
REVIEW
published: 14 August 2018

doi: 10.3389/fnins.2018.00562

Edited by:

Bing-Xing Pan,

Nanchang University, China

Reviewed by:

Yan Dong,

University of Pittsburgh, United States

Qingchun Tong,

University of Texas Health Science

Center at Houston, United States

Anton Ilango,

Otto-von-Guericke Universität

Magdeburg, Germany

*Correspondence:

Modi Yang

yangmodi0513@163.com

Shuohui Gao

gaoshuohui@foxmail.com

Jiayin Lv

lvjiajinmg63@sina.com

Bingjin Li

libingjin@jlu.edu.cn

Specialty section:

This article was submitted to

Neuroendocrine Science,

a section of the journal

Frontiers in Neuroscience

Received: 31 January 2018

Accepted: 25 July 2018

Published: 14 August 2018

Citation:

Jie F, Yin G, Yang W, Yang M, Gao S,

Lv J and Li B (2018) Stress

in Regulation of GABA Amygdala

System and Relevance

to Neuropsychiatric Diseases.

Front. Neurosci. 12:562.

doi: 10.3389/fnins.2018.00562

Stress in Regulation of GABA
Amygdala System and Relevance
to Neuropsychiatric Diseases
Fan Jie1, Guanghao Yin1, Wei Yang1, Modi Yang2* , Shuohui Gao2* , Jiayin Lv3* and

Bingjin Li1*

1 Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun,

China, 2 Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun,

China, 3 Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China

The amygdala is an almond-shaped nucleus located deep and medially within the

temporal lobe and is thought to play a crucial role in the regulation of emotional

processes. GABAergic neurotransmission inhibits the amygdala and prevents us from

generating inappropriate emotional and behavioral responses. Stress may cause

the reduction of the GABAergic interneuronal network and the development of

neuropsychological diseases. In this review, we summarize the recent evidence

investigating the possible mechanisms underlying GABAergic control of the amygdala

and its interaction with acute and chronic stress. Taken together, this study may

contribute to future progress in finding new approaches to reverse the attenuation of

GABAergic neurotransmission induced by stress in the amygdala.
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INTRODUCTION

The amygdala is an almond-shaped structure located within the temporal lobes of the brain and it
plays a key role in the processing of fearful and unpleasant stimuli (Aroniadou-Anderjaska et al.,
2007; Bzdok et al., 2013). Previous studies have demonstrated that amygdala nuclei participate in
the storage and retrieval of conditioned fear and fear memory (Sah et al., 2003; Herry et al., 2008;
Pape and Pare, 2010). The nuclei of the amygdaloid complex can be grouped, according to their
embryological origins, into three subdivisions: the centromedial, the cortical, and the basolateral
complexes groups (Knapska et al., 2007; Spampanato et al., 2011). These are functionally relevant
subdivisions with a little bit of difference. Different nuclei within the amygdala appear to process
diverse aspects of stress. The basolateral nucleus (BLA) is a cortical-like structure located in the
dorsal amygdala and is involved in the regulation of behavioral and physiological stress responses
(Bhatnagar et al., 2004). The central amygdala (CeA) has also been reported to play a crucial role in
physiological responses to stressors, such as fearful stimuli, stressful stimuli, and some drug-related
stimuli (Gilpin et al., 2015). In addition, accumulating evidence suggests that a key subdivision of
the extended amygdala, named the bed nucleus of the stria terminalis (BNST), is involved in anxiety
and stress (Li et al., 2012).

The networks of γ-aminobutyric acid-ergic (GABAergic) interneurons in the amygdala are
very important components of the brain’s inhibitory circuits (Stefanits et al., 2018). This
neurotransmitter is necessary for keeping a balance between neuronal excitation and inhibition

Abbreviations: BLA, basolateral nucleus; BNST, stria terminalis; CeA, central amygdala; DEX, dexamethasone; GABA,
γ-aminobutyric acid; GAD, glutamic acid decarboxylase; HPA, hypothalamic-pituitary-adrenal; LA, lateral amygdala; PND,
postnatal days.
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(Klausberger and Somogyi, 2008). The BLA contains both
glutamatergic principal neurons and GABAergic interneurons
(Bhatnagar et al., 2004). The glutamatergic neurons are
firmly regulated by a comparatively small population of
GABAergic inhibitory neurons (Prager et al., 2016). Destruction
of GABAergic inhibition in the BLA can cause behavioral
hyperexcitability, such as increased anxiety and depression,
emotional dysregulation, and development of seizure activity
(Prager et al., 2016). The CeA serves as a major output nucleus
of the amygdala by converging inputs from the BLA (Li et al.,
2017). In contrast with the BLA, the CeA is only composed of
GABAergic neurons (Spampanato et al., 2011). Moreover, the
BLA, the CeA, and their connections play a crucial role in the
modulation GABAergic control in the amygdala. These amygdala
GABAergic neurons are hence adequately positioned to play a
central role in the regulation of stress. However, much less is
known about the interaction between the amygdala’s GABAergic
inhibitory system and stress.

Stress is becoming increasingly inevitable in daily life,
causing a series of physiological and behavioral responses that
significantly alter emotional and behavioral states (Dallman
et al., 2003). The way in which stressors impact emotional
states depends on a variety of biological and environmental
factors (Ulrich-Lai et al., 2015). There are already some
studies in experimental animals which investigated the
role of the amygdala’s GABAergic neuronal system in the
regulation of stress. For example, Giachero et al. (2013) showed
that threatening stress induced attenuation of GABAergic
neurotransmission in BLA, and compelling evidence has shown
that wistar kyoto rats presented decreased GABAergic activation
in the BLA after a 2.0 mA shock (Jiao et al., 2011). A reduction
in c-Fos expression in GABAergic interneurons of the BLA
was found in postweaning rats who had been subjected to
social isolation (Lukkes et al., 2012). Wang GY demonstrated
that chronic or acute administration of dexamethasone (DEX)
upregulates GABA release and GABAergic neuronal spiking
in the amygdala (Wang et al., 2016). Liu ZP demonstrated
that both chronic mild stress and unpredictable stress leads
to an everlasting loss of tonic GABAA receptor current in the
projection neurons of the LA (Liu et al., 2014). These studies
indicate the direct relationship between stress and GABA-
modulation in the amygdala. We conducted a systematic review
combining both preclinical and clinical evidence to evaluate how
stress may influence the GABAergic system in the amygdala.

FUNCTION AND STRUCTURE OF GABA
AND GABA RECEPTORS

GABA is a crucial inhibitory neurotransmitter of the brain
and is the primary neurotransmitter of at least one-third of
all central nervous system neurons (Bloom and Iversen, 1971).
The classes of GABA receptors include GABAA, GABAB, and
GABAA-rho (formerly considered GABAC) receptors (Olsen
and Sieghart, 2008, 2009). GABAA and GABAC belong to the
super family of pentameric ligand-gated ion channels (Enz,
2001). The GABAA receptor is composed of five transmembrane

protein subunits including two α subunits, two β subunits, and
one γ subunit (Sieghart and Sperk, 2002). Heterooligomeric
GABAC receptors are composed of three GABAC receptor ρ

subunits (ρ1, ρ2, and ρ3) (Enz, 2001). GABAB receptors are
made up of GABAB1 and GABAB2 subunits (Jiang et al., 2012).
Ionotropic GABAA and GABAC receptors’ subunits surround a
chloride channel. The metabotropic GABAB receptor is coupled
to G-proteins and operates by modulating calcium or potassium
channels (Enz and Cutting, 1998). GABAA receptors produce
a rapid inhibition (Sieghart, 2006), while GABAB receptors
are coupled with G-proteins to produce slow and prolonged
inhibitory responses (Bowery, 2010). GABAC receptors are more
highly localized in axon terminals of bipolar cells compared to
GABAA receptors (Enz and Cutting, 1998; McCall et al., 2002).
Activation of GABAA receptors can cause a massive increase
in chloride conductance through the cell membrane (Mody
and Pearce, 2004). Furthermore, low concentrations of GABA
can persistently activate extrasynaptic GABAA receptors and
cause a sustaining inhibitory state, meaning that the neuron will
not present a normal response to excitatory stimuli (Farrant
and Nusser, 2005). GABAB receptors play an important role
in regulating pre- and postsynapses (Xu et al., 2014). It is
recognized that GABAB receptors have an influence on the
activity and signaling of glutamate receptors both physiologically
and pathologically (Kantamneni, 2015). Some studies have
suggested that GABAC receptors are involved in sleep-waking
conduction (Arnaud et al., 2001), emotion and memory (Chebib
et al., 2009), apoptosis (Yang et al., 2003), and hormone release
in the pituitary (Boue-Grabot et al., 2000). Known GABAC

receptor binding proteins do not interact with other types of
GABA receptors, implying that GABAC receptors have unique
pharmacological and physical characteristics (Enz, 2001).

GABAergic CONTROL OF THE
AMYGDALA

As we mentioned above, the amygdala is composed of a
number of distinct nuclei including BLA, lateral amygdala
(LA), CeA and a key subdivision of the extended amygdala,
BNST. The different distribution of GABA is accompanied by
various functions in each sub nuclei of amygdaloid complex.
Major afferent signals from the medial prefrontal cortex reach
the amygdala mainly via the BLA and LA, while efferent
signals tend to originate through the CeA (Etkin, 2010).
Inhibitory GABAergic neurons project from the CeA to the
hypothalamus and brainstem (Jongen-Rêlo and Amaral, 1998).
The amygdala is inhibited by the cortex through the activation
of local GABAergic interneurons. In addition, this inhibition
is significantly decreased when dopamine is released during
heightened emotional states (Mcdonald et al., 1996; Dallman
et al., 2003; Pinto and Sesack, 2008). The modulation of
emotional responses by the BLA is mainly determined by the
balance of excitatory and inhibitory inputs to its dominated
neurons which are tightly controlled by GABAergic interneurons
(Równiak et al., 2017). As mentioned above, the GABAergic
neurons of the amygdala modulate activation of the CeA via
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FIGURE 1 | The medial prefrontal cortex can affect BLA GABAergic system.

The BLA neurons indirectly project to the CeA via GABAergic interneurons.

Projections from CeA mainly target to the hypothalamus and brainstem

involved in physiological and behavioral responses to stress. BLA, basolateral

nucleus; CeA, central amygdala; BNST, bed nucleus of the stria terminalis; LA,

lateral amygdala.

projections from the BLA (Nuss, 2015). Optogenetic techniques
selectively isolate distinct neural circuits and help us in the
identification of novel brain pathways. Sparta et al. reported
that photostimulation of BNST efferents resulted in a behavioral
phenotype of the anxiety-like state (Sparta et al., 2013). Figure 1
shows a schematic of the GABA distribution and the projections
in each sub nuclei of amygdaloid complex. The GABA synthetic
enzyme glutamic acid decarboxylase (GAD) 65 and a second
GAD isozyme, GAD67, are important components involved in
the activity-dependent modulation of the amygdala’s GABAergic
system (Müller et al., 2015). Some animal experiments have
indicated that administration of GABA receptor agonists or
antagonists into the amygdala can influence the concentration of
GABA (Sanders and Shekhar, 1995; Barbalho et al., 2009). These
have includedGABAergic agonists such as benzodiazepines (Sigel
and Lüscher, 2011), Zol (Alò et al., 2015), muscimol (Jasnow
and Huhman, 2001; Liu et al., 2009), diazepam, and abecarnil
(Eva et al., 2004). GABAergic antagonists have included baclofen
(Gorsane et al., 2012), bicuculline (Liu et al., 2009), and FG-
7124 (Eva et al., 2004; Lukkes et al., 2012). Benzodiazepines, Zol,
diazepam, and abecarnil bind the subunits of GABAA receptors,
and this binding increases the probability of ion channel opening
in the presence of GABA (Eva et al., 2004; Alò et al., 2015; Fast
and McGann, 2017). On the other hand, baclofen competes with
GABA for the same sites on GABAB receptors in the amygdala.
It has been proposed that these could be helpful in the therapy of
stress-induced disorders (Gorsane et al., 2012).

TYPES OF STRESS

Stress is our body’s way of responding to a variety of
demands or threats, and affects many bodily functions, such
as metabolic, psychological, and behavioral functions. Stress
management can be complicated and difficult to understand
because it is influenced by many variables, such as the chronicity,
predictability and severity of stress (Nalivaiko, 2011; Steptoe and

Kivimäki, 2012; Herman, 2013). Different classification methods
divide stress into different types. Stress can be roughly divided
into social and non-social (physical) stress (Lee et al., 2016).
There are already some reports studying different types of non-
social stress in rodents, including restraint stress (Lee et al., 2016),
forced swim stress (Suarez-Roca et al., 2008), prenatal stress
exposure (Lee et al., 2016) and elevated platform stress (Sickmann
et al., 2015). Rodent studies on social stress have included social
defeat-induced stress (Rutherford et al., 2014), social mixing
stress (Jarvis et al., 2006), and social crowdedness stress (Sachser
et al., 2011). Some animal studies looking at the influence of
predictable and unpredictable stressor stimuli showed that the
latter induces more pronounced behavioral and physiological
results (Bassett et al., 1973; Magariños and McEwen, 1995; Marin
et al., 2007; Flak et al., 2012; Kopp et al., 2013; Smith et al., 2013).
However, most studies do not make a clear distinction between
predictable and unpredictable stressor stimuli and focus more
on the duration of the stimulus. Furthermore, there have been
some reports showing that acute and chronic aversive stimuli
cause very different responses (Nalivaiko, 2011; Herman, 2013).
Based on the above reasons, we have divided stress into two
types: acute stress and chronic stress. There have been many
studies demonstrating that various types of stress are involved
in the control of the amygdala’s GABAergic neurons. These
include acute forced swim stress (Bedse et al., 2015), prenatal
stress (Ehrlich et al., 2015), chronic unpredictable restraint stress
(Ortiz et al., 2015), and posttraumatic stress (Müller et al., 2015).
Stress can also derive from withdraw infections of drugs or
continuous alcohol abuse (Stephens and Wand, 2012). Agentia
administration can influence the hypothalamic-pituitary-adrenal
(HPA) axis and we have categorized it as acute or chronic
stress depending on its method of administration. Likewise,
we categorized chronic ethanol exposure as chronic stress and
acute ethanol exposure as acute stress. We will describe these in
two categories according to the classification factors mentioned
above.

INFLUENCE OF THE GABAergic SYSTEM
IN AMYGDALA RESPONSES TO STRESS

Severe acute stress and chronic stress can influence the
amygdala’s stress response through three main regulatory
systems: the serotonergic system (Hernández et al., 2016), the
catecholaminergic system (Wang et al., 2016), and the HPA
axis (Wisłowska-Stanek et al., 2013). Here, we highlight the
influence of the GABAergic system in amygdala responses to
stress. As we described above, the GABAergic responses to stress
also involve many subnuclei of the amygdala, such as the BLA,
CeA, LA, and BNST (Zuloaga et al., 2012). In addition, stress
influence amygdala’s GABAergic transmission in a cell type- and
projection- specific way. Accumulating evidence demonstrates
that BLA projections to the CeA distinctly alter motivated
behavior (Beyeler et al., 2018). Stress induced persistent anxiety
via the extra-amygdala septohypothalamic circuit (Anthony
et al., 2014). Liu et al. (2018) found that harmine potentiates
the GABAergic transmission onto BLA projection neurons.
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TABLE 1 | Influence of the GABAergic system in amygdala responses to stress.

Types of stress Regions Changes in GABAergic system References

Acute Forced swimming BLA Activation of GPR30 increased the inhibitory synaptic

transmission

Tian et al., 2013

BLA Promote GABAergic transmission Feng et al., 2013

BLA Disrupted the cannabinoid receptor type 1-associated

modulation of the GABAergic system

Bedse et al., 2015

Restraint stress CeA Elevate baseline GABAergic responses Ciccocioppo et al., 2014

Maternal separation CeA Increase in the density V1a transcripts of GABAergic

neurons

Hernández et al., 2016

BLA Decrease c-Fos expression in a subset of GABAergic

interneurons

Lukkes et al., 2012

Glucocorticoid administration BLA Suppress spontaneous GABAergic synaptic currents Di et al., 2016

DEX administration Upregulate GABA release and GABAergic neuronal

spiking

Wang et al., 2016

Ethanol consumption BLA Increase GABAergic transmission Varodayan et al., 2017

Chronic Water-deprivation CeA Increase in the density V1a transcripts of GABAergic

neurons

Hernández et al., 2016

Chronic unpredictable CeA Regulation of GABAA receptors Alò et al., 2015

CeA and BNST Promote GABAergic transmission Partridge et al., 2016

CeA Down-regulation of GAD65 expression Ortiz et al., 2015

Corticosterone administration LA and CeA Decreased GABAA α-2 subunit density Skórzewska et al., 2015

DEX administration Increase cleaved caspase-3 and GABAergic

calcium-binding protein

Zuloaga et al., 2011

Enhanced the responsiveness of GABA receptors Wang et al., 2016

Ethanol consumption BLA Disrupted the cannabinoid receptor type 1-associated

modulation of the GABAergic system

Varodayan et al., 2017

Prenatal stress Influenced the chloride transporters K-Cl cotransporter

2, Na-K-Cl cotransporter 1

Ehrlich et al., 2015

Peripuberty stress LA, BLA, and CeA Decrease in the expression of GAD and GABAA

receptor subunits

Tzanoulinou et al., 2014

Regulation of the GABAA receptor subunits Jacobson-Pick and Richter-Levin, 2012

BLA, basolateral nucleus; CeA, central amygdala; BNST, bed nucleus of the stria terminalis; LA, lateral amygdala; GPR30, G-protein-coupled receptor 30; GABA,

γ-aminobutyric acid; BLA, basolateral nucleus; GAD, glutamic acid decarboxylase.

However, only partially understood about the role of neuronal
components of these regions in amygdala circuits. For instance,
Yu et al. (2017) showed that PKC-δpositive lateral CeA neurons
were “fear-on” neurons as they convey aversive unconditioned
stimulus signals. Administration of CRF into the BLA induced
pronounced increases in cFos-ir in the CaMKII-ir population
and altered the activity of GABAergic interneurons (Rostkowski
et al., 2013). The relationship between GABA amygdalar system
and stress is complex. Depending on the duration of stress, more
influence of the GABAergic system in amygdala responses to
acute stress and chronic stress will be discussed separately below.

GABAergic Control of Amygdala
Responses to Acute Stress
Restraint and forced swimming are the most common form
of acute stress. Tian et al. (2013) found some new targets
that reduce the amygdala’s response to these acute stresses.
G-protein-coupled receptor 30, one of the estrogen receptors,
is a novel membrane receptor that is highly expressed in the
BLA. Additionally, G-protein-coupled receptor 30 expression
in the amygdala was substantially increased after acute stress
and this correlated with anxiety-like behaviors. Moreover, the

G-protein-coupled receptor 30 agonist blocked the down-
regulation of GABAA receptors (Tian et al., 2013). Feng et al.
found another potential therapy for regulate stress is motilin
which can weaken anxiety-like behavior in rats after they
have been subjected to forced swimming. Whole-cell recordings
from amygdala slices revealed that motilin depolarized the
interneurons and promoted GABAergic transmission in the
BLA (Feng et al., 2013). Bedse et al. (2015) found that
pretreatment with the cannabinoid receptor type 1 receptor
antagonist rimonabant blocked the effect of the fatty acid amide
hydrolase inhibitor (URB597) on GABA release in the BLA of
animals subjected to the acute swim stress. In rats subjected to
restraint stress, acute application of corticotropin releasing factor
significantly increased inhibitory postsynaptic potentials in the
CeA (Ciccocioppo et al., 2014).

Neonatal maternal separation stress is instantaneous but
induces long-lasting alterations in emotional behaviors. It
was reported that adult rats that had experienced neonatal
maternal separation presented an increase in the density of
arginine-vasopressin innervation in the amygdala. Furthermore,
V1a arginine-vasopressin receptor mRNA was only found in
GABAergic neurons, demonstrated by complete co-localization
of V1a transcripts in CeA neurons expressing GAD transcripts

Frontiers in Neuroscience | www.frontiersin.org 4 August 2018 | Volume 12 | Article 562

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


Jie et al. GABAergic Control of Amygdala

(Hernández et al., 2016). Another study demonstrated that
postweaning social isolation decreased c-Fos expression in a
subset of GABAergic interneurons in the BLA of adult female rats
(Lukkes et al., 2012).

It is worth noting that the HPA axis can mediate the
stress response because it is a neuroendocrine system. Some
researchers looked at the effects of rapid glucocorticoid-induced
acute stress in the rat BLA. Glucocorticoid administrated to
amygdala slices produced a rapid, non-reversible suppression
of spontaneous GABAergic synaptic currents (Di et al., 2016).
The acute administration of glucocorticoid receptor agonist DEX
also upregulated GABA release and GABAergic neuronal spiking
(Wang et al., 2016).

Acute ethanol consumption increased GABAergic
transmission via the mechanisms involved in both presynaptic
and postsynaptic functioning (Varodayan et al., 2017). Although,
ethanol facilitated GABAergic transmission in the brain, the
activation of cannabinoid receptor type 1 inhibited this effect (Di
et al., 2016; Varodayan et al., 2017).

GABAergic Control of Amygdala
Responses to Chronic Stress
Water-deprivation is a kind of chronic stress. Water-deprivation
for 24 h in rats enhanced anxiety correlative behavior measured
with the elevated plus maze test. This effect was reproduced by
bilateral micro infusion of arginine-vasopressin into the CeA.
Chronic stress induced by either water-deprivation or arginine-
vasopressin infusion was reversed by CeA infusion of a V1a
antagonist (Hernández et al., 2016).

In another chronic unpredictable stress model, hamsters
were casually subjected to one of three pre-prepared stressful
circumstances: food or water deprivation, forced swim test, and
endurance in a cold room. Injection of the α1 GABAA receptor
subunit agonist (Zol) into the CeA changed elevated plus
maze performances (Alò et al., 2015). Chronic, unpredictable
stress increased the amplitude of evoked induced pluripotent
stem cells and the connectivity between corticotropin releasing
factor positive neurons in the CeA and BNST (Partridge et al.,
2016). In male rats with chronic unpredictable restraint stress,
GAD65 expression in the amygdala negatively correlated
with radial arm water maze performances on day 1 in
rats subjected to unpredictable restraint stress (Ortiz et al.,
2015). Importantly, baseline CeA GABAergic responses
were elevated in restrained rats compared with unrestrained
rats.

Rats subjected to repeated corticosterone administration
showed an increase in anxiety-like behavior, examined using the
open field test. The behavioral effects caused by corticosterone
injections may because of increased expression of c-Fos in the
LA and CeA nuclei of the amygdala and decreased GABAA α-2
subunit density in the CeA of these rats (Skórzewska et al., 2015).
These findings are consistent with those of another study (Lussier
et al., 2013). Liu et al. (2014) suggested that a lasting loss of tonic
but not phasic GABAA receptor currents severely contributes
to the prolonged amygdala disinhibition observed after chronic
stress. Injection of glucocorticoids during early development may
lead to long-term variations in brain function and behavior. The

glucocorticoid receptor agonist DEX plays a role in emotion.
Postnatal DEX administration in animals caused an increase in
cleaved caspase-3 and the expression of a GABAergic calcium-
binding protein phenotype in the amygdala (Zuloaga et al., 2011).
DEX administration mainly caused a decrease in the number
of calretinin immunoreactive cells in the LA of adult female
offspring, but no differences were observed in the BLA (Zuloaga
et al., 2012). The chronic administration of DEX upregulated
GABA release and GABAergic neuronal intensification, and also
enhanced the responsiveness of GABA receptors (Wang et al.,
2016). Peroxisome proliferator-activated receptors are members
of the nuclear hormone receptor family. Peroxisome proliferator-
activated receptor agonists such as fenofibrate and tesaglitazar,
when administered to mice subjected to a free access two-bottle
choice drinking paradigm, provoked a strong brain neuronal
signature and targeted a small group of GABAergic interneurons
in the amygdala (Ferguson et al., 2014).

Alcohol can cause the dysfunction of the cannabinoid receptor
type 1 in many ways. However, a study showed that chronic
alcohol exposure disrupted the cannabinoid receptor type 1-
associated modulation of the GABAergic system in the rat
basolateral amygdala (Varodayan et al., 2017).

Commonly, the prenatal period, infancy, pubescence, and
adolescence are critical periods in which animals are more
sensitive to stressors than usual (Charmandari et al., 2003,
2012). Ehrlich et al. used a prenatal stress model of maternal
depression to test the changes of GABAergic neurotransmission
in the amygdala. They found that rats exposed to this stress in
utero had increased anxiety-like behavior in adulthood. Exposure
to prenatal stress also deeply influenced the expression of
the chloride transporters K-Cl cotransporter 2 and Na-K-Cl
cotransporter 1 in the amygdala, indicating that stress regulates
GABAergic function (Ehrlich et al., 2015). Tzanoulinou et al.
showed that peripuberty stress may cause a decrease in the
expression of GAD andGABAA receptor subunits in all amygdala
nuclei present in adult rats (Tzanoulinou et al., 2014). During
the juvenile period, rats are particularly vulnerable to stressors.
Animals were subjected to a juvenile variable stressor regimen at
27–29 postnatal days (PND), including PND-acute swim stress,
PND-elevated platform stress, and PND-restraint stress. The
stress-induced regulation of the GABAA receptor subunits was
specifically evident in the amygdala (Jacobson-Pick and Richter-
Levin, 2012).

Table 1 summarizes some of the interaction between
GABAergic transmission in particular regions of the amygdala
and particular types of stress. BLA and CeA seems to be the
most relevant regions of GABAergic neurotransmission in the
amygdala.

GABAergic CONTROL OF THE
AMYGDALA AND RELEVANCE TO
NEUROPSYCHIATRIC DISEASES

There may be an interaction between stress and neuropsychiatric
diseases. A number of studies have demonstrated this interaction
(Schneiderman et al., 2005). Animal studies showed that exposure
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to acute or chronic stress can induce morphological and
functional changes in amygdala. These changes in amygdala
can cause individual susceptibility to anxiety disorders (Sandi
and Richter-Levin, 2009). Chronic stress generally cause the
development of psychological problems such as delusions
(Kingston and Schuurmans-Stekhoven, 2016), depression
(Norman and Malla, 1993; Corcoran et al., 2003; Hammen,
2005), and anxiety (Schlotz et al., 2011; Saveanu and Nemeroff,
2012). There are also reports that chronic stress is possibly a
major cause of depression, and that acute severe stress leads
to anxiety (Wang et al., 2016). Khansari et al. demonstrated
that chronic stress is linked to Alzheimer’s disease (Khansari
et al., 1990). In fact, GABAergic control of the amygdala is
mostly relevant to anxiety. Some animal researches have shown
that administration of corticosterone into the CeA can induce
anxiety-like behavior. This animal model imitate the depressed
effect of chronic stress on GABAergic tonic inhibition in LA
(Myers et al., 2005). There are also some studies that show
an association between the amygdala’s GABA interneuronal
network and alcohol addiction (Nie et al., 2004, 2009; Bajo et al.,
2008). Aroniadou et al. reported a key role of the amygdala’s
GABAergic control in epilepsy. The stress-induced damage to the
noradrenergic system, promoting GABA release in the BLA, may
underlie the stress-induced exacerbation of seizure activity in
epileptic patients (Aroniadou-Anderjaska et al., 2007). However,
more recent studies have suggested that stress itself does not

enhance the risk of developing a disorder, but that it is the
perception that stress affects health that is destructive (Keller
et al., 2012). For instance, when humans are exposed to chronic
stress, steady changes in their physiological and emotional state
are the most involved in changes that could lead to illness (Tsoory
et al., 2007; Jeronimus et al., 2014). More clinical evidence is
needed to better understand stress and to be able to attenuate
the effects of stress. This study provides a novel understanding
of the interaction between GABAergic transmission in particular
regions of the amygdala and particular types of stress.
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