a ridge, including anomalous strength.

In Section VII we review the current knowledge about the collective properties of the multiple singularities produced
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by crumpling. In simple geometries, experiments in Paris and Chile show how external stresses induce migration of
d-cones. We then explore the implications of these scaling laws for the strength of real crumpled materials and review
an experiment testing these implications. We discuss recent work about the statistical properties of the crumpled
ridge network . We conclude by summarizing the many unanswered questions in crumpling and the strong incentives
to answer them.

II. BASIC ENERGIES AND ISOMETRY

In this section we recall the standard mathematical description of a thin sheet of material embedded in space. We
shall concentrate on sheets whose local deformation is arbitrarily weak, so that its internal forces are described by
“linear elasticity.” We shall contrast this weakly strained regime with other regimes in the course of the paper. To
clarify the distinctions between these regimes we summarize their properties in Table I at the end of this section.

A. elastic energies

We first describe the elasticity of the material composing the sheet (Landau, Lifshitz , 1986). Each set
x ≡ (x1, x2, x3...) identifies a particular bit of matter. Physical materials have three material co-ordinates; we will
generalize to higher dimensions in later sections. This material is embedded in space: to each point (x1, x2, x3, ...)
we identify a point ~r ≡ r1, r2, r3 ... in space where the corresponding bit of matter is positioned. If the material
is a solid, there is an energy functional E[~r] that gives the elastic energy of the particular embedding ~r(x). This
energy has a minimum for some particular ~r 0(x) and its rigid-body translations and rotations. One minimal ~r 0 is
given by r01 = x1, r02 = x2; r03 = x3, .... We set this minimal energy to zero. For a wide range of deformations,
interactions between material points are local, and E[~r] is a local functional in material co-ordinates. It depends only
on the distances between nearby pairs of points; thus it can be expressed as a function of spatial derivatives such as
∂r3/∂x2 ≡ ∂2r3 or ∂2r1/∂x1∂x2 ≡ ∂1∂2r1. In the resting state of the solid, the distance ds between nearby points is
given by ds2 =

∑
i dxi

2. However, embedding the membrane in space can alter this distance, so that ds2 takes the
form gijdxidxj , where

gij =
d~r

dxi
·

d~r

dxj
≡ δij + 2γij . (1)

Evidently the (dimensionless) strain tensor γγ may be taken as symmetric, and evidently in the undistorted state the
strain tensor γij = 0. Any small departure of γij from 0 carries an energetic cost quadratic in γ. There are two
independent isotropic scalars that are quadratic in a symmetric tensor; they may be taken as (Tr γγ)2, and Tr (γγ2).
When we combine the requirements of translation invariance, positivity and the minimal state, we thus arrive at the
form

E[~r] =

∫

x

1

2
λ(Tr γγ)2 + µTr γγ2. (2)

The Lamé coefficients λ and µ are properties of the material.
When the material is distorted uniformly so that some of the γij are nonzero the work per unit strain ∂E/∂γij is

the force per unit area required to maintain the distorted state. This derivative is called the stress and is denoted
σij . Since the energy is quadratic in γγ, each component σij is proportional to the various compnents of γγ. A
commonly occurring case is when the solid is pulled in one direction (eg. direction 1) without other stress. Then
the proportionality of that stress to the corresponding strain is called the Young’s modulus Y . In terms of the Lamé
coefficients, Y ≡ σ11/γ11 = µ(3λ + 2µ)/(λ + µ) . The solid then contracts in the orthogonal directions, eg. the 2
direction, by a factor γ22 = −ν γ11. The Poisson ratio ν is then given by ν = 1

2λ/(λ + µ) . In what follows we shall
consider weakly strained solids (cf. Table I), for which the strain γ is indefinitely small compared to unity everywhere.
In this regime we are free to express energies, strains, curvatures etc. to lowest order in the strain. Remarkably, the
strong focusing phenomena to be treated below are compatible with this weak-strain regime.

If the material has a very small extent in one or more dimensions, this description may be reduced. We consider a
planar section spanned by material co-ordinates x1, x2, and having thickness h in the remaining direction. Then we
may distinguish displacements ~r · n normal to the sheet and those within the sheet. In the weakly-strained regime,
the curvature tensor(do Carmo , 1976) Cij may be defined by Cij ≡ ~n · ∂2~r/(∂xi∂xj). This is a symmetric tensor
with dimensions of inverse length. In the absence of curvature, the stretching energy can be expressed in terms of the
transverse or in-surface components 1 and 2 of the strain tensor.
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For ordinary two-dimensional surfaces the energy of such a sheet may be expressed (Landau, Lifshitz , 1986) in
terms of the in-surface strain tensor and the curvature tensor. To lowest order in these tensors the energy takes the
form:

E[~r] = S[γγ] + B[CC]

=

∫
dx1dx2

[
1

2
λ̂ (Tr γγ)2 + µ̂ Tr (γγ)2

]

+

∫
dx1dx2

[
1

2
κ (Tr CC)2 +

1

2
κG

(
(Tr CC)2 − Tr (CC)2

)]
. (3)

The energy is the sum of a part S involving only the in-surface strain and another part B involving only the curvature.
There are no cross-terms linear in CC and γγ. Such terms would imply an asymmetry between one side of the surface
and the other, which we shall suppose is absent. It is natural to denote S as the stretching energy and B as the
bending energy. Again the derivatives of these energies give the local forces on a small element of surface. Specifically,
∂S/∂γij ≡ Σij is the membrane stress or force per unit length in direction j in the surface acting across a line in
direction i. Likewise, ∂B/∂Cij ≡ Mij , the torque per unit length in the j direction acting across a line in the i
direction. A given set of stresses and torques acting on an element of surface also implies certain normal stresses
denoted Qi acting across a line in the i direction (Landau, Lifshitz , 1986; Mansfield , 1964).

The two-dimensional Young’s modulus Ŷ (= hY ) relating uniaxial membrane stress to strain is related to λ̂ and µ̂

by: Ŷ = 4µ̂ (λ̂+ µ̂)/(λ̂+2µ̂). The membrane’s Poisson ratio ν̂(= ν) = −λ̂/(λ̂+2µ̂). The ratio of bending coefficients
κ and κG to stretching coefficients λ and µ gives the relative importance of bending to stretching energy for a given
deformation ~r(x). The bending coefficients have dimensions of energy while the stretching coefficients have dimension

of energy per unit length squared. Thus their ratios define characteristic lengths of the membrane. The length

√
κ/Ŷ

appears often in what follows. We call this length the elastic thickness and denote it by he. Many geometric properties
of stress focusing depend on material properties only through he.

When the membrane is made of isotropic elastic material, the membrane constants λ̂, µ̂ κ and κG are proportional
to the material parameters λ and µ. We may also express Ŷ and ν̂ in terms of λ and µ or the bulk Y and ν. Denoting
µ/λ as m, the proportionalities are as follows:

λ̂ = h µ
2

1 + 2m
=

h Y ν

1 − ν2
(4)

µ̂ = h µ =
hY

2(ν + 1)
(5)

κ = h3 µ
1 + m2

3(1 + 2m)
=

h3 Y

12(1 − ν2)
(6)

Ŷ = h µ
(3 + 2m)

1 + m
= h Y (7)

ν̂ =
1

2(1 + m)
= ν (8)

We note also that he = h (12(1 − ν2))−1/2. For ordinary materials where 1/3 < ν < 1/2, he varies from about 0.3h
to 0.33h.

Several aspects of the curvature bear pointing out. In order for the curvature field to represent a surface with a
well-defined displacement field ~r(x), the curvature tensor must be “curl free” (do Carmo , 1976):

∂iCjk = ∂kCji (9)

We note that κG is taken as the coefficient of the difference 1
2 ((Tr CC)2 − Tr CC2) . For the weakly strained surfaces

considered here, this difference is the Gaussian curvature cg (do Carmo , 1976); it is the product of the two principal
curvatures, or eigenvalues of CC. The Gaussian curvature plays a special role in the sequel. The associated κG energy
is strongly constrained by the Gauss-Bonnet theorem (Millman, Parker, 1977). The theorem is a purely geometric
property of any smooth surface. It says that the integral of cG over any surface is unchanged by smooth deformations
of the surface that do not involve the boundary or its neighborhood. For weakly-strained surfaces whose energy is
described by Eq. 3, the κG energy is unaffected by distortion of the surfaces.

Though the Gaussian curvature energy has no direct impact on the membrane configuration, it has a large indirect
impact. This is because the presence of Gaussian curvature necessarily produces a strain field γγ: the curvature and
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FIG. 3 Illustration of how Gaussian curvature leads to strain. A disk of radius ǫ on a flat sheet is shown by gray lines. The
sheet is then curved downward with radial lines held fixed in length. The resulting spherical cap has a reduced perimeter shown
as a heavy black line, indicating a compressive strain in the azimuthal direction.

strain fields are not independent. To illustrate this dependence, we denote the principal curvatures in the 1 and 2
directions as c1 and c2. Then with an appropriate choice of spatial co-ordinates ~r, we may write

~r · n =
1

2
c1x1

2 +
1

2
c2x2

2. (10)

If c1 = c2 ≡ c, this region has the form of a spherical cap as shown in Figure 3. We suppose that the radial lines
along x1 and x2 do not change their length under this deformation. However, a circle originally of radius ǫ becomes
contracted by fraction (ǫc)2 . Evidently when c1 and c2 are both nonzero, the curvature is a source for strain.
A uniform Gaussian curvature leads to a strain that grows quadratically with the size of the region. The general
statement of this connection is Gauss’s fundamental theorem of surfaces or Theorema Egregium (Millman, Parker,
1977)(do Carmo , 1976):

c1c2 = 2∂1∂2γ12 − ∂1∂1γ22 − ∂2∂2γ11 + O(γ2) (11)

The scaling of the above energies with thickness has strong implications about the relative importance of bending
and stretching. The ratio of bending to stretching energy for any membrane configuration ~r(x) is proportional to

κ/λ̂ and κ/µ̂. Both of these ratios are proportional to the square of the thickness h. Thus thin membranes have
a high energy cost to stretch relative to their cost of bending. That is, a very thin membrane responds to external
forces almost like an unstretchable sheet. This observation motivates us to examine the behavior of membranes in
the unstretchable limit, in which the in-surface strains are constrained to remain zero. Such membranes are called
inextensible or “isometric.”

B. isometric distortions

By definition an unstretchable distortion ~r(x) must have γγ = 0. Thus only the curvature CC contributes to the
energy. However, CC is also constrained by the requirement of unstretchability, since as noted above Gaussian curvature
produces strain. To avoid strain, we must require that the Gaussian curvature vanish everywhere. Thus at least one
of the two principal curvatures must be zero at every point. If one follows the uncurved direction along the surface,
the resulting line is straight in space (Eisenhart , 1909).

The impossibility of bending in all directions without stretching lies at the heart of the anomalous rigidity of
thermally fluctuating membranes. Isotropic bending necessarily produces energetically costly stretching. Thus the
bending is inhibited. The inhibition couples bending and stretching fluctuations. As we have seen, the amount of
inhibition depends on the length scale of the fluctuation relative to the thickness. Achieving a mutual consistency
between bending and stretching fluctuations results in a macroscopic bending stiffness and stretching moduli that
depend on length scale via subtle power laws (Bowick, Travesset , 2001). These membranes may alternatively avoid
the stretching cost by another dramatic accommodation. They may become macroscopically straight in one direction
(Radzihovsky, Toner , 1998). In either of these scenarios, the system retains its unperturbed size in at least one
direction. Thermal fluctuations do not lead to collapsed states like those imposed by a confining sphere.

The necessity of a straight line passing through every point imposes severe restraints on confining an isometric
membrane. For example, if one wishes to bend the disk-shaped membrane in order to fit inside a sphere, the diameter
of the sphere may be no smaller than that of the disk. One may allow somewhat greater confinement by allowing
stretching near an isolated point. Then Gaussian curvature may occur near this “vertex.” This allows a distortion in
which the uncurved directions converge to the exceptional point, forming a cone-like structure.
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FIG. 4 A sheet with two d-cone vertices, after Cerda.nature.1999. The sheet is constrained to lie within a circular ring. The
shape is calculated numerically using methods described in Section III.B. A generic point P near the line joining the vertices
is marked. Unbent director lines are indicated.

The cone structure permits confinement in a sphere smaller than the disk diameter. However, as we reduce the
sphere diameter to the radius of the disk, further reduction becomes impossible. To shrink the sphere further requires a
second vertex. Evidently, the number of vertices required must increase continually if the membrane is to accommodate
increasing confinement.

The presence of two vertices introduces a new effect on the surrounding surface. We see this by considering a
generic point P in the vicinity of the two vertices, as shown in Figure 4. Isometricity requires that the line from the
P to the first vertex be straight and unbent. The same is true for the line from P to the second vertex. Thus there
must be two uncurved directions at P . Unless P lies directly between the two vertices, this condition forces both
principal curvatures to be 0: there can be no curvature at P whatever.

Our requirement of no stretching thus has important consequences for the sheet, even beyond the vertices. The
sheet is forced to have extended flat regions separated by sharp creases and thus infinite bending energy relative to
the bending modulus κ. Here our assumption of unstretchability has clearly led to an unphysical conclusion.

To avoid this unphysical conclusion, we must recognize that even a very thin sheet has a non-infinite cost for
stretching. By stretching, the membrane may avoid the infinitely sharp bending and attain a finite total energy. It is
thus stretching that sets the scale of the stress focusing in the membrane. How stretching influences focusing is our
main concern in the sections to follow. We first look more deeply at how isometry inhibits confinement by considering
how the effect generalizes to higher dimensions.

C. higher dimensions

In the foregoing we have seen how very thin membranes become relatively difficult to stretch. We have seen further
that unstretchable or isometric membranes respond to confinement by making strong deformations confined to small
regions. This is the stress-focusing phenomenon that is the subject of our study. The necessity for focusing is a
feature of the geometry of manifolds embedded in space. In order to understand this focusing more deeply, we now
explore the range of situations when membranes show this focusing. To this end, we consider manifolds of different
dimensionalities, such as a three-dimensional spherical ball embedded in a four, five, or six dimensional space.

As with ordinary membranes an m-dimensional manifold has a material coordinate system x ≡ (x1, x2, . . . xm).
Each point x occupies some point ~r(x) in the embedding space. The space points ~r have d coordinates r1, . . . rd with
d > m. The strain tensor γγ is given by Eq. 1, as before.

To see how curvature leads to strain in this general situation, we start from the undistorted state where r1 =
x1, r2 = x2, . . . rm = xm, rm+1 = 0, . . . rd = 0. As before we denote this state by ~r 0(x). The directions m+1, . . . , d.
are evidently perpendicular or normal to the manifold. We now add a curvature near the origin by allowing ~r to
depend quadratically on x. Curvature implies that ~r moves out of the 1, 2, . . . ,m plane as x moves away from the
origin. Thus to make the 1 axis curve into the positive m+1 direction, we make rm+1 = 1

2Cx1
2. To avoid strain in

the 11 direction we must also correct the 1 component for the curving surface: r1 = x1 −
1
6C2x1

3. In vector notation,

~r = ~r 0 + 1
2Cx1

2
m̂+1 − 1

6C2x1
3 1̂, where 1̂, 2̂, . . . denote unit vectors along the embedding space coordinates. For a

general curvature , each of the d − m normal directions would be an arbitrary quadratic function of x1, . . . .xm.
We first consider the analog of the strain seen above Eq. 11 for two-dimensional membranes, or 2-sheets. We

suppose that the 1 and 2 axes each curve equally into the m+1 direction. Thus the 1–2 plane of the manifold lies in the
space spanned by the 1, 2, and m+1 axes. This part of the system is evidently a two-dimensional spherically-curved
membrane in a three-dimensional space. As in the example above Eq. 11, the strains γ11, γ12 or γ22 must be nonzero.
The m-dimensional manifold is not strain-free. The same argument shows that whenever two manifold axes curve into
the same normal direction, these axes form a two-dimensional membrane in that normal direction having Gaussian
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curvature and thence strain.
We may calculate the strain γij explicitly for the case where the 1 and 2 axes curve into the m+1 direction. Recalling

the definition of strain from Eq. 1

γij =
1

2
(∂i ~r) · (∂j ~r) − δij . (12)

Then

~r = ~r 0 +
1

2
c1x1

2
m̂+1 −

1

6
c1

2x1
3 1̂ +

1

2
c2x2

2
m̂+1 −

1

6
c2

2x2
3 2̂ (13)

We first consider γ11. By construction, it has equal and opposite contributions from the 1 and the m+1 directions. The
γ22 vanishes similarly. The γ12 = 1

2 (∂1 ~r) · (∂2 ~r) has a contribution from the m+1 direction of magnitude c1c2x1x2.

However, it has no contribution from the 1 direction since (∂2 ~r) = − 1
2c2x22 2̂ + c2x2 m̂+1 has no such component.

Similarly, it has no contribution from the 2 direction. Evidently γ12 is nonzero.
We now consider a case where two manifold axes curve into independent normal directions. We repeat the above

analysis with the 1 axis curving as before into the m+1 direction but now with the 2 axis curving into the m+2 direction.
The γ11 and γ22 vanish as before. However, now the γ12 vanishes as well. The ∂1 factor now has only 1 and m+1

components, while the ∂2 factor has only 2 and m+2 components. The dot product of the two is thus zero. We
conclude that when all the axes curve into independent normal directions, strain is not generated.

It is often not possible for all the axes to curve into independent normal directions. The physical case of a 2-sheet
embedded in 3-space is a case-in-point. Here we may, for example, bend the 1 material axis into the third dimension.
But then there is no independent normal direction for the 2-axis to bend into. In order to avoid strain, the 2-axis
must remain straight. The necessity of such straight directions inhibits confinement, as we discussed above. The
same result follows whenever there are fewer normal directions than manifold directions, i.e.,whenever d − m < m,
or 2m > d. (Venkataramani et al. , 2000) Indeed, every reduction in d by 1 forces an additional uncurved direction.
The number of uncurved directions is evidently 2m − d. On the other hand, if 2m ≤ d, there is no requirement of
uncurved directions. We may readily exhibit a configuration ~r(x) of arbitrarily small spatial extent with vanishing
strain (Kramer , 1997). The following ~r(x) embeds a cube of side 2L into a sphere of radius R m1/2:

r1 = R sin x1/L; r2 = R sin x2/L; . . . ; rm = R sin xm/L

rm+1 = R cos x1/L; rm+2 = R cos x2/L; . . . ; r2m = R cos xm/L. (14)

Each material axis has been curled into a circle of radius R with as many turns as necessary to accommodate the
width L. One may readily use Eq. 12 to verify that γij = 0.

This discussion shows the necessity of uncurved directions. It is natural to suppose that these locally uncurved
axes align to form straight lines spanning the membrane. With 2-sheets in three dimensions this alignment is a
familar fact. Its truth in higher dimensions is less obvious. If one follows a straight line in the material beginning in
an uncurved direction, does it remain uncurved, so that the distance between its ends is the same as in the resting
state? We know that each point along this line has an uncurved direction. It remains to show that the uncurved
direction runs along the line we have defined. One may show this for a 2-sheet in three dimensions by considering a
line that is everywhere tangent to the local straight direction starting from a point A as shown in Figure 5. We extend
this line to a point B such that the transverse curvature has not changed sign between A and B. By construction,
the surface has no curvature along this line; thus it remains in the tangent plane at A. We denote this line by C. We
suppose that it is not straight and find that this leads to a contradiction. If C is not straight, then the straight line
AB in the material from A to B is distinct from C and it meets C at a nonzero angle. Either AB lies in the tangent
plane at A or it does not. If it does, then there are two independent uncurved directions at A: one along C, the other
along AB. This contradicts our assumption that the surface is maximally curved. If AB does not lie in the tangent
plane, then it must curve away from that plane. We consider a point D along the line AB close to A. We draw a
perpendicular to AB at D and extend it until it meets curve C. This perpendicular is curved where it intersects the
curve C, since it is not in the uncurved direction. By continuity, it is also curved at D. Thus D has curvature along
both the AB direction and along the perpendicular. Thus by the Theorema Egregium, there is strain, contradicting
the assumption that the deformation was isometric.

In higher dimensions locally straight directions also extend to form straight lines across the material (Venkataramani
et al. , 2000). As with a 2-sheet this depends on the membrane being curved in other directions. One may see this
by considering the two-dimensional material slice through the sheet spanning the locally straight direction and one
of the curved directions. As before we adopt space coordinates that align with the material co-ordinates in directions
1 to m. We label the locally straight direction 1 and the locally curved direction as 2. This 2 axis curves into some
normal direction that we denote as m+1. We now consider the projection of the 1–2 material plane of the sheet into
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FIG. 5 Construction illustrating why locally uncurved directions remain uncurved to the boundary. The curve C is defined to
follow the uncurved direction in the sheet. Its tangent plane is indicated by the shaded parallelogram. The line AB is a straight
line in the material connecting the endpoints of C. Its path in space may depart from the tangent plane, as shown. The dashed
line shows its projection on the plane. The curved surface near curve C is indicated by upward-curving lines perpendicular to
C. The intersection of one of these lines with AB near A is marked D.

FIG. 6 If a sheet is not maximally curved, a straight line in the material that is uncurved in space at one point may become
curved elsewhere. In the sheet pictured here the central region is flat and not maximally curved. The line drawn from the
center is initially straight in space but then begins to curve, after Venkataramani et al. (2000).

the 1–2–m+1 directions in space. This is evidently a 2-sheet embedded isometrically into a three-dimensional space.
The theorem for ordinary sheets discussed above thus applies. It says that the 1 material axis cannot bend in the 2
or the m+1 spatial directions. We now consider some other curved material axis, denoted 3. It cannot curve into the
m+1 direction. This would create strain, as discussed above. Thus it must curve into some orthogonal direction in the
normal space. We call this the m+2 axis. We now repeat the projection made above. This time we are projecting the
1–3 plane of the material into the 1–3–m+2. space. Again applying the theorem for 2-sheets, we conclude that the 1
axis cannot bend into the 3 or m+2 directions.

We may repeat this reasoning for all material directions with curvature. There are at most d − m such directions.
For such “maximally curved” sheets, our argument in the last paragraph shows that the 1 axis cannot curve into
any normal direction. By construction it does not curve in any material direction. Thus it must be uncurved in all
directions. It is a straight line in space, and it must remain straight to the boundary, as with 2 sheets in 3 space. We’ve
thus shown that any point with maximal curvature has a straight line extending from that point to the boundary.
This straight line prevents confinement within any sphere smaller than the length of the line. Thus for example if the
m sheet is a ball of diameter L and if the center has maximal curvature, there must be a straight line of length L. It
cannot be confined without stretching in a sphere of diameter smaller than L.

This argument has added power for higher-dimensional manifolds, such as a 3-sheet in 4 space. Here a maximally
curved sheet can have only one curved direction. Two directions must be uncurved at every point. Labeling these
directions 1 and 3, we infer that arbitrary points in the 1–3 plane of the material must remain flat in space. In general
all the k locally flat directions extend to form a flat k-dimensional subspace in the embedding space.

We’ve argued that there can be no confinement without stretching in the most obvious case of maximal curvature,
whenever d < 2m. A less obvious case occurs if the curvature is not maximal anywhere. An example is a two-
dimensional disk that has no curvature at the center. Such as disk may nevertheless have curvature elsewhere, as in
the three-cornered-hat configuration pictured in Figure 6. Lines extending in uncurved directions from the origin may
begin to curve elsewhere. One may imagine the possibility that a sheet with d < 2m might be confined by avoiding
maximal curvature everywhere. To rule out such possibilities requires subtle mathematical reasoning (Venkataramani
et al. , 2000), which we do not reproduce here. This reasoning proves that every point has a straight line extending
essentially to the boundary. Moreover, this reasoning suggests that every point has a flat 2m − d subspace that
extends to the boundary. Though this stronger suggestion has not been proved, we shall assume it in what follows.
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FIG. 7 Simple vertex line in a three-dimensional sheet made by stacking two-dimensional sheets, cf. DiDonna et al. (2002).
Shown are two cross sections of the sheet. Material co-ordinates are x1, x2, x3; space co-ordinates are r1, r2, r3, r4. Upper
picture shows the image of an x1–x2 cross-section, embedded in the r1–r2–r4 hyperplane of the space. All parallel cross sections
cut perpendicular to the x3 axis are identical to this one. The image of the x1 material line is marked by a heavy line. Lower
picture shows the image of the x1–x3 plane. Each heavy broken line is the image of an x1 material line. The vertex line is the
set of break points of these lines, extending along the x3 direction.

1. stretching vertices

In the previous section we recalled that one may decrease the confinement radius by allowing stretching at isolated
points or vertices. Thus one such vertex at the center of a disk of diameter L allows us to break the straight directors
of length L in half, thus permitting cone-like structures of size L/2 as in Figure 2. By allowing stretching at the vertex,
we have in effect modified our isometric sheet by creating a tiny hole at the vertex. The hole forms one boundary of
the sheet, and straight director lines may terminate there. By allowing more vertices in the sheet, one may confine
it to smaller spheres. If we place enough vertices in the sheet so that their separation is less than about b, all points
of the sheet lie within a distance b of the (internal) boundary. Thus the director lines need be no longer than b, and
confinement within a confining width b is possible.

For sheets of higher dimensionality one may also introduce vertices in order to permit confinement (DiDonna et al. ,
2002). To illustrate this possibility, we form a 3-sheet in four dimensions by stacking many copies of a d-cone like that
of Figure 2 into the fourth dimension to create a 3-sheet like Figure 7. This 3-sheet has no strain, and it is confinable
in the first three directions to a distance L/2. In order to enable this much confinement, isolated point vertices were
not sufficient. Instead, the vertex region has become a line. The internal boundary required is one-dimensional.

This example shows that vertices must be more than isolated points if they are to permit confinement of arbitrary
manifolds. We argued above that m-sheets in d dimensions must have flat 2m − d subspaces that extend to the
boundary. In order to confine such a subspace to diameter b all points of this subspace must be less than b/2 from
the boundary—either the exterior boundary or an internal vertex boundary. The dimensionality of this boundary is
that of the surface of the subspace in question, namely 2m − d − 1. Our vertices must have a dimensionality at least
as great in order to permit confinement (DiDonna et al. , 2002).

The dimensionality of these vertices increases progressively as we decrease the embedding dimension. To show
this, we consider an m-dimensional ball of diameter L in a space of large dimension d. If d = 2m, then the ball is
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confinable to arbitrarily small diameter without stretching. Each material axis may be curled into a circle into an
independent normal direction, and this causes no strain. Now if we decrease the embedding dimension by 1, there
must be uncurved lines extending to the boundary. In order to allow confinement to diameters b ≪ L requires many
point vertices separated by distances of order b or less. In principle, pointlike vertices may not suffice, but empirical
evidence given below indicates that isolated points are sufficient. If we again decrease d by one, then there are flat
two-dimensional spaces in the manifold extending to the boundary. In order to confine this manifold, we require
one-dimensional vertices. These must form a network so that all points lie within a distance of order b from a vertex.
Empirically, as noted below in Section VI these vertices consist of straight-line segments. If we decrease d again,
the flat regions become three-dimensional and the vertices become two-dimensional surfaces. Finally we reach the
smallest possible d, namely m+1. At this point, the manifold must have m−1 flat directions. These form hyperplanes
in the manifold. To allow confinement, we need a network of (m − 2)-dimensional vertices.

2. ridges

In our description of confining a 2-sheet in Section II.B we encountered a new element of structure in addition to
the vertices. We observed that typical points in the sheet were constrained by more than one nearby vertex. The
line pointing towards each vertex was required to be straight. In general the lines are not colinear. This implied
that a region of the sheet had two independent uncurved directions, and thus was entirely flat. The curvature was
concentrated in a vanishing fraction of the material. The confinement process induced singularities called ridges in
addition to the vertices. The conditions for this enforced flatness are not completely clear, even for ordinary sheets.
Figure 4 (Cerda et al. , 1999) shows that two vertices do not suffice to flatten an entire sheet. Instead, only triangular
regions whose tips are at vertices or elsewhere on the exterior boundary become flat.

Clearly ridge formation must occur for higher-dimensional sheets. This is readily apparent when d = m + 1. We
suppose that our m-sheet has been strongly confined, so that there are vertex points at distance less than b ≪ L. We
note that there is only one allowed direction of curvature; thus the surface at a generic point P is either maximally
curved or flat. We first suppose that it is maximally curved. Then there is a flat m − 1-dimensional uncurved space
surrounding it, extending to a vertex boundary. We identify the nearest vertex point V on this boundary. This point
extends to an m− 2 dimensional manifold. We consider the 2-surface in the material that includes the line PV and a
second line through P normal to the vertex manifold. This 2-surface may be analyzed like an ordinary sheet in three
dimensions.

Within our 2-surface, the original vertex point is an isolated point. However, there are in general other vertex
points lying elsewhere in the 2-surface. We consider the closest one to P . The situation in this 2-surface is similar to
that in an ordinary surface. We thus expect that flattened regions like those found in an ordinary surface must occur.
These flattened regions should be bounded by straight lines joining pairs of vertex points. In general the flat regions
meet at a nonzero dihedral angle, and thus the boundary line is sharply bent. This is the analog of the ridge in an
ordinary sheet. Since the intersection of a ridge with a 2-surface is one-dimensional, the overall dimensionality of a
ridge is expected to be one less than that of the manifold, that is, m − 1.

Our understanding of ridges is sufficiently weak that we do not fully understand the conditions for their existence
even for ordinary 2-sheets. Our understanding of m sheets in m + 1 dimension is weaker, and for higher embedding
dimensions, it is weaker still. However, empirical evidence gives a fairly clear-cut conclusion, as we discuss in Section
VI below.

To conclude this section we list the properties of weakly strained elastic sheets in Table I. We compare these with
unrestricted deformations and with isometric and weakly-deformed sheets.

In the next section we return to ordinary two-dimensional sheets and discuss the most basic form of focusing by
considering the structure called the d-cone.
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TABLE I Regimes of deformation of an elastic sheet of thickness h and width L confined in a sphere of radius R. The columns
list various regimes that can occur in such a sheet of m dimensions in d dimensional space. The properties for ordinary
2-dimensional sheets in 3 dimensional space are indicated in the last row.

non-weak strain weak strain isometric weak deformation

definition Strain in some regions is
of order unity or larger.

All strain in material is
small enough to be treated
to lowest order.

Strain in material
directions vanishes
everywhere.

Displacement from a re-
laxed reference state is
small enough to be treated
in lowest order.

example sheet confined in sphere
with R ≃ h

thin sheet of paper arbitrarily thin sheet of pa-
per

vibrating drum head

description no restrictions on amount
of bending and stretching.

resembles isometric sheet,
but singularities are
replaced by small regions
of high curvature
does not require weak
deformation

gently curved regions
punctuated by singular
boundaries of infinite
curvature

Slope relative to reference
state is small everywhere.
no sharp curvature
implies weak strain

relation to
this paper

mentioned central subject treated mentioned

configuration
specified by

strain field in all d
dimensions of the sheet

strain and curvature fields
in m dimensions

curvature field in m
dimensions

eg. local height above ref-
erence position

energy
functional

depends on material quadratic in strain and
curvature,
Linear elasticity is valid.
Minimum-energy
configuration satisfies
Föppl–von Karman
equations.

quadratic in curvature quadratic in height and its
gradients

thickness
regime

unrestricted h ≪ L,
h ≪ R
h ≪ inverse curvature
everywhere

h = 0 h ≪ inverse curvature

confinement
to R ≪ L

unrestricted ok if h is sufficiently small only if d ≥ 2m or if
singularities are allowed †

no. incompatible with def-
inition

types of
focusing

vertices: if d < 2m††‡‡

dimension 2m − d − 1 ††‡‡

ridges: if d = m + 1 ††‡‡

dimension m − 1
bending energy is 5 times
stretching energy ‡‡‡

width ∼ h1/3 ‡‡‡

vertices: if d < 2m †

ridges: if d = m + 1 ††

none

sheets in
3 dimensions

point vertices joined by
linear ridges

point vertices, linear
ridges

† proved analytically.

†† strongly indcated by analytical arguments.

‡ strongly suggested by energy-balance arguments.

‡‡ consistent with numerical experiments.

III. D-CONES

If one pushes an infinitely thin sheet into a circular opening, as in Figure 2, the surface deforms so as to avoid
stretching almost everywhere. As discussed in the previous section, the deformation can create curvature in only one
direction at any point. An unbent “director” line passes through each point. Such a surface is called developable. In
Figure 2 the directors converge to a point to form the cone-like geometry called a developable cone or d-cone (Cerda,
Mahadevan , 1998). The surface is developable except at the convergence point. The act of exerting a simple force
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FIG. 8 Co-ordinates for analyzing the shape of the d-cone after Cerda, Mahadevan (2005a). The unit vector û(s) points from
the vertex to a point on the unit circle at a distance s from the center of the buckled region. The Cartesian basis vectors
ê1, ê2, ê3 are shown. The polar angle β and azimuthal angle θ and the polar basis vectors êρ, êθ, ê3 are indicated. The inset

shows the region near s viewed along the radial line û. The tangent unit vector t̂ is shown on the main picture and the inset.
The normal unit vector n̂ is shown on the inset only. The inset defines the angle φ between t̂ and êθ, as well as the n̂θ unit
vector needed to form a basis with û and êθ.

has thus organized the entire material. Moreover the structure is similar to the vertex structures that appear in
a crumpled sheet, as discussed in the last section. The d-cone geometry captures the roof-gable shape seen at the
intersection of folds in draped clothing. It is clearly of fundamental interest.

In this section we discuss the properties of d-cones. We begin by considering the unstretchable limit, in which the
shape is strictly developable except at the vertex point. In a real material of finite thickness, this simple description
is modified. The vertex point expands to a core region of finite size in which stretching is important. We discuss
how bending and stretching energies determine the size and energy content of this core. Departures from the ideal
developable shape also occur where the surface contacts the constraining ring. We discuss a striking regularity in the
shape at this ring.

A. kinematics

The ideal d-cone is strongly constrained. Its shape is described by one scalar variable in one dimension. We may
see this by drawing a circle of unit radius in the sheet concentric with the forcing point, following the discussion of
Cerda, Mahadevan (2005a). The angular position of a point on this circle is denoted s. When the d-cone is formed,
the director lines are radial lines. The only curvature occurs in the azimuthal direction. We denote this azimuthal
curvature by c(s). Determining this c(s) thus determines the shape of the surface.

To describe the constraint imposed by the container, we now consider the position of this circle in space in the
deformed sheet as shown in Figure 8. We place our coordinate origin at the vertex, so that the point at s has a
position û(s) where û is a unit vector. Evidently û(s) maps out a curve in space. We define a vertical, polar coordinate
axis perpendicular to the plane of the constraining ring. We define the polar angle of û(s) as β(s) and denote the
azimuthal angle by θ(s). The ring itself has a polar angle β0. Since the surface must lie within the ring, β(s) must
be less than or equal to β0 for all s.

In order to minimize the energy subject to this constraint, we must evidently relate β(s) to c(s). To this end we

define the tangent unit vector t̂(s) and note that t̂ = ˙̂u, where the dot over the symbol denotes the derivative with

s. Since t̂ is the derivative of a unit vector, t̂ ⊥ û. Likewise, ¨̂u = ˙̂t is perpendicular to t̂ and its magnitude is the
curvature of curve û(s). We may form a normal unit vector to the sheet n̂ via n̂ ≡ t̂ × û.

The curvature of û(s) is distinct from the curvature of the surface. û(s) has a curvature within the material as well

as following the curvature of the sheet. The curvature c(s) = −n̂ · ˙̂t = −n̂ · ¨̂u. The sign of c(s) is chosen so that inward
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curvature is positive. In order to relate c(s) to β, it is useful to specify the motion of the û(s) curve relative to the

azimuthal direction êθ. We note that êθ is perpendicular to û and thus it is in the plane of n̂ and t̂. The direction
normal to êθ and û is denoted n̂θ.

The complete curve may now be specified in terms of the angle φ between t̂ and êθ. To this end we note that t̂ in
the êθ–n̂θ–û basis takes the form

t̂ = cos φ êθ + sinφ n̂θ. (15)

The derivative ∂t̂/∂φ amounts to a rotation of t̂ into the n̂ direction, i.e., ∂t̂/∂φ = −n̂. To relate φ to the curvature,

we compute c(s) = −n̂ · ˙̂t:

n̂ · ˙̂t = n̂ ·
∂t̂

∂φ
φ̇ + cos φ n̂ · ˙̂eθ + sinφ n̂ · ˙̂nθ. (16)

The first term is simply −φ̇ as noted above. To compute the other terms, we first express the vectors in our êθ–n̂θ–û

basis. First, we note that since n̂ ⊥ t̂ ⊥ û, n̂ must have the form sinφ êθ − cos φ n̂θ. We observe that ˙̂eθ = −θ̇êρ,

where êρ is perpendicular to êθ and the polar axis: êρ = − cos β n̂θ + sinβ û. Finally, ˙̂nθ must lie in the êθ–û plane.

Specifically, ˙̂nθ = −θ̇ cos β êθ + β̇ û . Combining, we find:

n̂ · ˙̂eθ = (sinφ êθ − cos φ n̂θ) · (− cos β n̂θ + sinβ û)(−θ̇)

= (−θ̇)(cos φ cos β)

n̂ · ˙̂nθ = (sinφ êθ − cos φ n̂θ) · (−θ̇ cos β êθ + β̇ û) = (− sin φ cos β θ̇). (17)

Using these results we may now express n̂ · ˙̂t as

n̂ · ˙̂t = −φ̇ + cos φ(−θ̇)(cos φ cos β) + sinφ(− sin φ cos β θ̇)

= −φ̇ − cos2 φ(θ̇)(cos β) − sin2 φ(θ̇ cos β)

= −φ̇ − (θ̇)(cos β). (18)

Finally, θ̇ can readily be expressed in terms of φ, We see this by expressing ˙̂u ≡ t̂ in the standard êθ–êρ–ê3 co-ordinates:

t̂ = θ̇ sin β êθ + β̇ (cos β êρ − sin β ê3). (19)

The component along êθ must be the same as in Eq. 15. Thus, sinβ θ̇ = cos φ, so that

c(s) = −n̂ · ˙̂t = φ̇ + (cos φ cot β). (20)

To close the equation, we note that the β̇ component of t̂ in Eq.19 is precisely the component perpendicular to êθ in
Eq. 15, so that β̇ = − sin φ.

For a given φ(s), we may now determine β(s) and θ(s) and thence c(s). Thus we may evaluate the energy for any
d-cone surface. Conversely if c(s) is given, we may find φ(s) by solving Eq. 20 viewed as a differential equation for φ.
In the next section we show how mechanical considerations determine c(s).

B. mechanics

To find the shape of the d-cone, we must minimize the bending energy B of Eq. 3. Specifically, the energy lying
between a minimum radius R∗ and a maximum radius Rp is given by

B =
1

2
κ

∫ Rp

R∗

r dr

∫ 2π

0

ds (c(s)/r)2 =
1

2
κ log(Rp/R∗)

∫ 2π

0

ds c(s)2. (21)

We first note the overall scaling of the energy with system size. Being proportional to the dimensionless material
constant κ, this energy cannot vary as a power of the system size. Instead, a logarithmic growth with system size is
dictated. The energy also diverges as the inner radius near the vertex goes to zero. The remaining dependence on
curvature is simple. It remains to minimize this energy under the proper constraints in order to infer c(s).
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The formal constraint from the last subsection, β < β0 bears on c(s) only very indirectly. There is no obvious way
to implement this constraint in the minimization. However, one may simpify this problem enormously by anticipating
the qualitative shape of the surface (Cerda, Mahadevan , 2005a). The surface consists of a contacting region that
follows the constraining ring and a buckled region that does not touch the ring. The constraint on the buckled region
is simple. It has a constrained displacement between its ends. Thus the buckling takes the same form as the classic
Euler buckling of a thin, compressed rod (Cerda, Mahadevan , 2005a; Mansfield , 1964). The equation for the shape
of the buckled region is thus1

c̈ + (a2 +
1

2
c2)c = 0. (22)

The constant a arises from the constraint. We anticipate that the buckled region is symmetric about s = 0; thus
ċ(0) = 0. The buckled region extends to some s = sc called the “takeoff angle”, as yet unknown. At takeoff, the
curvature attains a value cc. For given values of sc, cc and constraint constant a, the buckled profile c(s) is uniquely
determined. These three constants are determined by three matching requirements at sc. a) The unbuckled region
must have length s = 2π − 2sc. b) The normal stress across the boundary Σss must be equal in the buckled and
unbuckled region. c) The torque or moment exerted at sc by the two sides must be equal. Naturally, the magnitudes,
eg. c(sc) depend on the angular depth π/2− β0 of the d-cone. The unbuckled region has a constant c(s) and is under
a constant compressive stress, independent of s. The constraining ring exerts a constant normal force P in order to
impose the constraint.

In order to determine the shape of the surface, and the angular span sc of the buckled region, it is necessary to find
not merely the curvature profile c(s), but also the director angle profile β(s). For this, one must solve the additional
kinematic equation 20 and determine φ(s). The solutions have been explored explicitly in the elegant work of Cerda,
Mahadevan (2005a). We now discuss some noteworthy results.

take-off angle: The most fundamental geometric characteristic of the buckling is the take-off angle sc. Re-
markably the limiting value of 2sc for small displacement is not zero but is about 2.43 radians or 139 degrees.

take-off force: In our specification of the problem, we required the normal stress and torque to be continuous
at the takeoff point; however, we did not specify the curvature derivative ċc. There is thus no reason for ċc to vanish as
it does in the unbuckled region. Indeed, one finds that ċc is different from the unbuckled curvature derivative, so that
the curvature derivative must change discontinuously at takeoff. As with a bent rod, this change requires a localized
normal force called the take-off force to act at the takeoff point. One may readily see the mechanical necessity for
this force by considering the force and torque equilibrium for the entire sheet assuming no take-off force. The vertical
pushing force at the center must be balanced by the uniform ring forces acting over an angular distance 2π − 2sc.
The ring forces must act normal to the sheet, so the direction of the resultant ring force is fixed. We may choose
the pushing force to balance this resultant. However this choice does not provide a balance of torques. Some further
external force is needed. This need is filled by the take-off force, and the torque-balance requirement gives a simple
way to calculate its magnitude. Evidently, the total take-off force is of the same order as the central pushing force.
In the weak-buckling limit, the take-off force is 0.411 of the pushing force (Cerda, Mahadevan , 2005a; Liang, Witten
, 2005) . These concentrated forces at the self-selected take-off points represent a form of focusing.

Given the shape of the sheet, it is straightforward to calculate the forces acting on any part of the sheet (Cerda,
Mahadevan , 2005a). Each element of the sheet is subject to stress and to bending moments. The bending moments
are proportional to the curvature through the bending stiffness κ. Since all bending is in the transverse direction, all
bending moments on an element act on its transverse sides. For the unbuckled part of the sheet, a normal pressure
P from the container also acts. Here the principal axes of the stress are the radial and transverse directions. To

1 This equation for the shape of a bent plate emerges naturally from the Föppl–von Karman equations to be presented in Section V.A.
It may be derived simply from the more transparent Kirchhoff (Love , 1944) formulation for the bending of a line of local curvature

c(s) and energy 1

2
B

∫ t

0
ds c(s)2 in a plane. The energy is to be minimized with one end fixed and with a given force F and bending

moment M acting on the opposite end. In the Kirchhoff picture, one uses the angular orientation α(s) at s to specify the shape of

the line. Evidently c = α̇. The applied force adds an energy
∫

F cos α ds. Thus the energy to be minimized is a functional of α and

α̇. It has the form of Hamilton’s principle of classical mechanics (Marion, Thornton , 1995). The angular variable α that minimizes
the energy satisfies the Euler-Lagrange equation Bα̈ − F sin α = 0. Such a classical motion conserves the value of the Hamiltonian
H ≡

1

2
Bα̇2

− F cos α: H is independent of s. Equation 22 may be shown equivalent to the Euler Lagrange equation by differentiating

the latter once to obtain Bc̈ − F cos α c = 0. To eliminate α one observes that F cos α = 1

2
B(α̇)2 − H = 1

2
Bc2 − H. Renaming H as

−B a2 the Euler-Lagrange equation has the form of Eq. 22. The force F may be viewed as a Lagrange multiplier imposing a constraint
of fixed distance between the ends of the line in the F direction. The bending moment M does not enter the equations but merely
influences the boundary curvature at the end of the line.
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FIG. 9 Lattice of springs to simulate an elastic sheet, after Seung, Nelson (1988). Inset at right shows nearest neighbor springs
(light lines) and spring between adjacent triangles to impart bending stiffness (dark line). One may make a disclination cone
by removing a sector of the lattice and joining the boundary particles with springs as shown by the lines at lower left. If both
sectors are joined in this way, the minimum-energy shape of the surface has the boat shape shown in Figure 11. Inset to Figure
10 shows a hexagonal section of a similar lattice deformed into a d-cone.

maintain the imposed curvature c(s) in the contacting region, this P must be nonzero. To maintain the conical r
dependence of the shape, this P must also have a prescribed r dependence; one finds that2 P (r) ∼ r−3. That is,
if one strictly enforces the conical shape, eg. by pushing the sheet into a conical container of opening angle β, the
constraint force P is concentrated towards the center. It diverges at the center; the total force acting within a distance
r also diverges. This contrasts with the experimental geometry of Figure 2, in which the constraining force is only
applied at a circular boundary. The internal stresses in the two cases are also qualitatively different. In the ideal
case, the balance of normal forces dictates a compressive stress Σss in the azimuthal direction. Much of this stress
is needed to balance the external pressure P from the conical container. However, in the absence of P , one readily
verifies (Liang, Witten , 2006) that Σss must become tensile. (One may verify it physically by noting that there is
a positive Gaussian curvature creating a slight outward bulge in the surface. One may also create a small radial cut
in a paper surface and note that the edges of the cut spread apart when the paper is deformed into a d-cone shape.)
This example shows that caution is needed in interpreting the unstretchable limit, even in regions where the shape is
arbitrarily close to the limiting unstretchable shape.

C. core region

Our central concern in examining the d-cone is to understand the degree of focusing of stress and energy. The
constraint of near unstretchability clearly causes strong focusing at the vertex of the d-cone. This focusing even
causes a logarithmic divergence in the total energy. The degree of focusing is evidently measured by the size R∗

of the region where the approximation of unstretchability breaks down. That is, the radial curvature Crr becomes
comparable to the azimuthal curvature Css, or the Gaussian curvature becomes comparable to the square of the mean
curvature. In the late nineties the work of BenAmar, Pomeau (1997) and Cerda, Mahadevan (1998) drew attention
to the peculiar nature of this region. It contrasts with the vertex region of a simple cone made by fastening two edges
of a sheet together as in Figure 9. In a simple cone the material also stretches near the vertex to avoid an infinite
energy. The stretched region has a size that remains finite even as the overall size of the cone goes to infinity. Thus
its size must be of the order of the thickness h of the sheet.

The core region of the d-cone has a crescent shape that is more complex than the core of a simple cone. The
crescent has a length comparable to R∗ and a transverse width w that appears much narrower than R∗. Moreover, if
one examines a d-cone made of ordinary paper, this R∗ appears much larger than the thickness. The experimental
studies of Cerda, Mahadevan (1998) and Cerda et al. (1999) suggested that R∗ grows with the ring radius R, and
they proposed a scaling argument giving R∗ ∼ h1/3R2/3. Cerda, Mahadevan (2005a) repeat the argument. The
argument was based on estimates of bending and stretching energy and on finding an R∗ that minimized the total
energy. It resembled the argument for the width of a stretching ridge (Lobkovsky et al. , 1995; Witten, Li , 1993) to

2 We use the symbol ∼ to mean “scales as”. That is, the left and right sides have a finite ratio in the asymptotic limit being considered.
The stronger relation “≃” is defined below.
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be discussed below. We now analyze these energies and their implications for R∗, following Liang, Witten (2005).
We then review the experimental and numerical findings.

In estimating these, we shall assume that the angular depth 1
2π − β0 of the d-cone is fixed. We shall then vary the

elastic thickness he defined in Section II and the ring radius R for various assumed choices of the core radius R∗. The
actual R∗ is that which minimizes the total energy E of Eq. 3. We shall initially suppose that the sheet radius Rp is
a fixed multiple of the ring radius R. At the optimal R∗ the energy is thus proportional to the bending modulus κ
times a dimensionless function of he and R. We seek the scaling behavior of R∗ in the asymptotic limit R/he ≫ 1.

In considering how R∗ influences the energies, it is convenient to imagine building the d-cone in two stages. In the
first stage (Liang, Witten , 2005), we remove a small disk of radius R∗ to be determined and draw this sheet into the
ring, thus forming a truncated d-cone. We denote its energy as E0. This energy is dominated by bending energy Be,
as in the ideal d-cone: Be ≃ κ log Rp/R∗, as noted above.3 Though this is the dominant energy in the system, its
derivative with R∗ is weak and is moreover independent of R. A second exterior stress arises from the tension due
to the pushing force. This stress falls off linearly with r like the curvature, and thus the corresponding energy S′

e is
logarithmic in R/R∗ like Be. It is weaker (Liang, Witten , 2005) than Be by a factor of order (h/R)2. Thus it is
negligible compared to Be. Evidently, these exterior energies favor large R∗; they are smaller when R∗ is larger. In
order to account for the observed scaling of R∗, we must find another contribution to the energy that favors small R∗.

We now transform the truncated d-cone into a d-cone by fastening the core region of the surface back into place.
This requires deformation of the inner disk, with its associated energy cost. Closing the surface requires an average
curvature of order 1/R∗, and thus a nominal curvature energy Bc of order κR∗

2(1/R∗
2) ∼ R0

∗. The nominal Gaussian
curvature in this region is of order R−2

∗ . As in the spherical-cap example in Section II.A, this leads to an average
strain of order unity and thus a stretching energy Sc of order κR∗

2/h2. Both of these energies can be qualitatively
altered if the curvature varies strongly within the core region. The addition of the core also creates additional forces
on the exterior region, and this alters the exterior energy near the core.

Cerda et al. (1999) and Cerda, Mahadevan (2005a) p. 697 posit a further stretching energy that couples core and
ring radius. It arises from the increase of length of the radial director lines owing to the nonzero size of the core. The
authors infer a strain in the sheet by assuming the excess length is distributed uniformly over the sheet. Using this
strain, they obtain a stretching energy which allows them to account for the observed growth of R∗ with R. However
they include only the stretching energy in the core region, omitting the much larger energy that the assumed strain
would produce in the exterior region. The justification for this omission remains unclear (Cerda, Mahadevan , 2005b).

We have summarized all the dominant contributions to the energy of both core and exterior regions. Minimizing
these energies with respect to R∗ leads to the prediction that R∗ ≃ h and is independent of R. None of these energies
provides a mechanism for the core radius to grow with the ring radius R. On the one hand, the core energies have
no R dependence. On the other hand, the exterior energies depend too weakly on either R or R∗. Thus any linkage
between R∗ and R must come from some subdominant energy too subtle for the estimates above. We shall return to
address such subtleties after our discussion of the stretching ridge in Section IV.

D. d-cone experiments and numerics

Many focusing properties of d-cones have been extensively tested and confirmed by experiments and simulations.
Numerical solutions of the elastica equations of the preceding section were worked out in connection with these studies
(Cerda et al. , 1999; Cerda, Mahadevan , 2005a); these give explicit predictions to be tested in experiments. The
main experiments were done in Cambridge University, the University of Santiago, Chile and the Ecole Normale, Paris
(Cerda et al. , 1999; Cerda, Mahadevan , 1998; Chaieb, Melo , 1999; Chaieb, Melo, 2000; Chaieb et al. , 1998; Mora,
Boudaoud , 2002). . These experiments were complemented by finite-element numerical simulations of elastic sheets
(Liang, Witten , 2005).

The experiments confirmed the striking prediction that the buckled region spans an angle 2sc that is a universal
number valid for several materials. They verified a prediction that the pushing F varies with the angular depth
1
2π − β0 linearly for small depth and with a fractional power at larger depth. Numerical simulations complement
these experiments by allowing one to observe forces and energies that are difficult to measure in an experiment. The
simulations of Liang, Witten (2005) approximate the sheet as a triangular lattice of points connected by springs
(Seung, Nelson , 1988). The springs are of two types. The first set of springs connects nearest neighbors and provides

3 We use the symbol ≃ or “about equal” to mean that the ratio of the left to right sides is a finite, pure number in the asymptotic limit
of interest. It does not imply that the pure number is numerically close to unity. The weaker relation ∼ defined above does not indicate
that the ratio is a pure number; it may thus depend on further parameters of the system.
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the elastic moduli λ̂ and µ̂. The second set imposes an energy cost for adjacent triangles that meet at a nonzero angle.
This set provides the bending stiffness κ. Thus by varying the ratio of the two spring constants, one may adjust the
elastic thickness he of the simulated sheet. External potentials are added to account for the pushing force and the ring
constraint. For any set of space positions of the lattice points, there is thus a total energy consisting of the external
potential and the spring potentials. The equilibrium shape of the sheet in the presence of the external potentials is
that which minimizes this total energy. Using standard minimization programs, one may readily determine the shape
of a d-cone and the forces and energies within it. This Seung-Nelson sheet has proven useful in other elastic membrane
studies to be described below.

The simulations have corroborated the same shape predictions tested by the experiments (Liang, Witten , 2005).
Moreover, they quantitatively confirm the localized take-off force, showing that for realistic sheet thickness the peak
ring force is orders of magnitude larger than the average ring force.

The experimental studies (Cerda, Mahadevan , 1998; Chaieb et al. , 1998) mention in passing that the core radius
grows with increasing ring radius R, and propose a power-law form for this increase, as noted above. The chief purpose
of the work of Liang, Witten (2005) was to test this prediction. Two different ways of measuring the core radius were
completely consistent with the prediction (Cerda, Mahadevan , 1998) R∗ ∼ h1/3R2/3 within the limited range of h
and R studied. They were inconsistent with an R0 or log R dependence. As noted above, the measurements are thus
at odds with expectations based on the dominant energies in the system. We shall return to consider more subtle
effects after our discussion of the stretching ridge below.

1. unexpected features

The simulation of Liang, Witten (2005) also uncovered an unexpected departure from the conical shape near the
constraining ring (Liang, Witten , 2006). Though the ideal shape has no radial curvature, the real shape must have
a radial curvature at the rim. The localized force requires an outward radial curvature of the surface so that the
surface elements at the ring may maintain equilibrium. This outward curvature Crr together with the imposed inward
curvature of the ring Css create a Gausssian curvature and thus stretching. The surface must approach the ideal shape
as h → 0, and thus the radial angle subtended by the radially curved region must go to zero. However, the curvature
Crr need not vanish. Observations of Crr showed a striking regularity. Within the numerical accuracy Crr and Css

are equal and opposite at the ring, so that the mean curvature virtually vanishes there.
The curvature cancellation phenomenon amounts to a new form of spontaneous structure formation in elastic sheets.

The numerical studies of Liang, Witten (2006) establish its generality. The two curvatures cancel to roughly one
percent precision over a range of thickness and pushing depth throughout the contacting ring, as shown in Figure
10. The numerical data are consistent with complete cancellation at least in the limit h → 0. Though it arises from
mechanical equilibrium, the phenomenon is purely geometric: it does not involve material parameters. The effect
requires global constraints on the shape. Mechanically, the required radial curvature dictates a specific magnitude of
the ring force. This force in turn arises from overall mechanical equilibrium, as discussed above. Empirically, Liang,
Witten (2006) found that global changes disrupt the cancellation. If one makes a radial cut before inserting the
sheet, the sheet does not buckle and the pushing force is reduced by a factor of order unity. This reduces the ring
force and the radial curvature becomes substantially smaller than the transverse curvature. If instead one replaces
the d-cone by a real cone, the radial curvature varies widely depending on the pushing force, so the cancellation is
in general absent. Likewise, if one replaces the circular ring by an ellipse, the ring force varies with position. Again
the cancellation is disrupted. The radial curvature overcompensates the transverse curvature near the minor axis and
undercompensates elsewhere.

The curvature cancellation must be compatible with the Föppl–von Karman equations of equilibrium discussed in
Section V.A. These equations must thus be able to account for the cancellation effect. Such an accounting must
necessarily include stretching effects in the unstretchable limit. It has not been carried out. Moreover, such an
accounting would necessarily be mechanical in nature, and thus would give limited insight into this purely geometric
phenomenon. Neither is it well-equipped to reveal the generality of the cancellation. The cancellation appears to be
a special case of an as-yet unarticulated general property of isometric surfaces.

In this Section we have described unexpected richness in the simple d-cone shape. The universal buckling angle and
the sharp take-off force can be understood in the unstretchable limit as a generalization of Euler buckling. However,
the anomalous growth of the core radius with the container radius requires a knowledge of residual stretching effects,
and remains a mystery. Thus stretching effects appear capable of altering local structure from distant constraints via
a mechanism yet to be grasped. A second mystery is the cancellation of curvature at the containing boundary. Some
conceptual tools for addressing these mysteries will be shown in the next section on the stretching ridge structure
seen in confined sheets.



22

mean

curvature

.1

.01

.001

.0001

distance 1 10 100

x

+

o

FIG. 10 Log-log plot of mean curvature along three radial lines of the d-cone shown in inset, after Liang, Witten (2006).
circles: line in the buckled region, indicated by the heavy line in the inset marked with o. +,×, lines that touch the confining
ring, indicated by heavy lines marked with + and ×.

IV. STRETCHING RIDGE STRUCTURES

We argued in Section II that when two d-cone-like vertices are present in a sheet, the region on either side of the
connecting line must become flat in the unstretchable limit. This entailed a sharp bend along the connecting line, and
hence an infinite bending energy relative to the bending modulus. We noted that any finite stretchability would suffice
to remove this infinite energy. Thus the actual configuration near this line depends on the degree of stretchability. In
this section we explore the interplay of bending and stretching energy that determines this configuration.

As noted in the Introduction, multiple vertices joined by ridges must occur when an elastic sheet is confined within
a sphere. The first stage of this process results in a pair of developable cones, as studied by Cerda et al. (1999). These
authors analyzed the region away from the ridge line and the vertices in the unstretchable limit, as shown in Figure
4. They confirmed that the flanks of the ridge are indeed flat, as anticipated in Section II. They also noted that the
flat regions are limited in extent and that part of each d-cone retains its cone-like curvature. We shall reconsider this
behavior in Section VI below.

A. variants

Ridges appear to form in a broader class of cases, as illustrated in Figure 11. A simpler variant of the two-d-cone
configuration may be made by creating two ordinary cones in a sheet. This is done by removing a wedge-shaped piece
of the material from two different places whose vertices are separated by distance X, as shown in Figure 9. When the
sides of one wedge are joined, it creates a defect called a disclination. We considered the core region of such a cone
in Section III. Now if the second wedge is joined together, the sheet contains two disclinations. Our reasoning from
Section II implies that the regions on either side of the connecting line should once again be flat, so that a stretched
ridge joining the disclinations should form.

By making multiple disclinations in a flat sheet, one may form a closed polyhedron, as shown in the figure. Such
polyhedra provide simplified realizations of interacting ridges and vertices and regions completely bounded by ridges.
Another procedure creates ridges in an unbiased way without any imposed inhomogeneity. It consists in joining the
opposite edges of a rectangular sheet to form a torus. This constraint creates four symmetrically placed d-cones
forming a pillow-like shape.
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FIG. 11 Simulated configurations showing ridge scaling: kite, bag, boat, after Lobkovsky et al. (1995). Kite construction
is explained in Figure 12. The bag, boat and tetrahededron are formed by removing sectors from a flat sheet of material
and fastening the cut edges together, as implemented in Figure 9. Shading is proportional to local stretching energy density.
Alternating bright and dark stripes indicate non-monotonic distribution of energy. The tetrahedron at lower right (DiDonna ,
2005) has he/X = 10−4 and has a ratio of bending to stretching energy B/S = 5.1 The simulation has 80 lattice points along
the ridge.

A complementary approach makes ridges via smoothly adding boundary forces to a flat sheet. A very tractable
example developed by Lobkovsky (1996a) is created by exerting only normal forces. It is called the minimal ridge
and is pictured in Figure 13. To form a minimal ridge, one first considers a surface formed by joining two half-planes
folded through a dihedral angle 2α. One then introduces a long strip of flat elastic material of width X. Via edge
forces normal to the sheet, one then constrains its two long edges to lie in the folded surface. It is apparent from
the figure that this smooth procedure creates a ridge region of concentrated bending between the two vertices. As
discussed in Section V below, this ridge is amenable to systematic analysis that allows several aspects of its shape
and energy to be calculated explicitly.

B. scaling of ridge width

In order to gain a concrete sense of how these ridges form, we consider a further variant called the kite shape. The
kite shape is pictured in Figure 12. It consists of a square sheet fastened to a frame at its edges. The frame is hinged
so that it can fold along a diagonal, thus forcing the sheet to bend. If one makes such a kite out of eg. a piece of
office paper stapled into a manilla envelope, one sees that the width of the bent region is significantly smaller than
the width of the kite. One also sees directly that the sheet must be stretched. By sighting along the ridge line, one
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FIG. 12 The kite, a square of elastic material fastened in a hinged frame. Base line is shown as a dashed, horizontal line. The
transverse mid-line goes from front to back. This line is the y axis of the material coordinates. The x axis is the ridge line.
Ridge length X, assumed curvature radius Rc and sag distance ζ are indicated.

sees a clear sagging of the ridge line. This combines with the transverse bending to form a saddle shape with negative
Gaussian curvature. The clear appearance of Gaussian curvature entails stretching.

The sheet is choosing a configuration that minimizes the total of bending plus stretching energy. Clearly stretching
is playing a significant role in this energy. For definiteness we now fix the bending angle to some specific value such
as 90 degrees. To proceed further we must understand how the geometric constraints lead to a trade-off of bending
and stretching energy. We may show this tradeoff by a variational strategy in which we assume a particular shape
with a free parameter and then optimize this parameter.

To define this shape, we consider the transverse midline that proceeds from one transverse corner, across the ridge
and then to the opposite corner. We define a material co-ordinate x running along the ridge and y running along the
transverse midline, as shown in Figure 12. For the moment we shall suppose that this transverse midline retains the
same length as in the unbent sheet: it does not stretch. We suppose this line consists of a circular arc of undetermined
radius Rc crossing the ridge, connected to each corner by straight segments. It is useful to define the straight line
in space between the two ends of the ridge. The unbent sheet passes through this line. We call it the base line and
denote its length by X. If Rc = 0 the transverse midline also touches the baseline. This forms the sharp bend of
an unstretchable sheet. However, if Rc increases from zero, this line with its fixed length cannot reach the baseline.
Thus the ridge line must sag below the base line. The distance between the base line and the ridge line is denoted
by ζ. If the sheet was bent through angle 2α, then the arc length of half the curved segment is evidently αRc. This
must equal the unbent length. In the limit Rc ≪ X, the sag ζ must be proportional to Rc, since there is no other
length in the system. Specifically, ζ = Rc(α/ sin α− 1). The bent region has a width w = 2αRc in the material. We
now examine the scaling of the energy with the assumed radius Rc, and fixed α.

The nonzero sag ζ entails that the ridge line must stretch to a length greater than X. Its length has the form
X(1 + O(ζ/X)2). Thus there is an average tensile strain γ along the ridge line of order (ζ/X)2. This strain must
occupy the whole region around the ridge line. This region has a width at least of order w, where the bending and
hence the sag occur. The associated stretching energy S is proportional to the square of the strain and the elastic
moduli. As seen in Section II such moduli are equal up to numerical factors to κ/he

2, where κ is the bending stiffness
and he the elastic thickness. Thus S ≃ κh−2

e

∫
γ2 is of order κh−2

e wX(ζ/X)4, or κh−2
e RcX(Rc/X)4. As anticipated,

the stretching energy increases rapidly with Rc and thus favors small Rc. By contrast the bending energy B favors
weak curvature and large Rc. For Rc ≪ X the dominant curvature c is clearly in the transverse direction, with
c ≃ 1/Rc. The bending region has width of order w and length of order X. Thus B ≃ κwXc2 ≃ κRcX/R2

c . This
energy varies as 1/Rc and thus favors large Rc.

The total elastic energy E is thus the sum of two parts, each varying as a power of our variational parameter Rc.
The optimal Rc is that for which dE/dRc = dS/dRc + dB/dRc = 0. In view of the power-law form of S, we may
write dS/dRc = 5S/Rc. Likewise dB/dRc = −B/Rc. Evidently at the optimal Rc

5S = B. (23)

This implies a scaling behavior for Rc itself, namely h−2
e R5

cX
−3 ≃ XR−1

c , or

Rc ≃ X(he/X)1/3 (24)

We see that in the limit he/X → 0 our approximation that Rc ≪ X is justified.
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C. generalization

Though we derived Eq. 23 under restrictive assumptions about the shape of the transverse midline, the result is
more general. It requires only that a) the deformed region is confined to a width of the order of the transverse radius
of curvature at the ridge, b) the dominant strain is a longitudinal strain confined to a similar region, and c) there is
relatively little energy outside this ridge region.

For the kite shape of Figure 12 we may justify assumption c) and thus remove it. This assumption entered our
argument through the requirement that the length of the transverse midline be unchanged as the surface was bent.
We now allow the midline to stretch. In order to diminish the sag ζ significantly this line must increase its length
by an amount of order Rc, incurring a strain of order Rc/X. This strain is larger than the ridge strain calculated
above (of order (Rc/X)2. Moreover, it extends over a region much larger than the ridge region. Indeed, it extends
over a nonzero fraction of the sheet. Evidently the energy penalty for such stretching is arbitrarily large relative to
the ridge energy calculated above. Thus the ridge energy cannot be reduced appreciably allowing strain outside the
ridge region, and the assumption c) is justified.

The scaling behavior deduced for the kite shape occurs generally in a line between two vertices. In Section VI we
show numerical evidence for a wide range of cases. We also show a formal solution for a tractable geometry that is
less restrictive than the kite geometry. We now consider a separate reasoning involving the optimization of Gaussian
curvature in order to account for the generality of the ridge scaling. Accordingly, we imagine the region between two
neighboring vertices in a crumpled sheet without explicitly considering the surrounding boundaries. We no longer
assume the boundary to be clamped. However, we do assume that the strain is confined to the ridge region and that
the transverse size of the sheet is of the order of its length X. In this case, the sag ζ inferred for the kite must still
be of order of the typical transverse curvature, which we denote c⊥.

The strain induced by the ridge arises from Gaussian curvature. This curvature produces strain as governed by
the Gauss fundamental theorem of surfaces. Eq. 11. Disregarding the tensor indices, this equation has the form of
the Poisson equation of electrostatics (Jackson , 1999), in which the Gaussian curvature plays the role of a charge
density and the strain field plays the role of the electrostatic potential. We may thus view the optimization of the
ridge shape as an optimal arrangement of Gaussian curvature in order to minimize the energy. We may begin from
the sharply creased surface with no curvature along the ridge line. This configuration has no Gaussian curvature and
infinite energy, as noted above.

The Gaussian curvature distribution is limited by a constraint. The Gauss-Bonnet Theorem of Section II dictates
that the integral of the Gaussian curvature not change under this optimization, since we are deforming only the
interior of the surface. Since the initial state has no Gaussian curvature, the optimal state must thus have equal
amounts of positive and negative Gaussian curvature. In view of the behavior of the kite shape discussed above, we
anticipate a strip of negative (saddle-like) Gaussian curvature along the ridge line, flanked by strips of compensating
positive Gaussian curvature. We denote the width of the whole region of alternating Gaussian curvature as w. We
denote its amplitude or typical value by cG.4

With a given bending angle 2α of the ridge, the transverse curvature c⊥ is also constrained. Its integral across the
ridge is simply 2α: c⊥ ≃ α/w.

Since the Gaussian curvature is proportional to the second derivative of the strain, we expect a typical strain γ of
the order of the size of the curved region squared times the Gaussian curvature. The important measure of size is
in the direction that determines the second derivative—i.e.,the direction of fastest variation. This is the transverse
direction of width w. Thus we expect γ ≃ cGw2, and a strain energy S ≃ (κ/h2

e)wXγ2 ≃ (κ/h2
e)wXc2

gw
4. Similarly,

the bending energy B is of order κwXc2
⊥ ≃ κwXw−2. Finally we note that the typical Gaussian curvature is given

by cG ≃ c⊥c‖, and that the longitudinal curvature c‖ is given by c‖ ≃ ζ/X2 ≃ w/X2. Using this relation, we infer

cG ≃ (1/w)(w/X2) ≃ X−2. Thus, we may write the stretching energy as S ≃ (κ/h2
e)wX(X−2)2w4 ≃ (κ/h2

e)w
5X−3,

as obtained in the kite discussion above. Since S and B vary with the ridge width as in the kite argument above, the
optimal width is the same as well.

4 The ridge also imparts a slight bulge to the flank regions beyond the ridge. The Gaussian curvature here is of order (w/X2)2. The
area of the flanks is of order X2. Thus the flanks contribute an amount of order w2/X2 to the Gauss-Bonnet integral. This is much
smaller than the nominal contribution of the ridge region, namely w X cG ∼ w/X. Thus we are justified in neglecting the flanks in our
optimization.
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D. implications

The reasoning above quantifies the focusing of energy at a ridge between two vertices in a simplified geometry. We
shall consider in Section VI the generality of this scaling behavior. Here we consider its implications for the overall
behavior of the sheet. First, though the predicted structure is sharply bent and strongly stretched on the scale of the
whole sheet, it is weakly deformed locally—i.e.,weakly strained. The curvature 1/Rc, while much greater than 1/X,
is nevertheless much weaker than the strong curvature 1/h that would lead to nonlinear bending energy. Likewise
the strain γ ∼ (Rc/X)2, while much greater than the strain in most of the sheet, is indefinitely smaller than unity.
Thus, even in the limit h/X → 0 of strongest focusing, the predicted local deformation is indefinitely small. That
means that the neglect of nonlinear effects in the material in Eq. 3 is justified. This weak strain characterizes the
ridge region, though it may not be true of the vertices. The core of the vertex is the site of strongest curvature and
strain and some part of the core likely retains a local strain of order unity. This implies that nonlinear effects are not
indefinitely small in the core.

The ridge structure predicted above is independent of material. Any solid material obeys linear elasticity under
sufficiently small strain. Throughout the region that is significant for the argument, the linear behavior is arbitrarily
well obeyed. This means that even a plastic or brittle material, if sufficiently large and thin, must show this ridge
structure.

The ridge structure affects the energy of the sheet profoundly in comparison to that of an individual vertex. As noted
in Section III, the energy of a vertex grows only logarithmically with the size of the system. When two vertices are
present and a ridge forms between them, the energy instead is of the order κ(X/h)1/3. The energy grows qualitatively
faster with the system size than the vertex energy. Thus in the limit, the energy of two vertices is qualitatively larger
than that of one. Thus the dominant energy in such a system is the ridge energy. The bulk of the elastic energy in
the system occupies an arbitrarily small fraction of the area.

The ridge induces an attraction between the vertices it joins. To see this, we imagine two vertices separated by
distance X in a sheet much larger than X. Then evidently the energy in the ridge increases with increasing distance.
Thus small distances are energetically favored, and a merger of the two vertices has the lowest ridge energy. On the
other hand, the two merged vertices have a larger deformation than either of the constituent vertices, so that the
merger carries a cost in vertex energy. One is led to the expectation that weak vertices with a small cone angle 1

2π−β0

tend to attract and form stronger ones, while strong vertices with large cone angles cannot merge and are joined by
ridges. Thus eg. the boat shape in Figure 11 would have lower energy if the two vertices were brought together, while
the bag shape would not, since this would entail infinite energy in the cylindrical flanks of the ridge.

The ridge energy grows slower than linearly with separation X. This means it is unfavorable for a ridge to subdivide
into two ridges of length X/2.

E. amplitude dependence

Evidently the ridge energy increases from zero as the bending angle 2α increases. We may readily deduce the form of
this increase for small α using the scaling analysis above. The angle α enters the energies by constraining the transverse
curvature c⊥: 2α =

∫
dyc⊥ ≃ c⊥w. The bending energy B may thus be written B ≃ κw Xc2

⊥ ≃ κw X(α/w)2. The
stretching energy S depends on the sag ζ. For small angle α the analysis above reduces to ζ ≃ (1/c⊥)α2 ≃ wα.
Using this ζ we infer S ≃ (κ/h2

e)w X(ζ/X)4 ≃ (κ/h2
e)w X(αw/X)4. In the thin limit where B = 5S, this implies

(α/w)2 ≃ α4w4/(h2
eX

4), so that w6 ≃ α−2h2
eX

4. Thus the inverse width increases as the 1/3 power of the angle, and
the curvature c⊥ ∼ α4/3. Finally, the total energy is 6/5 B ≃ κwXc2

⊥ ∼ α7/3. The energy increases quite strongly
with α.

This analysis gives the behavior of the ridge for small, fixed bending angle in the thin limit h/X → 0. One may also
consider the reverse limit, where α → 0 with some fixed, small h/X. Here we must revisit our finding that the ridge
energy dominates that of its constituent d-cones. As we found in Section III Eq. 20, the curvature in a cone or d-cone
varies as the tangent of the bending angle α = 1

2π−β, and is thus linear in α when α is small. The associated bending
energy varies as the square of this curvature and is thus quadratic in α. This quadratic dependence dominates the
α7/3 ridge energy for small α. Thus even for thin sheets the dominance of the ridge energy is not absolute.

In addition to storing energy, the ridge influences the flatter regions on its two flanks. It exerts a tensile stress
and a bending moment on these flanks. We may estimate their magnitude by examining a simple case: the region
near the transverse midline of a kite bent to an angle of 180 degrees. The boundary tension maintains the constraint
that the transverse midline has a fixed length. Thus this tension is needed for the ridge to form. If we relieve the
tension, the energy of the ridge relaxes. Using this fact, we may estimate the stress Σyy via a virtual work argument:
E ≃ X Σyy∆y. The displacement ∆y is approximately the sag ζ, which scales as w. The energy E of the ridge is

of order B ≃ κw X w−2 as found above. From these facts, we infer Σyy ≃ (κ/w2) ≃ (κ/h2
e)(he/X)4/3. This is the
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same order of stress as in a sheet bent to a bending radius w with no ridge. It is a factor of order he/w smaller than
the longitudinal stress Σxx. The bending moment imparted to the flanks is also like that of a sheet bent to radius
w. These small forces induce a mutual energy to two ridges placed side by side (Lobkovsky and Witten , 1997). In
Section V we consider these flank effects in more detail.

F. ring ridge

The ridges seen in confined sheets bear a resemblance to another focused structure seen when cones or spheres are
deformed, called a ring ridge. One forms a ring ridge by pushing against a convex shell until a dent is formed. If the
shell is thin and elastic, the boundary of the dent becomes arbitrarily sharply curved compared to the radius of the
dent. The vicinity of the ring ridge clearly has Gaussian curvature, so that the structure entails stretching like that
of the straight ridges treated above. This structure was solved mathematically by Pogorelov (1960, 1988) (Scheidl,
Troger , 1987) and further studied by Lobkovsky (1996b).

The same comparison of bending and stretching energies used above may be applied to study the ring ridge. It is
simplest to consider a conical sheet which has been inverted in the middle. In the limit of zero thickness, the ring
ridge becomes a sharp circular crease of radius R whose circumference 2πR is equal to that in the undeformed cone.
If one gives the ring ridge a nonzero radius of curvature Rc, then the circular ridge line must expand by an amount
proportional to Rc, thus creating a strain γ of order Rc/R (compared to (Rc/X)2 for the straight ridge treated
above). The strain energy in the ridge region is of order S ≃ (κ/h2

e)R Rcγ
2 ≃ κR3

c/(Rh2
e). The bending energy

B ≃ κR RcR
−2
c ≃ κ(R/Rc). The optimal Rc evidently occurs when 3S = B, or Rc ≃ R(he/R)1/2.

The different scalings of the straight ridge and the ring ridge imply qualitatively different asymptotic energies. For
a given size R ≃ X, the energy of the straight ridge is lower by a factor of order (he/R)1/6. Thus the straight ridge
is more stable. One observes this preference for straight ridges if one creates a ring ridge of a thin material. Unless
the amplitude of the dent is very small, the circular ring spontaneously divides into a polygon of straight ridges
(Lobkovsky , 1996b).

The scaling arguments of this section revealed an emergent length scale w arbitrarily different from the input length
scales h and X of the system. The focusing of stress controlled by this length scale creates the dominant elastic energy
in the system. To analyze this focusing more systematically and rigorously is of great interest. In the next section we
review such a systematic analysis for the configuration known as the minimal ridge.

V. THE MINIMAL RIDGE

The previous section inferred the characteristic sizes and energies using crude arguments about how the energy
varied in a simple class of shapes. Such arguments cannot find the actual shape of minimal energy. Thus they cannot
rule out a structure much different from our variational guesses. What is needed is a general variation of shape to
determine the shape of minimum energy (Jin, Kohn, 2000; Venkataramani , 2003, 2004) . This state of minimum
energy is necessarily a state of mechanical equilibrium of each element of the membrane. The equations for the shape
were developed by Foppl (1907) and von Karman (1956) in the early 20th century. Lobkovsky (1996a,b) used
these equations to analyze a particular configuration called the minimal ridge. This analysis yielded much explicit
information about the ridge shape, as well as a number of unanticipated scaling properties. Our discussion is based
on the PhD thesis of Lobkovsky (1996b).

A. Föppl–von Karman equations

In order to determine the equilibrium of a membrane element, we must find the stress and the bending moments
everywhere. The Föppl–von Karman method for finding these is a basic element of solid mechanics (Landau, Lifshitz
, 1986; Mansfield , 1964). In this section we summarize this method. The bending moments are proportional to
the symmetric curvature tensor Cij , as detailed below. This tensor has three independent elements at each point.
Likewise, the symmetric stress tensor field Σij has three independent elements at each point. These six quantities
may be reduced to two via simple geometric and equilibrium conditions.

As noted in Section II, the curvature tensor must obey two differential conditions (Eq. 9) in order to correspond
to an unambigouous displacement field ~r(x):

∂2C11 = ∂1C12, (25)

and the analogous relation obtained by interchanging 1 and 2. Imposing these two conditions leaves a single degree
of freedom at each point. To identify a suitable degree of freedom, we consider Cij of the form Cij = ∂i∂jf where f
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is a scalar function. One readily verifies that an arbitrary f automatically satisfies Eq. 25, Conversely, a CC satisfying
Eq. 25 has (do Carmo , 1976) a corresponding “potential”5 f .

An analogous constraint on ΣΣ arises from the equilibrium of in-surface forces. The equilibrium of forces in the 1
direction implies

∂1Σ11 = ∂2Σ21, (26)

and a second relation obtained by interchanging 1 and 2. Again the tensor field is subject to two differential constraints,
and again this allows it to be expressed in terms of a scalar potential, denoted χ:

Σ11 = ∂2∂2χ; Σ12 = ∂2∂1χ; Σ22 = ∂1∂1χ; (27)

We need only two further conditions in order to determine the potentials f and χ.
One geometric condition about the sheet has not yet been used. It is Gauss’s fundamental theorem cited in Section

II, Eq. 11

c1c2 = 2∂1∂2γ12 − ∂1∂1γ22 − ∂2∂2γ11 (28)

The left hand side is evidently a quadratic function of the curvature potential f , while the right side is linear in the
stress and thus linear in the stress potential. The constitutive proportionality constants relating γγ to ΣΣ are the elastic

constants λ̂ and µ̂ of Eq. 3 . The right side must be a) linear in χ, b) quartic in derivatives, and c) a rotational scalar.

Evidently the right hand side has the form G∆2χ, where G is some linear combination of λ̂ and µ̂. As it happens,
the combination G is the Young’s Modulus Ŷ of Eq. 4.

The form of the left hand side is also strongly constrained by symmetry. It must be a scalar contraction of two
second derivatives of f . The combination that emerges is denoted [f, f ], where

[a, b] ≡ ∂1
2a ∂2

2b + ∂2
2a ∂1

2b − 2∂1∂2a ∂1∂2b (29)

Combining, we obtain the “Geometric Föppl–von Karman ” equation (Mansfield , 1964):

Ŷ −1∆2χ = −
1

2
[f, f ] (30)

To close our system of equations, we require a second relation between χ and f . Such a relation is provided by the
equilibrium of forces in the normal direction. Any external pressure P must be balanced by forces in the sheet. If
the sheet is curved, the stress ΣΣ provides normal forces. Thus if there is curvature in the 1 direction, the stress Σ11

creates normal force. Taking the 1 and 2 directions to be the principal directions for the curvature, the net force per
unit area is C11Σ11 + C22Σ22. For general orientations, this evidently generalizes to CijΣij .

Additional forces act on the sheet owing to its bending stiffness. Stresses in the normal direction act on each edge
of the sheet element. This stress is denoted Q1 for the stress acting on the 1 edge and Q2 for the stress acting on the 2
edge. Uniform Q creates equal and opposite forces on opposite edges and exerts no net force on the element; however,
it does exert a torque. This torque must be balanced by the bending moments Mij acting at the edges. For example,
M11 is a tensile stress at the upper surface and an equal compressive stress at the lower surface, combining to make a
torque. Uniform M creates equal and opposite torques at the opposite edges. However, a nonuniform M creates a net
torque and thus a Q stress. For example, a gradient of M11 requires a nonzero Q1 = ∂1M11. A general gradient of M
requires a nonzero Qi = ∂jMij . If in addition Q varies with position, a normal pressure ∂iQi = ∂i∂jMij is created.
When this source of normal force is combined with the external pressure P and the CC · ΣΣ pressure, the result is

∂i∂jMij = CklΣlk + P (31)

The linear elasticity of our material assures that MM ∝ CC, just as ΣΣ ∝ γγ. The proportionality constants are linear
in the bending stiffness constants κ and κG. The components of CC in turn are second derivatives of the curvature

5 The potential f has the dimensions of length. It has a simple interpretation when the sheet is nearly flat and the variation of the normal
direction is small. Then it is convenient to represent the distortion of the sheet by giving the normal displacement h(x, y) from the
undistorted state. This is called the “Monge representation” (Nelson et al. , 1989). For nearly flat sheets the potential f becomes equal
to h up to a linear function of position. One readily verifies this by expressing the curvature in terms of h and comparing with the
definition of f . When expressed in terms of the full potential f , the Föppl–von Karman equations apply to non-flat sheets. The normal
displacement h also obeys the Föppl–von Karman equations provided the sheet is nearly flat, since then h and f become equivalent.
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FIG. 13 Two views of the minimal ridge. Left: sketch of the minimal ridge configuration. Normal forces needed to constrain
the edges to the frame are indicated. Bending angle α, thickness h and ridge length X are indicated. The positive direction
for f and for curvature is downward in this view.

Right: simulation with shading proportional to stretching energy density, after Lobkovsky and Witten (1997).

potential f . Thus, the left side of Eq. 31 must be a) linear in f , b) fourth order in derivatives, c) proportional to
some combination of κ and κG, and d) a rotational scalar. We have seen that κG cannot affect the shape of the sheet
in view of the Gauss-Bonnet theorem. The only scalar fourth-order derivative is ∆2. Thus the left hand side has the
form (constant) κ∆2f . The right hand side is a scalar contraction of second derivatives of f and χ. The contraction
is that of Eq. 29. Combining, we obtain the “Force Föppl–von Karman equation”:

κ∆2f = [χ, f ] + P (32)

The two Föppl–von Karman equations are in principle sufficient to determine the surface. However, their nonlin-
earity and high order in derivatives make them difficult to exploit. Nevertheless, Lobkovsky (1996a) showed that the
ridge scaling of the last section emerges naturally and rigorously from these equations, by analyzing the asymptotic
limit of a thin sheet.

B. dimensional simplification

The Föppl–von Karman equations express the competition between bending and stretching energies that controls
the shape of the sheet. To show that this competition is controlled by the thickness, we express the variables in
appropriate units. We take the bending stiffness κ as our unit of energy. The stress potential χ is an energy and
is thus a dimensionless multiple of κ. We express all distances in units of the size X of the sheet. The curvature
potential f is then in units of X as well. With this choice of units, in the absence of pressure P the Föppl–von
Karman equations simplify to

∆2f = [χ, f ]; λ2∆2χ = −
1

2
[f, f ], (33)

where λ2 = κ/Ŷ X2 = (he/X)2. We noted in Section II that a typical isotropic elastic sheet has elastic thickness he

in the range 0.3h to 0.33 h.

C. boundary conditions for minimal ridge

We have seen that stretching ridges appear when the boundary conditions would impose a sharp crease in the
unstretchable limit λ = 0. The minimal ridge of Figure 13 provides such boundary conditions in a way that is
convenient to state in terms of the potentials f and χ. Defining co-ordinates x and y as longitudinal and transverse
co-ordinates as before, as y → ±∞ the sheet becomes flat and follows its constraining frame; thus it makes an angle
α with the horizontal. The sheet normal turns through angle 2α as y goes from −∞ to ∞. Thus

∫ ∞

−∞
dy Cyy = 2α.

Recalling that Cyy = ∂y
2f , we infer ∂yf = ±α for large |y|. That is, f → α|y| for large |y|. Along the constraining

frame, where x = ± 1
2 , we have f = α|y| for all y.

The ridge width is expected to shrink to zero with λ. Thus we cannot describe its shape without using co-ordinates
that compensate for this shrinkage by changing the scale of y. We do not know in advance how the width behaves.
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Thus we define a reduced ỹ ≡ λβy, where β is an unknown exponent. When transverse distances expressed in y go
to zero, distances expressed in ỹ must remain finite; thus β must be negative. In order for the Föppl–von Karman
equations to remain finite as λ → 0, we anticipate that f and χ must also be rescaled. The scaling of f must match
that of y, since the rescaled description must also describe a ridge of angle α. Thus the rescaled f̃ ≡ λβf . The
appropriate rescaling for χ is also unknown; thus we use a separate exponent δ to describe it: χ̃ ≡ λδχ. No rescaling
in x is needed, since the dependence on x remains smooth as λ → 0.

We must express the derivatives in the Föppl–von Karman equations in these rescaled co-ordinates. All the terms
in the derivative [a, b] contain exactly two y derivatives. Thus this derivative in the “∼” coordinates gains a factor

λ2β : [a, b] = λ2β [̃a, b]. The ∆2 derivative is more complicated:

∆2 ≡ ∂x
4 + ∂y

4 + 2∂x
2 ∂y

2 = ∂x
4 + λ4β ∂ỹ

4 + 2λ2β ∂x
2 ∂ỹ

2. (34)

As λ → 0 the λ4β term dominates and the others are negligible by comparison.
Expressing the Föppl–von Karman equations in rescaled co-ordinates, we find

λ−β
(
λ4β ∂ỹ

4
)
f̃ = λβ−δ [̃χ̃, f̃ ]

λ2 λ−δ
(
λ4β ∂ỹ

4
)
χ̃ = −

1

2
λ0 [̃f̃ , f̃ ]. (35)

With proper choices of β and δ these equations have a finite limit as λ → 0. Evidently the powers of λ must cancel
on both sides, leading to 3β = β − δ and 2− δ + 4β = 0, or β = −1/3 and δ = 2/3. The result β = −1/3 implies that
the ridge width scales as (h/X)−1/3, in agreement with our initial crude analysis.

This type of asymptotic analysis may evidently be applied to the ring ridge described in Section IV.F above. The
appropriate coordinates are polar coordinates. In these coordinates the rescaling introduces additional terms into the
derivatives. These additional terms lead to the altered scaling of the ring ridge.

D. ridge shape

The asymptotic Föppl–von Karman equations allowed Lobkovsky (1996a) to infer further scaling properties in
the minimal ridge. The arbitrarily slow variation in x compared to that in y led him to postulate that the x position
only affects the y dependence through an overall scale factor denoted q(x). That is:

f̃(x, ỹ) = q(x) p1(ỹ/q(x)). (36)

Under this assumption every position x has the same f̃(y) profile except for the scale factor q(x). This q(x) thus
dictates the width of the transverse ridge shape at distance x along the ridge. The prefactor q(x) is needed to assure

that ∂y f̃ = α for large y. A similar scaling form is assumed for the stress potential χ̃: χ̃(x, ỹ) = q(x)p2(ỹ/q(x)).
Lobkovsky looked for solutions to Eqs. 35 of this form (Lobkovsky , 1996a). In terms of q, p1 and p2, these equations
(with λ factors removed) may be written

p1
′′′′ = q′′q2

[
p1

′′p2 + p2
′′p1 − ˜̃y (p1

′′p2
′ + p2

′′p1
′)

]

p2
′′′′ = −q′′q2

[
p1

′′p1 − ˜̃y (p1
′′p1

′)
]
, (37)

where ˜̃y denotes the reduced variable ỹ/q(x). The only x dependence in the equations lies in the factors q′′q2. The

other quantities depend only on ˜̃y. Hence q′′q2 must be independent of both x and ˜̃y. We denote this separation
constant as A. The width q can readily be computed in terms of this constant. Indeed, the equation q′′ = A/q2 has
the form of a Newtonian equation of motion in which q is the position, x is the time and −A/q is the potential energy.
Following the standard procedure for one-dimensional Newtonian motion, one finds an implicit equation for q(x), viz.

x =

∫ q

dQ/|A/Q|1/2. (38)

The integral may be expressed in closed form. Now, q(x) must go to zero as x approaches the vertex positions at
± 1

2 . Using Eq. 38, one readily infers a singular behavior of the width q near a vertex: q ∼ |x − 1
2 |

−2/3. Evidently

the f̃ potential along the ridge line, f̃(x, 0) shares this singular behavior, as does the sag z(x) of the ridge below the
baseline. Thus the shape of the ridge is predicted to have a singular cusp as it approaches either vertex. This singular
feature of the ridge shape arises from the inferred scaling form of the minimal ridge, and does not depend on explicit
boundary conditions.
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The transverse function p1(ỹ/q) and its counterpart p2 describing the χ̃ potential are not as easy to characterize
as q(x). The differential equations obeyed by p1 and p2 are complicated, and obtaining solutions that satisfy the
boundary conditions has proven problematic (Lobkovsky , 1996b). These problems are attributed to a) a breakdown
of the scaling form of Eq. 36 for ỹ ≫ q(x), or b) corrections to the asymptotic equations Eq. 35. Finding the
asymptotic transverse shape of the ridge remains as an unsolved problem.

E. ridge-to-vertex crossover

When the distance 1
2 − x ≡ ǫ becomes sufficiently small, one expects the shape to be dominated by the nearby

vertex, with little effect from the distant vertex. The crossover from vertex to ridge behavior may be investigated
using the Föppl–von Karman equations. The full Föppl–von Karman equations are exact insofar as the membrane
obeys the linear elasticity of Eq. 3. Thus they must describe this crossover. However, the asymptotic Föppl–von
Karman equations (35) are not exact for small ǫ. Indeed, as ǫ → 0, the dependence of q on ǫ becomes singular, and
so the variation in the x direction is no longer slow compared to that in the y direction. Thus the assumptions made
in taking the asymptotic limit no longer apply. Accordingly, we expect corrections to the asymptotic equations to
become important for sufficiently small ǫ. We may readily calculate where this crossover occurs. For ǫ ≪ 1, the scale
factor q(ǫ) ∼ ǫ2/3. We denote the scaled variable ỹ/q(x) by ξ. The reduced function p(ξ) is even about ỹ = 0. Using

this form of f̃ , we readily calculate the leading term in λ4β and the λ2β correction. As shown in the Appendix, the
range of ǫ where these become comparable is ǫ ∼ h/X. This corresponds to a distance ∆x = Xǫ from the vertex
which is of order h.

By this criterion, the vertex region where the ridge scaling breaks down is confined to a zone whose size is of order
h and which thus remains finite even as X → ∞. This means that the region near a vertex is qualitatively altered
by the creation of a second vertex at arbitrary distance. In Section VI we report a test of this striking prediction.

F. amplitude scaling

The form of the asymptotic Föppl–von Karman equations is independent of the amplitude α. As Lobkovsky noted
(Lobkovsky , 1996a), the equations have an exact scaling symmetry under a change in amplitude: if f̃(x, ỹ), χ̃(x, ỹ)

is a solution, then so is Af̃(x,Bỹ), Cχ̃(x,Bỹ), where B2 = C = A. This rescaling multiplies the ridge width w by

1/B and the ridge angle α by a factor ∂ỹ f̃ or AB. We infer that w ∝ α−1/3, in agreement with the energy-balance
argument of the previous Section. Remarkably this scaling prediction is not restricted to small α.

G. far field

The perturbation caused by a minimal ridge extends for some distance along its flanks. Lobkovsky and Witten
(1997) showed that this distance is much greater than the ridge width X. At large distances there is a small but nonzero
curvature Cxx induced by the distant ridge. This curvature entails a normal displacement z ≃ X2Cxx along the midline
of the flank at x = 0. If z is to go to zero at infinity, there is necessarily a curvature Cyy ≃ d2z/dy2 ≃ X2d2Cxx/dy2.
The decay entails Gaussian curvature and thus stretching. The lack of tensile force on the boundaries means that
the stretching must occur predominantly in the y direction. The resulting Gaussian curvature induces a strain γ of
order CxxCyyX2 ≃ CxxX4d2Cxx/dy2 ≃ z2/L2. The tradeoff between stretching and bending energy is the same as
that in a stretching ridge. The imposed curvature entails transverse displacement and induces strain in a long strip
of material. The role of the width w is here played by X, while the role of X is played by L. We may repeat the
ridge scaling argument of Section IV.B to infer X ∼ L(h/X)1/3. This flank ridge differs from the main ridge in two
respects. a) Any small edge displacement decays in a length of order L, so the decay is exponential. b) The amplitude
of the flank ridge goes to zero with h/X, so that its energy Ef becomes a vanishing fraction of the ridge energy E:
Ef ≃ κLX(w/X2)2 ≃ κ(L/X)(w/X)2 ≃ E(w/X). Unlike the ridge, the flank is fully tractable using the conventional
theory of weakly-deformed flat plates (Mansfield , 1964).

H. d-cones revisited

The previous Section on d-cones left a central issue unresolved. We could not account for the length scale of the
focusing. There the focusing of stress played only a subordinate role in the energy of the sheet, in contrast to the
ridge treated in this Section. Here we saw that when the external constraints dictate regions of nonzero Gaussian
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curvature in a sheet, it responds inhomogeneously by making a narrow ridge structure where deformation energy is
concentrated. Qualitatively this is the situation at the core of a d-cone. Thus we anticipate that the crescent-shaped
core of a d-cone is a type of ridge, whose energy is much smaller than if the Gaussian curvature were spread uniformly
over the core radius R∗. Speculating that the crescent has a transverse width (across the crescent, not along it) of
order h and that its energy behaves like a ridge, we are led to guess a core energy of order κ(R∗/h)1/3. It is important
to establish whether the focusing of stress in the core indeed behaves like a ridge, a ring ridge, or some new focused
structure.

In order to explain the magnitude of R∗, we must understand the coupling of the core region to the constraining
ring of radius R. We saw in Section III that the main d-cone energies, present if the core region is cut away, are not
sufficient. However, the crescent structure within the core imposes additional forces on the exterior, and these induce
energies analogous to the flank energy Ef of the previous subsection. This flank structure is clearly different from the
flank of a minimal ridge. In the d-cone case it appears to play a crucial role in determining the focusing length scale.
Understanding this structure is an important open question.

This Section has reviewed a rich body of predictions about the focusing properties of stretching ridges. All are
predicated in the asymptotic limit in which the sheet becomes arbitrarily thin. In the next Section we review the
evidence from numerics and experiments on how well these asymptotic results apply to real sheets of nonzero thickness.

VI. RIDGE SIMULATIONS AND EXPERIMENTS

In this Section we review numerical experiments investigating the ridges discussed above. These experiments can
systematically change the elastic parameters and see the resulting structural change. They can also follow aspects of
the structure that are difficult for a real experiment to observe, such as the energy distribution. They have explored
a great variety of physical situations in order to probe the generality of the scaling laws. They can also test the ideas
by examining physically unrealizeable situations like self penetration or high spatial dimensions. On the other hand,
they lack several important elements of realism. The experiments only describe ideal elastic material, so they do not
include the effects of nonlinear elasticity, plasticity or fracture.

A. numerical methods

All of the various numerical methods discussed here approximate the continuum elastic material as a finite grid of
discrete points. The simplest of these is the triangular Seung-Nelson lattice described in Section III. The springs of
the lattice impart isotropic in-plane and bending rigidity. The in-plane elasticity gives a Poisson ratio ν = 1/3, so that
the elastic thickness he is about 0.306h. With this method, one must assure that the springs are only stretched by a
small factor and the angles between adjacent triangles remain small. This requirement dictates a fine lattice spacing
and many degrees of freedom near highly curved regions such as a vertex. One may find the minimium-energy state
of the Seung-Nelson lattice by simply computing the elastic energy B + S for the initial set of node positions, and
then varying these using eg. the conjugate gradient algorithm (Press et al. , 1992) until a minimum is achieved. In
practice for thin sheets, one is led to use elastic thicknesses less than the lattice spacing. Then the minimum-energy
configuration is often delicate. That is, the minimization process can lead to a false minimum with unphysical fine
structure. To avoid this, one must often resort to decreasing the thickness in gradual increments, of a factor of two
or less, so that the initial configuration is not far from the optimal one. One may improve the behavior of the Seung-
Nelson simulation in two ways: by using a smoother estimate of local curvature and by using a spatially varying grid
spacing (DiDonna , 2001). Alternatively, one may compute the stress and bending moments directly and find the
equilibrium state.

These methods have allowed accurate calculations with X/he of 104 or more. This is a large factor in absolute
terms, but in practice it does not give compelling measurements of scaling exponents. For many quantities the regime
of small thickness is not reached until X/he > 103. Thus the evidence for power-law behavior with he/X covers little
more than a single order of magnitude. Such evidence has been sufficient to show consistency with the predictions
and inconsistency with qualitatively different alternatives such as logarithmic scaling. More stringent tests would be
technically demanding but not unfeasible. The lack of stronger tests to date is due to a lack of alternative predictions
to be tested.

B. main scaling predictions

The best-tested prediction from the preceding Section is the magnitude of ridge focusing —that is, the scaling of
the relative ridge width w/X or transverse curvature Cyy as (h/X)1/3. With the limitations stated just above, this
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FIG. 14 log-log plot of normalized transverse curvature x Cyy near a vertex vs distance normalized x/h along a ridge direction
of a cube, after DiDonna (2005). The three curves correspond to three different-sized cubes. Top curve at right edge reaches
the midpoint of the cube edge. Bottom curve reaches 1/10 of the distance to the midpoint. For an isolated vertex, x Cyy is

independent of x. For a ridge, x Cyy is expected to scale as x1/3.

scaling property has been tested in a wide variety of realizations apart from either the kite or minimal geometry
analyzed explicitly above (Chaieb, Melo, 2000). One may join two or more cones to create either open boat or bag
structures (Lobkovsky et al. , 1995) or closed polyhedra (DiDonna, Witten , 2001; Lobkovsky et al. , 1995). For
tetrahedra and minimal ridge, the rescaled shape of the ridge transversely and longitudinally has been shown to be
independent of thickness, thus supporting the predicted universality. The analytically-predicted shape has further
been shown to be consistent with the simulated shape to a few percent precision by simulation (Lobkovsky and
Witten , 1997). The scaling with bending angle α has been tested and confirmed for minimal ridges (Lobkovsky and
Witten , 1997). Moreover the reduced transverse shape has been shown to be independent of distance to the vertex of
a minimal ridge, in support of expectations (Lobkovsky and Witten , 1997). Menon (2005) confirmed the predicted
scaling of shape with thickness and bending angle experimentally for a ridge similar to the minimal ridge. The scaling
of total energy as (h/X)1/3 is more weakly tested. The predicted 5:1 ratio of asymptotic bending to stretching energy
was confirmed at the few-percent level, for the particular case of a tetrahedron. Reaching the asymptotic plateau
required X/h exceeding 104, so that the ridge widths were only a few percent of their lengths as shown in Figure 11.
Using such simulations, the total energy could be found explicitly (Lobkovsky , 1996b). When the energy per ridge is
expressed in the form E/κ = e α7/3(X/he)

1/3, then the coefficient e is about 1.2 for the minimal ridge and about 1.16
for the tetrahedron (Lobkovsky , 1996b). Thus the energy appears insensitive to particular boundary conditions.

The striking predictions of remote focusing from the previous Section were confirmed using a simulated cube
(DiDonna, Witten , 2001) (DiDonna , 2005). In Figure 14 the curvature at distance x from a vertex is plotted for
fixed thickness h and for cubes of varying size. One sees a clear crossover from vertex to ridge behavior. No shift
in this crossover is observed as the cube is enlarged by an order of magnitude. It appears that the ridge structure
is enforced locally even if the distant vertex that creates the ridge recedes to infinity, as suggested by the Föppl–von
Karman analysis of the previous Section.

C. unpredicted features

The numerical experiments summarized above revealed several interesting consequences of ridge formation that
were not predicted. Probably the most important is the broad range of applicability. In all cases of two-dimensional
sheets where the curvature of a sheet was made to diverge at two points, a stretching ridge with the same scaling
properties was observed. This result makes it very plausible that the uncontrolled ridges seen in a crumpled sheet
have the same scaling behavior. This supposition leads to strong predictions which will explored in the next Section.

While the scaling of all the ridges studied was consistent with the same law, the pattern of stress and energy within
the ridge followed several distinct behaviors, as seen in Figure 11 and 13. The simplest pattern was observed in the
minimal ridge, where a monotonic concentration of energy was observed. The strain along the ridge line is compressive
in contrast to the kite reasoning of Section IV.B. This compressive stress is supplied by two bands of tensile stress
flanking the central ridge line. In the polyhedra examined—tetrahedra and cubes—the transverse bending alternates
in sign so that the local ratio of bending to stretching energy alternates as one moves transversely away from the
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ridge line.
The open structures tested showed an unexpected secondary focusing at the edge. An example is shown with

the bag shape in Figure 11. This shape is a cylinder one of whose ends has been fastened shut, thus forming two
disclinations. Each has the same magnitude as in a tetrahedron: the solid angle subtended is 2π. The figure shows
four lines of concentrated energy extending from each vertex to two points on the edge where the curvature is strongly
concentrated. If this effect were exaggerated further, the final shape would approach that of a closed tetrahedron.

Some insight into the reason for this induced focusing comes from the Cerda et al. (1999) study of d-cone pairs
in the unstretchable limit. Here they reported a numerical study of a surface forced into a circular constraint by
two point forces. A sharp ridge flanked by flat facets formed, consistent with the arguments of Section II. However,
these two facets do not extend to include the whole sheet. Instead, each flat region is confined to an isosceles triangle
connecting the vertices to the edge as shown in Figure 4. Beyond these two triangles, the surface is no longer flat. The
straight directors converge to the nearest vertex, and remain unaffected by the other vertex. It appears that flatness
is only required for points equidistant from the two vertices and the directors from such points to these vertices.
The remote focusing of curvature to points on the boundary is another aspect of stress focusing that remains to be
understood.

D. higher dimensions

We saw in Section II that the basic conditions leading to stress focusing exist not merely for two-dimensional
sheets but for higher dimensions as well. We found that strictly unstretchable sheets are not confinable to volumes
indefinitely smaller than the resting size of the sheet. Thus any real sheet when so confined must stretch. Since
uniform stretching costs more energy than localized ridge-like stretching, one expects focusing in such cases. This is
expected whenever a manifold of m dimensions is confined in a space of less than 2m dimensions. However, the nature
of the confinement and localization is ill-understood. The possibilities for bending, twisting and stretching are clearly
much increased in high dimensions. Thus the potential for new forms of stress focusing is correspondingly great. In
this section we review the existing numerical information about the nature of this focusing.

Representing an m-dimensional elastic manifold numerically is not as difficult or ambiguous as one might imagine.
It suffices to create a d-dimensional lattice of springs with a large extent in m dimensions and a small thickness h in
the remaining d−m dimensions. The energy of deformation is thus the energy in the springs. In continuum language,
the local distortion is expressed as a second-rank d-dimensional strain tensor γij defined by Eq. 12. If the material
is isotropic, the associated energy has the form S[γγ] given in Eq. 3. Thus no new parameters are needed to define
an elastic manifold of general dimensions. As with two-dimensional sheets, we may represent the deformation more
economically via an m-dimensional strain tensor ΓΓ and a curvature tensor (do Carmo , 1976) (Kramer , 1997). For
any given normal direction α one may define a curvature tensor element Cij

(α) for any two directions i and j in the
manifold. The elastic energy is then a simple quadratic form in ΓΓ and CC. One may readily determine and minimize
this energy for an m-dimensional lattice of springs, in analogy with the method of Seung, Nelson (1988). It is this
numerical implementation that was used for the results reported below. We may also use this energy to anticipate
the nature of the focusing, even without knowing an analog of the Föppl–von Karman equations.

To anticipate what focusing might occur when such a manifold is confined, we first try to follow our previous
reasoning. Section II anticipated that vertex structures should exist in general manifolds. These are internal bound-
aries in the manifold where unbent director lines converge. In a two-dimensional sheet ridges form because of the
joint effects of two such vertices. The joint requirements on the directors leading to both vertices entails that all
curvature must vanish. The arguments for two-dimensional sheets are applicable whenever the curvature is described
by a second-rank tensor on the manifold. However, for higher embedding dimensions such a tensor is not sufficient
to specify the state of bending as noted above. For example a one dimensional curve in three dimensions needs two
quantities to specify the curvature at each point. There is no clear notion of principal curvatures in general, and thus
the argument leading to zero curvature has no clear counterpart. Thus we many anticipate ridge-like structures when
d = m+1, but for d > m+1 it is unclear whether any focused structure other than the vertices of Section II.C occurs.

We can readily describe the degree of focusing caused by vertices in higher dimensions in a unified way. As discussed
in Section II.C, each vertex is a set of points in the manifold onto which straight director lines converge. For example
if the embedding dimension d is 2m− 1, the vertices are isolated points, as in a 2-sheet in three dimensions. Director
lines converge onto these points from the surrounding sheet. This leads to curvature of order 1/r for points at distance
r from the vertex. 6 The bending energy density b(r) there is thus of order 1/r2. Within a volume V of order rm

6 To see that points at distance r near a vertex have curvatures of order 1/r, consider two director lines A and B meeting at the vertex
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one thus has a bending energy density of order V −2/m or greater. As in an ordinary cone, the nonuniform bending
moment gives rise to a stress of order 1/r2. The stretching energy density s(r) is proportional to the square of this
stress, and thus to 1/r4. For distances r ≃ h, bending and stretching are comparable. Thus the stretching energy
s at a given point can be related to b there by s ≃ s(h)(b/b(h))2. Thus for very thin sheets s becomes increasingly
unimportant and bending dominates, so that the energy is well-defined in the unstretchable limit.

By contrast, when ridges are generated, the system requires a balance of bending and stretching energy, and the
two forms of energy remain comparable. For ridges of length X each energy is confined to a fraction w/X of order
(h/X)1/3 with an energy density of order 1/w2. We saw in the last subsection that for distances r ≪ X from a vertex,
X becomes irrelevant and w ≃ r(h/r)1/3. Thus near the vertex there is a concentration of energy density. We now
consider a two-dimensional section of the manifold intersecting the two vertices and the ridge connecting them7

The area A(b) that has energy density b or greater is roughly r w. Using b ≃ w−2 and r ≃ w3/2h−1/2, we infer
A(b) ∼ b−5/4. The fraction of the system with energy density exceeding b goes as b−5/4. Conversely, for some given
fraction φ of the system the bending energy density exceeds some b(φ). This “energy density profile” tells how strongly
the energy is concentrated. It is a useful way to quantify energy focusing, since it does not require a knowledge of
where the focusing occurs. Thus according to the reasoning in this paragraph, a ridge should have have b(φ) ∼ φ−4/5.
Since bending and stretching energies are comparable in a ridge, the stretching energy profile s(φ) must fall off with
increasing φ in the same way. These features of the energy density profile should not change their form when one
increases the size of the system or if it includes multiple ridges or vertices.

Didonna, Venkataramani, Witten and Kramer (DiDonna et al. , 2002) explored numerically the condensation of
energy of several kinds of two- and three-dimensional sheets embedded in 4, 5, and 6 dimensional space. For each
example they determined the profile of stretching and bending energy density. A representative sample appears in
Figure 15. The system was a three-dimensional cube embedded in higher dimensional space, with the three pairs of
opposite faces joined to form a torus. In six dimensions, the torus is smooth and the energy density is uniform. In
five and four dimensions, points of high energy form. Though no qualitative difference is apparent in the pictures,
the profiles show a clearcut difference. In five dimensions, the stretching energy falls off as roughly the square of the
bending energy. The bending energy itself falls off roughly as φ−2/3, as anticipated above for pointlike vertices in a
three-dimensional manifold.

By contrast, the profile in four dimensions shows a rough proportionality of bending and stretching energy. More-
over, the density falls off with φ roughly as φ−4/5. The profile thus behaves like the predicted and measured profile
of a two-dimensional sheet in 3 dimensions showing a ridge. The pictures support this view, showing flat surfaces of
high energy density corresponding to the ridge regions.

All of the shapes studied showed one of these two behaviors. Taken together, these examples suggest that constrained
m-dimensional manifolds create stretching ridges that dominate the energy when embedded in m + 1 dimensions.
However in higher embedding dimensions, the energy focusing is consistent with directors converging towards vertices.
Here the energy is dominated by bending and is as expected in an unstretchable sheet. Unlike the ridge case, the
stretching that occurs in the vertices makes a vanishingly small contribution to the energy.

VII. INTERACTING VERTICES AND RIDGES

When a large sheet is crushed into a small volume, the pattern of ridges and vertices is rich and stochastic. In this
Section we review the behavior of these systems of many foci of energy and stress. The response of simple systems to
controlled forces has been measured in a variety of contexts. Numerical and physical experiments have also revealed
regular scaling behavior in crumpled sheets with many foci.

and the two-dimensional submanifold containing them. Every point in this submanifold belongs to a director that also meets at the
vertex. In general the director C through a given point is not coplanar with the original directors A and B. Thus the directors A, B, and
C span a three-dimensional subspace in which the two-dimensional manifold is isometrically embedded. This submanifold must follow
the familiar behavior of a 2-sheet in 3-space, in which the curvature is of order 1/r.

7 The choice of such a section is not very restrictive. We first suppose that the whole manifold has only two vertices. As noted above,
we anticipate ridges only when the embedding dimension d is m + 1, so that the vertices must have dimension m − 2. Thus generic
two-dimensional sections of the manifold would intersect each vertex at a point. Now if the manifold contains many vertices separated
by distances of order X, then a typical two-dimensional section that lies within distance X of two vertices should intersect each at a
point.
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FIG. 15 Energy density profiles for a simulated elastic cube with opposite faces joined to make a torus, embedded in 4
dimensions (left) and 5 dimensions (right), after DiDonna et al. (2002). Upper pictures show the material co-ordinates with
the 2.5 percent of the volume with highest density indicated. Log-log plots show the corresponding energy profiles. Upper
curves are bending energy density; lower curves are stretching energy density.

A. vertex interactions

Boudaoud et al. (2000) studied the effect of a point force on a cylindrically bent sheet. The indentation caused by
the point force creates a pair of vertices. With increasing indentation these vertices rotate around the pushing point.
This shows that external forces create organized movement of the focused structures. Hamm et al. (2004) extended
this study greatly by imposing axial torques on a thin cylinder. He found that the vertices thus produced follow laws
of climb and glide similar to that of dislocations under stress (Landau, Lifshitz , 1986). However, the mechanistic
reason for this parallel is not understood.

B. ridge interactions

In order to find the mutual influence of two ridges, Lobkovsky and Witten (1997) created two parallel minimal
ridges in a sheet and measured how the total energy varied with distance. They found that the bulk of the interaction
energy falls off on the scale of the ridge width. However, a small interaction must persist to very long distances owing
to the flank energy treated in Section V.G. In the cases treated numerically with X/h ≃ 103, this long-range part
was too small to be visible. In the polyhedra of Lobkovsky et al. (1995) and in real crumpled sheets, the ridges likely
exert tensile forces on one another and thus probably to reinforce one another. We know of no direct measure of this
effect.

C. ridge buckling

We have noted that ridges of a given size typically contain qualitatively more energy than do cones or d-cones of that
size. Thus the work required to deform a surface is large if the deformation creates ridges. Large work of deformation
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amounts to mechanical strength. One may test this strength directly by exerting external forces on a ridge-containing
structure. DiDonna, Witten (2001) measured this strength numerically using a simple ridge-containing structure,
a cube. They studied the deformation under small forces and the force required to buckle the cube. Both of these
responses were as one would anticipate in terms of the ridge energy. The added force increased the sag of the ridges,
and the increased ridge energy was proportional to the increased sag. Buckling occurred when the added work of
compression was a fixed multiple of the ridge energy. They were able to account for both the buckling force and
the position of buckling by treating the ridge as locally cylindrical and using the conventional analysis for cylinders
(Thompson et al. , 1984). The buckling was abrupt and discontinuous (i.e., subcritical), so that a fixed fraction of
the energy was lost upon buckling. This occurred even when the cube was deformed with fixed displacement rather
than fixed forces.

DiDonna (2002) explained several features of the buckling by treating the ridge as a nearly cylindrical shell of
radius w. The abruptness of the buckling was a natural outcome of this analysis. The buckling occurs in a local
region. The loading of this region comes from two slender adjoining regions in compression. The elasticity of these
regions effectively supplies fixed force to the buckling region. Even though the overall system has fixed displacement,
the buckling region experiences nearly fixed force. This becomes more nearly true as the sheet becomes thinner. As
with a thin cylinder, the buckling under fixed force is subcritical (Thompson et al. , 1984).

Buckling cylinders do not require internal stress for their buckling strength. The strength is comparable whether
they are made from flat material thus creating internal stress or whether the stress is relaxed in the cylindrical state.
The same proved to be true with the cubes. To test this, the springs in the lattice making up the cube were adjusted
after the cube was formed, so that the springs were all relaxed and no energy was stored. Nevertheless the stiffness
and buckling strength were virtually unaltered. Evidently the energy to deform an existing ridge or buckle it is
comparable to the energy to make it from a flat sheet, even if one removes that initial energy.

D. crushing energy

The work to compress a thin sheet into a small volume is equal to the energy of deforming it. For a sufficiently
thin sheet, we have shown above that the bulk of this energy goes into creating stretching ridges. Most of this energy
is expected to be in ridges of large bending angle α. Then the work W to compress can be readily related to the
lengths Xi of these ridges. Up to numerical constant, the work W is given by

∑
i κ(Xi/h)1/3.

Numerical and physical experiments have been done to find the work of compression. Kramer, Witten (1997)
compressed a hexagonal Seung-Nelson sheet inside a repulsive spherical potential. The sheet had no constraints
against self-penetration. The range of compression was small and didn’t permit a clear test of energy scaling. However
it showed clearly that the ridges created were at the length scale of the container. It also showed that the system
became more homogeneous with greater compression, and the fluctuations of energy from run to run became smaller.

The work to crush a given type of sheet is of great importance for practical purposes. Still, there has been little
attention given to finding systematic scaling behavior with thickness and compression factor. Recently such a test using
mylar plastic sheets was done by Nagel and co-workers (Matan et al. , 2002). The sheets were crushed in a cylindrical
piston and the volume versus force was measured. Several unanticipated stress relaxation and history-dependent
effects were discovered. Ultimately a robust power-law relationship was found between force and compression. The
experiment was done in the range of large compressions where Xi/h is not large and the approximation of a thin
sheet is only qualitatively applicable.

By using the relation W ≃ κ
∑

i(Xi/h)1/3 one may anticipate the behavior of the sheet. For this it is necessary to
estimate the ridge lengths Xi. A natural approach is to assume that a) the Xi are roughly equal and b) the typical
size X is that size that would fill the allowed volume without strong mutual intersection effects. We can readily
estimate this size X. If the sheet of linear size L is dispersed into N small sheets of size X, then the sheets may rotate
without mutual interference if each is allowed to occupy a volume X3 or more. Since N ≃ (L/X)2, the total volume
thus occupied is of order V ≃ NX3 ≃ L2X. Evidently this volume may be made smaller than the confining volume
V by making X <∼ V/L2. The least energy that avoids mutual interference gives X ≃ V/L2. This gives an energy W

of order κN(X/h)1/3 ≃ κL2L4/V 2(V/(L2h))1/3. Defining the occupied volume fraction V/(L2h) ≡ φ, this gives

W/V ≃ κh−3φ8/3. (39)

The corresponding pressure is 5/3 W/V and also varies as φ8/3. The predicted pressure increases strongly but
smoothly over a wide range of density. For comparison we note that the osmotic pressure of a conventional polymer
solution varies as φ9/4 (deGennes , 1979)

The strongly compressed sheets of Matan et al. (2002) have a pressure that is smaller and more slowly growing
with density than this estimate gives. Possible reasons for this discrepancy are plastic deformation in the sheet and
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alignment of the ridge elements, thus allowing them to be larger and less numerous. Friction between contacting
facets is also neglected in the estimate. Such friction should increase the strength.

E. heterogeneity and complexity.

Real sheets appear to be qualitatively more heterogeneous than the phantom computer sheet of Kramer, Witten
(1997). If one views a crumpled sheet such as Figure 1, one sees ridges spanning a wide range of size scales. Such
heterogeneity arises naturally if one views the crumpling as a repeated buckling process. Upon compression each ridge
buckles to form a small number of different-sized sub-ridges. Further compression causes these in turn to buckle. Such
processes give a broad distribution of final sizes. To show this in a simple way, we consider a stick that is broken
into a large segment and a small segment that is x times the original size. Now the two pieces are each divided into
uneven sub-pieces in the same proportions. The breaking continues for a large number of stages k. Now we choose a
piece at random. The length of this piece is the product of k factors, each of which is either x or 1 − x with equal
probability. These factors are random and independent since each refers to a separate random breaking event. Since
the length is the product of random factors, the log of this length is the sum of random terms. Thus the logs of the
lengths are approximately normally distributed. The lengths themselves have a log-normal distribution. For a wide
range of L values, such log-normal distributions behave approximately as 1/L. The same reasoning applies to any
power of L. All such quantities have a power-law falloff with an apparent exponent near -1.

Recently Sultan, Boudaoud (2006) showed how such heterogeneity could arise from a non-hierarchical description.
their numerical approach seeks configurations that obey the constraints of confinement and self-avoidance with a
minimal degree of buckling. They simplify to a one-dimensional line that is allowed to bend only at discrete points.
They explore the effects of confinement, extending to a maximum density. At high confinement with many bends but
far below the maximum density they observed a log-normal distribution, though no hierarchical breaking is explicitly
performed.

Indirect evidence in favor of this log-normal distribution comes from measurements of the sound(Gopinathan et al.

, 2002) of crumpled sheets (Houle, Sethna , 1996; Kramer, Lobkovsky , 1996). These studies recorded the crackling
sounds of crumpled sheets and compiled the probability distribution of acoustic energies e in a sound burst. The
distribution P (e) is approximately proportional to 1/e, and the departures from this power law resemble those expected
for a log-normal distribution. Recently a direct measurement of ridge lengths (Blair, Kudrolli , 2005; Vliegenthart,
Gompper , 2006) also shows log-normal-like behavior.

The hierarchical buckling mechanism is a kinetic one, and not one that selects the lowest-energy state. Its success
leads us to ask what aspects of crumpled structure might be kinetic and what aspects have minimum energy. One way
to explore this issue was done in an insightful study by Menon (2005). In this study a sheet was crumpled gradually
so that the individual buckling events could be followed. If these events occur in a hierarchical sequence, one might
suppose that reversing the compression might simply reverse the sequence. Alternatively, it could be that reversal of
compression would send the system along a new path, so that repeated compression and decompression explores an
extended ensemble of states. The experimental results appear to favor the extended-ensemble picture.

Blair and Kudroli did extensive measurements of the statistical properties of crumpling by studying the topography
of uncrumpled sheets. Residual plastic deformation left traces of the ridges and vertices in the previous crumpled
state. They measured the probability distribution of curvature and found it to be exponential. This probability
distribution corresponds closely to the φ(b) function defined in the previous Section. There we saw that this function
is a power law for a single ridge, rather than an exponential. The study measured the connectivity of the ridge
network and found many disconnected ends. The crumpling of real sheets clearly has many unexplained features.

VIII. CONCLUSION

Physical science has come to recognize an increasing range of self-organizing mechanisms by which matter comes
to be spontaneously structured. Spontaneous symmetry breaking of spatially distributed fields in thermal equilbrium
(Stanley , 1987) is a major source of such structure. More recently stochastic growth phenomena (Vicsek , 1992)
have shown robust fractal structure. Certain kinds of nonlinear deterministic dynamics lead to the intricate patterns
of chaotic systems (Ott , 2002). The flow of fluids with inertia (Davidson , 2004), hydrodynamic interactions (Ra-
maswamy , 2001) and capillary forces (Eggers , 2005) lead to further varieties of structure. In this paper we have
seen that stress focusing can give forms of self-organization that are independent of these better-studied forms. It
creates robust and universal structures such as stretching ridges and d-cones. These structural elements interact to
create further levels of structure such as induced vertices and crumpled sheets that are little understood at present.
These are particularly simple forms of emergent structure, since the only requirement for their creation is an elastic
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sheet—a manifold with a metric. For this reason they may offer a hint into the deeper origins of structure formation
in locally-coupled matter.
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Appendix: ridge-to-vertex crossover

In this Appendix we calculate the distance scale from the vertex at which corrections to the asymptotic Föppl–von
Karman equations become significant. We give the details, since they do not appear in the literature.

As noted in Section V, the crossover occurs at that value of ǫ ≡ 1
2−x such that the subleading term in the Föppl–von

Karman equations become comparable with the leading term that gives Eq. 35. The subleading terms occur in the
rescaling of ∆2 given in Eq. 34. Since the subleading terms enter similarly in the force Föppl–von Karman equation
and the geometric one, we consider only the force Föppl–von Karman equation. Defining ξ ≡ ỹ/q and using the form

f̃ = q(ǫ)p(ξ), the asymptotic force Föppl–von Karman equation is

∂4
ỹ f̃ ∼ q−3p′′′′(ξ), (40)

The leading correction is the term in λ2β in Eq. 34. This can be written as

∂x
2
[
∂ỹ

2f̃
]
. (41)

The factor in [...] is q−1p′′(ξ). For ǫ ≪ 1, the scale factor q(ǫ) ∼ ǫ2/3. The reduced function p(ξ) is even about ỹ = 0.
Performing the first derivative, one obtains

∂x

[
q−1p′′(ξ)

]
=

q′

q2
(−p′′ − ξp′′′). (42)

We denote the ξ-dependent function in (...) as p3(ξ). Performing the second derivative, we find,

∂x
2
[
q−1p′′(ξ)

]
= ∂x

[
q′

q2
p3

]
= q′∂q

[
q′

q2
p3

]

= q′∂q

[
q′

q2

]
p3 + q′

q′

q2
∂qp3

= q′∂q

[
q′

q2

]
p3 + q′

[
q′

q2

] [
−q′

q2

]
p3

′. (43)

Since q is a simple power of ǫ, we can write q′ = c q/ǫ, where c is a numerical constant. Using this fact, we may
simplify further:

∂x
2
[
q−1p′′(ξ)

]
=

1

qǫ2
(a1 p3 + a2 p3

′) (44)

where a1 and a2 are numerical constants. The quantity in (...) is a function only of ξ ≡ ỹ/q. We denote it as p4(ξ).
It remains finite as ǫ → 0.

We may now compare the asymptotically dominant term of Eq. 1 with the leading correction. The condition that
these two terms be comparable is:

λ4βq−3p′′′′ ≃
λ2β

qǫ2
p4. (45)

Recalling that β = −1/3, that q ∼ ǫ2/3, that λ ∼ h/X and that p′′′′ and p4 are independent of ǫ, we conclude

(h/X)2/3 ∼ ǫ2/3 (46)

or ǫ ∼ h/X, as announced in the text.


