
RESEARCH ARTICLE

Stress-Induced Anxiety- and Depressive-Like

Phenotype Associated with Transient

Reduction in Neurogenesis in Adult Nestin-

CreERT2/Diphtheria Toxin Fragment A

Transgenic Mice

Sanghee Yun1, Michael H. Donovan1, Michele N. Ross1, Devon R. Richardson1,

Robin Reister1, Laure A. Farnbauch1, Stephanie J. Fischer1, Dieter Riethmacher2,3,

Howard K. Gershenfeld1, Diane C. Lagace1‡*, Amelia J. Eisch1‡
*

1 Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United

States of America, 2 Department of Biomedical Sciences, Nazarbayev University School of Medicine,
Astana, Kazakhstan, 3 Human Development and Health, School of Medicine, Southampton General
Hospital, Southampton University, Southampton, United Kingdom

‡ These authors are joint senior authors on this work.

* amelia.eisch@utsouthwestern.edu (AJE); diane.lagace@uottawa.ca (DCL)

Abstract

Depression and anxiety involve hippocampal dysfunction, but the specific relationship

between these mood disorders and adult hippocampal dentate gyrus neurogenesis remains

unclear. In both humans with MDD and rodent models of depression, administration of anti-

depressants increases DG progenitor and granule cell number, yet rodents with induced

ablation of DG neurogenesis typically do not demonstrate depressive- or anxiety-like

behaviors. The conflicting data may be explained by the varied duration and degree to

which adult neurogenesis is reduced in different rodent neurogenesis ablation models. In

order to test this hypothesis we examined how a transient–rather than permanent–inducible

reduction in neurogenesis would alter depressive- and anxiety-like behaviors. Transgenic

Nestin-CreERT2/floxed diphtheria toxin fragment A (DTA) mice (Cre+DTA+) and littermates

(Cre+DTA-; control) were given tamoxifen (TAM) to induce recombination and decrease

nestin-expressing stem cells and their progeny. The decreased neurogenesis was tran-

sient: 12 days post-TAM Cre+DTA+ mice had fewer DG proliferating Ki67+ cells and fewer

DCX+ neuroblasts/immature neurons relative to control, but 30 days post-TAM Cre+DTA+

mice had the same DCX+ cell number as control. This ability of DG neurogenesis to recover

after partial ablation also correlated with changes in behavior. Relative to control, Cre+DTA

+ mice tested between 12–30 days post-TAM displayed indices of a stress-induced anxiety

phenotype–longer latency to consume highly palatable food in the unfamiliar cage in the

novelty-induced hypophagia test, and a depression phenotype–longer time of immobility in

the tail suspension test, but Cre+DTA+ mice tested after 30 days post-TAM did not. These

findings suggest a functional association between adult neurogenesis and stress induced
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anxiety- and depressive-like behaviors, where induced reduction in DCX+ cells at the time

of behavioral testing is coupled with stress-induced anxiety and a depressive phenotype,

and recovery of DCX+ cell number corresponds to normalization of these behaviors.

Introduction

Depression and anxiety are devastating, prevalent psychiatric disorders diagnosed in a great

number of people during their lifetime [1]. These disorders may have a shared etiology, since

they have a high frequency of comorbidity and the symptoms can be improved by similar treat-

ments [2, 3]. Another similarity between depression and anxiety is that they are often marked

by impaired cognition [3–7], underscoring the involvement of limbic circuitry including the

hippocampal formation. Structural evidence of hippocampal pathology has been widely

reported. For example, humans diagnosed with major depressive disorder (MDD) have smaller

hippocampi as visualized by in vivo imaging [8]. Also, unmedicated MDD subjects have a

smaller hippocampus and fewer mature granule cells (GCs) in hippocampal dentate gyrus sub-

regions as visualized by human post-mortem tissue analysis [9]. A potential explanation for

these DG changes is that depression and anxiety may interfere with the process of DG neuro-

genesis, where local progenitors and neuroblasts give rise to new DG GC neurons throughout

life [10–13], or that treatment for these disorders may stabilize or even increase DG neurogen-

esis [14–17]. Support for this “neurogenesis hypothesis” of affective and anxiety disorders

comes from many studies, including human post-mortem studies showing that treatment with

certain antidepressants increases the number of GCs and progenitors relative to non-treated

MDD subjects [9, 18]. While it has long been postulated that adult DG neurogenesis contrib-

utes to the behavioral improvement seen after antidepressant administration, and reduced

adult DG neurogenesis contributes to depressive- and anxiety-like behavior, as detailed below

data from preclinical studies are conflicting, and more work is needed to test the proposed

causal relationship.

Preclinically, adult DG neurogenesis appears to be required for antidepressant efficacy [15,

16, 19–24], and progenitors are a key target of antidepressant drugs [25–28]. However, preclin-

ical studies do not agree on whether the disruption of neurogenesis (e.g. via ablation of progen-

itors, neuroblasts/immature neurons, and/or their progeny) leads to depressive- and anxiety-

like behavior [21, 28–32]. Certainly some studies show that ablation of neurogenesis (via focal

cranial irradiation, cytostatic agent methylazoxymethanol, or inducible hGFAP-thymidine

kinase mice) results in depressive- and anxiety-like behavior: increased duration of immobility

in the forced swim test, increased latency to feed in the novelty suppressed feeding test, and

increased social avoidance [26, 33, 34]. However, other studies show that ablation of neurogen-

esis (via the same or distinct inducible ablation techniques, e.g. irradiation, Nestin-inducible

Bax mice, Nestin-tk mice) does not result in depressive- and anxiety-like behavior [16, 17, 30,

35–37]. Results that appear to conflict can even appear within the same publication. For exam-

ple, taking an opposite approach, a recent gain-of-function study showed that enhanced hippo-

campal neurogenesis (via transgenic, induced-deletion of Bax in nestin-expressing cells) did

not change baseline depressive- or anxiety-like behaviors, but blunted depressive- and anxiety-

like behaviors in a mouse model of stress [38]. Reasons for these discrepant results have been

widely discussed [21, 28, 29], and include the varied duration and degree to which adult neuro-

genesis is disrupted, but no clear message has yet emerged from the field.

In regards to duration, it is notable that transient (vs. permanent) disruptions in neurogen-

esis correlate with or even cause temporary reduction in hippocampal-dependent learning and
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memory [36, 39–43]. Until recently, very few studies had examined whether transient induced

disruptions in neurogenesis also correlate with or cause temporary reduction in mood and/or

elevation in stress-induced anxiety. One recent study found that inducible, transgenic, transient

reduction of surviving adult-generated neurons did not drive depression-related behaviors and

stress-induced anxiety [30]. These data added weight to the argument that transiently

decreased neurogenesis does not lead to a depressive-phenotype and stress-induced anxiety.

However, surviving adult-generated neurons are only one functional component of the process

of neurogenesis. Cells in “earlier” stages of neurogenesis, like progenitors and neuroblasts/

immature neurons, serve both neurogenic and nonneurogenic functions in the adult DG [33,

42]. Given that these younger cells are key targets of antidepressant drugs [25, 27], more pre-

clinical studies are needed to explore a whether a transient–rather than permanent–reduction

in progenitors and neuroblasts/immature neurons–rather than surviving neurons–causes

depressive-like behavior and stress-induced anxiety, and whether recovery of these cell num-

bers is associated with normalization of behavior.

Here we hypothesized that an induced, transient decrease in neurogenesis would be a rele-

vant and effective way to assess a functional association between neurogenesis and depressive-

like and stress-induced anxiety behavior. Therefore, we generated bigenic mice carrying the

floxed A chain diphtheria toxin fragment (DTA) gene cassette [44] and the Nestin-CreERT2

inducible driver line [45]. After administration of tamoxifen (TAM), we examined cellular phe-

notypes and performance on a battery of behavioral tests over time. Our data show reduction

in cells in early stages of neurogenesis (Ki67 immunoreactive[+] progenitors and doublecortin

[DCX]+ neuroblasts and immature neurons) results in behaviors that reflect both stress-

induced anxiety and depressive-like behavior: increased latency to consume highly palatable

food in the unfamiliar cage in NIH test, and increased immobility in TST, respectively. How-

ever, at a later time point when DCX+ cell number normalized, stress-induced anxiety and

depressive-like behavior were no longer evident. These findings highlight a functional associa-

tion among adult neurogenesis, stress-induced anxiety, and depressive-like behaviors. We sug-

gest induced reduction in DCX+ cells at the time of behavioral testing is associated with stress-

induced anxiety and depressive-like behavior, while recovery of DCX+ cell number corre-

sponds to normalization of these behaviors.

Materials and Methods

Animals and Ethics statement

Experiments were approved by the Institutional Animal Use and Care Committee at University

of Texas Southwestern Medical Center (UTSW; APN 0960-07-02-1). Mice were group-housed

in a UTSW vivarium accredited by the Association for Assessment and Accreditation of Labo-

ratory Animal Care (AAALAC), and were kept on a 12 hr light/dark cycle with ad libitum

access to food and water. Nestin-CreERT2, DTA and R26R-YFP mice have been published and

characterized [44–46]. Briefly, Nestin-CreERT2mice were generated by the Eisch Lab at UTSW

[also available at Jackson Laboratory, strain C57BL/6-Tg(Nes-cre/ERT2)KEisc/J, stock number

016261], R26R-YFP were purchased from Jackson Laboratory [strain B6.129X1-Gt(ROSA)

26Sortm1(EYFP)Cos/J, stock number 006148], and DTA mice were generated by the Riethma-

cher Laboratory [44]. Breeding for this study was performed at UTSW. Nestin-CreERT2 mice

were bred with R26R-YFP mice, and the resulting mice (hemizygous both transgenes) were

then crossed with DTA hemizygous mice, resulting in triple hemizygous mice for the three

transgenes. While this breeding strategy allowed comparison of Nestin-CreERT2/DTA mice

(Cre+DTA+) vs. littermate controls (Cre+DTA- or Cre-DTA-; control), it also resulted in only

25% of the litter being Cre+DTA+, with the remaining 75% of the litter used for control. Mice
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were genotyped by PCR using genomic DNA and primers previously published for Nestin-

CreERT2, R26R-YFP, and DTA mice [44, 45].

TAM administration

Male and female transgenic Nestin-CreERT2/DTA mice (Cre+DTA+) and littermates controls

were given TAM at sexual maturity (5–6 weeks of age), an age often targeted in inducible trans-

genic mouse models in order to study adult neurogenesis [45, 47, 48]. TAM was purchased

from Sigma-Aldrich (Cat. #T5648), prepared in stock solution (30 mg/ml made in 10% EtOH

in sunflower seed oil), and given to all mice once a day for 5 consecutive days (see Figs 1 and

2) as an intraperitoneal (i.p.) injection at a dose of 180 mg/kg/day (6 ml/kg/day of stock

solution).

Overview of experimental design

Behavioral testing can influence neurogenesis [49–51]. Therefore, parallel groups of Cre+DTA+

and control mice treated for TAM were used for cellular analysis of neurogenesis (Fig 1, S1 Fig)

and behavior (Figs 2–4, S2 Fig). Subject numbers (Ns) are provided in the Fig legends for each

neurogenesis analysis or behavioral test and each time point. Neurogenesis data from Cre+DTA

+ and Cre+DTA- mice are presented here, since other mice in the litter lacked the Cre gene and

therefore would not express YFP, as was critical for the data collection in S1 Fig. Behavioral data

from all littermates are presented here, as Cre- mice had behavior indistinguishable from Cre

+DTA- mice. For behavior tests, control N were typically 3X greater than Cre+DTA+mice due

to our breeding strategy resulting in only 25% of the litter being Cre+DTA+, with the remaining

75% of the litter used for control.

Tissue collection and sectioning

For neurogenesis analysis, TAM-treated Cre+DTA+ and control (Cre+DTA-) mice underwent

transcardial perfusion and brains were collected at the time points indicated in Fig 1. Briefly,

mice were anesthetized with chloral hydrate (Sigma-Aldrich cat. #C8383, 400 mg/kg, stock

solution 400 mg/ml made in 0.9% NaCl solution, i.p.) and perfused intracardially with 0.1M

PBS (7 ml/min, 6 min) and followed by perfusion in 4% paraformaldehyde in 0.1M PBS (7 ml/

min, 15 min). As stress can influence neurogenesis, steps were taken to minimize potential

stress differences among mice in the same cage: each cage was gently removed from the hous-

ing room and brought to the adjacent procedure room immediately prior to anesthesia; mouse

cage transfer was performed by a researcher with clean personal protective equipment; and all

mice in a cage were anesthetized within 3 min, and began exsanguination within 5 min, of

being brought into the procedure room. With these and other steps, we have found neurogen-

esis levels in the Nestin-CreERT2 mouse line can be reliably and accurately evaluated with ~4

mice/treatment group, similar to N published in other neurogenesis studies [52–54], even

when DG neurogenesis is quantified in only 1 hemisphere.

After perfusion, brain extraction, and subsequent cryoprotection, brains were bisected

through the midsagittal sulcus, and one hemisphere was sectioned coronally on a freezing

microtome (Leica). Thirty μm sections were collected through the entire anterior-posterior

length of the hippocampus and DG (distance range from Bregma: -0.82 to -4.24 μm). As the

mouse hippocampus is ~3.4mm long, and as 30um (0.03mm) coronal sections were collected

in 9 serial wells, this means ~113 30um sections were collected through each hippocampus,

with ~12 sections per well. Care was taken to “bookend” the hippocampus (including sections

before and after the hippocampus in each well) to enable subsequent stereological quantifica-

tion of neurogenesis.

Anxiety- and Depressive-Like Behavior and Neurogenesis in DTAMice
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Immunohistochemistry (IHC)

Nine serial sets of sections were stored in 0.1% NaN3 in 1XPBS at 4°C until processing for

slide-mounted IHC. For staining of Ki67+, DCX+, and YFP+ cells, one series of sections (e.g. 1

well containing every 9th section [~12 sections/well] through the hippocampus, sections in

well 270um apart) were mounted on glass slides (Superfrost/Plus, Fisher) that were coded to

ensure experimental remained blind throughout stereological analysis. Mounted sections were

processed for antigen retrieval (0.01 M citric acid, pH 6.0, 95°C, 15 min), and nonspecific stain-

ing was blocked by incubation in blocking solution (3% normal donkey serum [NDS] vol/vol

in 0.1% Triton X-100 in 1X PBS) for 30 min. Sections were then incubated in their respective

primary antibodies: rabbit anti-Ki67 (1:500; Thermo Scientific, Cat. #RM-9106-S), goat anti-

DCX (1:500; Santa Cruz, Cat. #SC-8066), or rabbit anti-GFP (1:3000; Invitrogen, Cat. #

A11122) in 0.1% Tween-20 in 1XPBS overnight. The following day, sections were rinsed and

incubated in biotinylated-donkey anti-rabbit IgG (1:200; Jackson ImmunoResearch, Cat. #711-

065-162) or donkey anti-goat IgG antibody (1:200; Jackson ImmunoResearch, Cat. #705-065-

003) in 1.5% NDS in 1XPBS for 1 hr. After rinses and 30 min incubation in 0.3% hydrogen per-

oxide in 1XPBS, and sections were incubated in avidin-biotin complex (Vector Laboratories)

for 60 min. After rinsing, staining was visualized using DAB/metal concentration (Thermo Scien-

tific, Cat. #1856090) or fluorescein-labeled tyramide signal amplication (PerkinElmer, Cat.

#SAT701). Nuclear Fast Red (Vector Laboratories, Cat. #H-3403) or DAPI (Roche Cat. # 236276)

was used as a counterstain.

Fig 1. Inducible expression of DTA in nestin-lineage stem/progenitor cells decreases the number of
Ki67+ and DCX+ cells 12 days (d) post-tamoxifen (TAM), but DCX+ cell number is normalized 30d
post-TAM. (A) Experimental design of immunohistochemical study. TAM was administered to 5–6 week-old
control or Cre+DTA+mice for 5 consecutive days, and brains were collected 12d and 30d post-TAM. (B)
Representative photomicrographs of the dentate gyrus from control and Cre+DTA+mice 12d post-TAM
stained with an antibody against Ki67. Scale bar = 200 um (B, applies to B, D). (C) Stereological
quantification of Ki67+ cell number in the DG granule cell layer (GCL) 12d (control N = 5, Cre+DTA+ N = 4)
and 30d (control N = 6, Cre+DTA+ N = 9) post-TAM. (D) Representative photomicrographs of the DG from
control and Cre+DTA+mice 12d post-TAM stained with antibody against DCX. (E) Stereological
quantification of DCX+ cells in the DG GCL 12d (control N = 4, Cre+DTA+ N = 5) and 30d (control N = 6, Cre
+DTA+ N = 7) post-TAM. (F) High magnification images of the DG from control and Cre+DTA+mice 12d
post-TAM stained with an antibody against DCX+. Scale bar = 50um. (G) Stereological quantification of
postmitotic DCX+ cells in the DG GCL 12d (control N = 4, Cre+DTA+ N = 5) and 30d (control N = 6, Cre+DTA
+ N = 7). Data are mean±SEM,.**p<0.01, *p<0.05 by unpaired, two-tailed Student’s t-test.

doi:10.1371/journal.pone.0147256.g001

Fig 2. Experimental design of behavioral study. TAM was administered to 5–6 week-old control or Cre+DTA+mice for 5 consecutive days. Behavioral
testing began 12d (Group 1) or 33d post-TAM (Group 2), and continued as indicated through day 27 (Group 1, TAM-behavioral [TAM-beh] interval less than 4
weeks) or day 52 (Group 2, TAM-beh interval more than 4 weeks) post-TAM. Both groups were examined in the open field test (OF), locomotor test (LM),
novelty induced hypophagia (NIH), light/dark test (L/D), juvenile social interaction test (JI), and tail suspension test (TST). Specifically for Groups 1 and
Groups 2, OF was performed 12d or 33d post-TAM, LM 15d or 37d post-TAM, NIH 17-19d or 39-41d post-TAM, L/D 21d or 43d post-TAM, JI 22-25d or 44-
47d post-TAM, and TST 27d or 52d post-TAM.

doi:10.1371/journal.pone.0147256.g002
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Fig 3. Cre+DTA+mice tested less than or more than 4 weeks post-TAM show similar levels of locomotion and the absence of baseline anxiety-
related behaviors. (A, B) Locomotor activity (LM) in both short (A,Group 1, control N = 8, Cre+DTA+ N = 5) and long (B,Group 2, control N = 33, Cre+DTA
+ N = 13) TAM-beh interval groups. InsetsA, B: total beam breaks over 2 hr. Main panelsA, B: beam breaks over 2 hr presented in 5 min bins. X axis * =
main effect of time. Posthoc analysis (Bonferroni) revealed all points in main panels were significantly different than the initial locomotor activity data point.
However, individual data point asterisks are omitted for clarity, as there was no main effect of genotype or interaction of time X genotype for either Group 1 or
Group 2. (C-F) Time spent in the center (C, E) and periphery (D, F) during an open field test (OF) in short (C-D,Group 1, control N = 30, Cre+DTA+ N = 9) and
long (E-F,Group 2, control N = 42, Cre+DTA+ N = 17) TAM-beh interval groups. (G-J)Number of transitions between light and dark chambers (G, I) and
latency to enter the dark chamber (H, J) in the light/dark test (L/D test) in both short (G-H,Group 1, control N = 30, Cre+DTA+ N = 9) and long (H-I,Group 2,
control N = 38, Cre+DTA+ N = 17) TAM-beh groups. Data are mean±SEM. dp<0.0001, two-way ANOVA with repeated measures and Bonferroni posthoc (A,
B). *p<0.05, unpaired two-tailed Student’s t-test (insets A, B, andC-H).

doi:10.1371/journal.pone.0147256.g003
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Fig 4. Relative to control mice, stress induced anxiety-like and depressive-like behavior are evident in
Cre+DTA+mice tested less than–but not more than– 4 weeks post-TAM. (A, B) Latency to feed in the
novelty induced hypophagia test (NIH) in control vs. Cre+DTA+mice at short (A,Group 1, control N = 31, Cre
+DTA+ N = 10) and long (B,Group 2, control N = 39, Cre+DTA+ N = 16) TAM-behavior intervals. (C, D) Total
immobility time in the tail suspension test (TST) in control vs. Cre+DTA+mice at short (C,Group 1, control
N = 27, Cre+DTA+ N = 9) and long (D,Group 2, control N = 38, Cre+DTA+ N = 15) TAM-behavior intervals.
(E, F) Interaction time during juvenile interaction training and test sessions in control vs. Cre+DTA+mice at
short (E,Group 1, control N = 30, Cre+DTA+ N = 9) and long (F,Group 2, control N = 40, Cre+DTA+ N = 17)
TAM-beh intervals. Data = mean±SEM. *p<0.05, unpaired two-tailed Student’s t-test (A-D).
bp<0.01,cp<0.005, dp<0.0001, two-way ANOVA with repeated measures and Bonferroni posthoc.

doi:10.1371/journal.pone.0147256.g004
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Stereological quantification and morphological categorization

Using an Olympus BX-51 microscope (Tokyo, Japan) and a 40X, 0.63 NA lens, cells immuno-

reactive for Ki67, DCX, and YFP cells in the subgranular zone (SGZ, Ki67+ cells), granular cell

layer (GCL, DCX+ cells), or SGZ/GCL (YFP+ cells) respectively, of one hemisphere of the hip-

pocampal DG were quantified via stereology. As previously described [36, 55–57], we quanti-

fied these relatively rare populations of cells within the dentate gyrus subgranular zone with

the formula:

Total population of cells ¼ total cells counted x 1=ssf x 1=asf x 1=hsf

where ssf is the section sampling fraction (1/9), asf is the area sampling fraction (1 for these

rare populations of cells), hsf is the height sampling fraction (1 given the minimal effect edge

artifacts have in counting soma<10um with ssf 1/9), and where we only counted one hemi-

sphere. Thus the resulting formula was:

Total population of cells in one hemisphere ¼ total cells counted x 1=ð1=9Þ x 1=1 x 1=1

Data presented here are from total counts, which was calculated:

Total population of cells ¼ ðTotal population of cells in one hemisphereÞ x 2

For morphological characterization, post-mitotic DCX+ cells were determined by presence

of an apical process directed towards and extending into the molecular layer [58, 59], while

subtypes of YFP+ cells (Type-1, progenitors/immature neurons, mature neurons, S1 Fig) were

classified based on previously-reported morphological characteristics [45, 60, 61].

Behavioral tests

The battery of test was performed from the least to the most stressful, as previously described

[62]. As shown in Fig 2, two groups of Cre+DTA+ and control mice were given TAM and

tested on a battery of behaviors to assess exploration and general locomotion (open field [OF],

locomotor [LM]), baseline and stress-induced anxiety like behaviors (OF, novelty induced

hypophagia [NIH], light/dark [L/D]), social memory (juvenile interaction [JI]), and depressive

like behavior (tail suspension test [TST]). Based on the neurogenesis data (Fig 1, S1 Fig),

Group 1 and Group 2 began behavioral testing 12d or 33d post-TAM, respectively, in order to

target times when neurogenesis in Cre+DTA+ mice was low (Group 1, 12d post-TAM or a

short TAM-behavior interval) or had recovered and was similar to control mice (Group 2, 30d

post-TAM, or a long TAM-behavior interval). Behavioral testing occurred during the light

cycle by experimenter blind to treatment group. All mice in each group went through the same

behavior tests. However, when data points had to be removed (due to unanticipated, occasional

issues with behavioral testing equipment, individual mouse behavior, human error, or identifi-

cation of outlier status by statistical analysis), subject number for that behavioral test was

decreased accordingly. A brief description of each test used follows:

Open Field. OF probes exploratory behavior in a novel unfamiliar open space. During

testing, mice tend to adhere to the periphery (thigmotaxis) as a consequence of an underlying

propensity to avoid the potentially dangerous open center area [63, 64]. For the OF test, a

mouse was placed under dim light in an open field made from a white Plexiglas chamber

(44×44×30.5 cm) that was illuminated by fluorescent lights above the field’s bare floor (730 lux

at cage floor). Using Ethovision software (Noldus Information Technology), the following

movements were reported from the photocell sensor system surrounding the OF during the 5

min test: time spent in the center (14x14 cm) of the open field, latency to enter the center,
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frequency to enter the center, and time spent in the peripheral zone (5 cm around arena

perimeter).

Locomotion. LM was assessed after mice were individually placed in a mouse cage with

fresh bedding, and cage was placed between photocells under red light. A computer-controlled

photobeam activity system (San Diego Instruments) recorded total movement of mice in the

XY plane, with photocell beam breaks recorded with 5 min bins for 2 hr.

Novelty Induced Hypophagia. The NIH test is an ethologically-relevant paradigm for

assessing the influence that a novel environment has on a previously-learned motivational

experience, such as consumption of highly palatable food [65]. This test has excellent pharma-

cologic and ethological validation [30, 66], does not involve overnight food restriction, and

minimizes food neophobia via the repeated exposure to the highly palatable food in a familiar

cage. A component of the NIH test particularly useful for the present study is the stressful com-

ponent of individual placement of the mouse in a familiar setting (home cage) for “training”

trials and in novel, unfamiliar setting with distinct textural cues (e.g. fresh cage, corncob bed-

ding instead of woodchip bedding) for “testing” trials. This allows comparison of latency to

consume the highly palatable food in a familiar vs. an unfamiliar and potentially anxiety-pro-

voking cage. Here the NIH was performed as described previously [65]. To reduce food neo-

phobia, highly palatable food (graham cracker crumbs, Honey Maid, Nabisco, East Hanover,

NJ) was placed in a petri dish in the home cage 24 hr prior to the 3 consecutive days for a total

of 10 trials (9 training trials, 1 testing trial). Days 1 and 2 were strictly training days, with 3

training trials on Day 1 (trials 1.1, 1.2, 1.3) and 3 training trials on Day 2 (trials 2.1, 2.2, 2.3).

Day 3 consisted of 4 trials (trials 3.1, 3.2, 3.3, 3.4) with trial 3.3 being the “test” in the unfamiliar

cage, and trials 3.1, 3.2, and 3.4 being performed in the familiar, home cage. Each day, mice

were placed into behavioral procedure room, their cage food was removed, and then mice were

weighed 1 hr prior to the session. For each training trial, a dish containing 10 g of graham

cracker crumbs was placed in the corner of the home cage. Then, individually, the mice were

placed back into the home cage and latency to commence consumption of the palatable snack

was recorded (up to a maximum of 10 min) by an observer blind to treatment group. For the

test trial (session 3.3), testing was performed in the novel, unfamiliar cage. Latency to consume

food was measured in each of the 10 trials (9 in the home cage, 1 in the unfamiliar cage) over

the three days NIH.

Light/Dark. The L/D is interpreted as a “naturalistic” conflict test between spontaneous

behaviors to explore novel environments and an aversion to bright light, and can be a useful

adjunct measure of anxiety-like behavior [67, 68]. The L/D test assays anxiety-related behaviors

during a 10 min session in a two chambered light/dark exploration model. The apparatus con-

sisted of a polypropylene cage (44x21x21cm) unequally divided (⅔ and⅓) into two chambers

by a wall with a small vestibule. The large chamber was open, transparent, and brightly-illumi-

nated by two 20W fluorescent lights (1388 lux at cage floor), while the small chamber was

closed, painted black, and dark. Initially, the mouse was placed in the brightly-lit side, and the

transitions of the mouse between the two chambers was automatically detected by four photo-

cells located in the vestibule. The latency to enter the dark side was measured, as was the num-

ber of transitions between the light and dark sides. Many control mice (N = 2 12d post-TAM,

N = 9 30d post-TAM) had a long latency to enter the dark chamber, leading to a bimodal distri-

bution of the data and potential consideration of these mice as outliers. In contrast, DTA mice

were far less likely to have a long latency to enter the dark chamber (N = 2 12d post-TAM,

N = 0 30d post-TAM), and thus DTA data notably lacked this bimodal distribution (scatter-

plots not shown). However, both control and DTA mice had similar distribution in other L/D

measures (number of transitions) and measures in other behavioral tests, and the results for

L/D was the same whether these outliers were kept in or omitted for L/D analysis. Therefore,
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the L/D data reported here are from all mice, regardless of bimodal distribution for the latency

to enter the dark chamber.

Juvenile Social Interaction. Social memory can be tested in rodents via interaction assess-

ment, such as placing a juvenile in a cage with an adult [69]. The adult will spontaneously

investigate the younger animals and total interaction time indicates the familiarity between two

animals. JI consisted of two days of behavioral analysis with one trial on each day (Day 1 trial

was training, Day 4 trial was testing). Mice in home cage were placed in the testing room in the

dark under red light for 15 min prior to Day 1 and Day 4. The 2 min training trial on Day 1

consisted of placing an individual mouse into a clean, unfamiliar mouse cage with no bedding

along with an unfamiliar 4-week-old mouse of the same sex. Three days later, on Day 4, a 2

min testing trial was performed with the same procedure as the training trial and same juvenile

mouse [70, 71]. Time spent interacting (following, sniffing, etc.) with the juvenile during both

the training trial on Day 1 and testing trial on Day 4 were measured by an observer blind to

treatment.

Tail Suspension Test. The TST measures the stress response or “behavioral despair”, and

it a common behavioral task relevant to depression as it has good pharmacologic validity [72–

74]. The TST allows assessment of behavioral despair in mice exposed to an inescapable situa-

tion that manifests as immobility after a period of struggling. The test used an automated TST

device (Med Associates) where a mouse was suspended by the tail using tape (Scotch Super

Strength mailing tape Cat. #341, 3M Corp, St. Paul, MN) to an aluminum bar connected to a

strain gauge. The strain gauge detected movements of the mouse and transmitted them to a

central unit. The total duration of immobility was automatically calculated as the time the

force of the mouse’s movements was below a pre-set threshold criterion (i.e. immobile and not

struggling) during the 6 min TST test. The device’s force transducer used pre-set thresholds to

determine time spent immobile (behavioral withdrawal) and time spent struggling (escape-ori-

ented behavior) with the following settings: time constant = 0.25, gain = 4, threshold 1 = 3, and

resolution = 200 msec. Whenever the mouse’s movements were lower than our threshold 1

(<3) for 200 msec, then the duration of the immobility accumulated. The duration of immobil-

ity were detected and calculated by the computer [72]. The data from mice that exhibited

excessive climbing behavior during the test were omitted from the short TAM-behavior inter-

val group (3 control) and long TAM-behavior interval group (4 control, 2 Cre+DTA+).

Statistical Analyses

Statistical analyses were performed using Prism (GraphPad vs. 6.0) or SPSS software (V19).

Analyses on data with two groups (total Ki67+, DCX+, and YFP+ total cell number, and OF,

LM total beam breaks, TST, L/D) were performed using an unpaired two-tailed Student’s t-

test. Analyses on data with more than two variables (YFP+ cell phenotype between genotypes,

novelty induced hypophagia trials each day between genotypes) were performed with two-way

ANOVA with Bonferroni posthoc test for multiple comparisons. Analyses on data with more

than two variables that required repeated measures (locomotor test in 5 min bins between

genotypes, JI trials) were performed with two-way ANOVA with repeated measures (time or

trial, respectively), with Bonferroni posthoc test for multiple comparisons. Statistical signifi-

cance was defined as p<0.05, and threshold significance value is presented (e.g. p<0.05,

p>0.05, p<0.0001, etc.). Outliers on specific tests (e.g. TST) were determined via mouse obser-

vation (climbing) or SPSS, and these values were removed and the N for the group was adjusted

to reflect this. However, if analysis revealed a bimodal distribution (e.g. L/D), outliers were not

omitted, and instead the bimodality is noted in the appropriate section.
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Results

Nestin-CreERT2/DTA transgenic mice have a transient reduction in DCX
+ neuroblasts/immature neurons and YFP+ cells, but a long-lasting
reduction in Ki67+ progenitors

To inducibly ablate nestin-lineage stem/progenitor cells in the adult mouse, Cre+DTA+ and

control mice were given TAM (Fig 1A). As previously described with this nestin-CreERT2

driver [45], TAM administration induces CreERT2 translocation into the nucleus of nestin-

expressing cells. By combining with the DTA mouse, this allows expression of DTA in nestin-

expressing neural stem/progenitor cells (NSCs) [44]. Quantification of progenitors (Ki67

+ cells, Fig 1B and 1C) and neuroblasts/immature neurons (DCX+ cells, Fig 1D and 1E) was

performed 12d and 30d post-TAM in Cre+DTA+ and control mice. Cre+DTA+ mice had 53%

fewer total Ki67+ SGZ cells than control mice 12d post-TAM (p<0.01, Fig 1C), and 25% fewer

Ki67+ SGZ cells 30d post-TAM (p<0.05, Fig 1C). Cre+DTA+ mice also had 18% fewer DCX+

GCL cells compared to control mice 12d post-TAM (p<0.05, Fig 1E). However, Cre+DTA+

and control mice had similar number of DCX+ GCL cells 30d post-TAM (p>0.05, Fig 1E).

This transient decrease in total DCX+ cells was also apparent when just postmitotic DCX+

cells were quantified (Fig 1F and 1G; [58, 59]), as Cre+DTA+ mice had 28% fewer postmitotic

DCX+ cells than control mice 12d post-TAM (p<0.05), but similar number of postmitotic

DCX+ cells as control mice 30d post-TAM (p>0.05, Fig 1G). These significant decreases in

proliferation (Ki67+ cells) and neurogenesis (DCX+ postmitotic cells) 12d post-TAM were fur-

ther supported by a decrease in total YFP+ cells (55%), YFP+ Type-1 cells (54%), and YFP

+ progenitors/immature neurons (55%) 12d post-TAM (S1A–S1E Fig), but no change in total

YFP+ cells or any YFP+ cell phenotypes 30d post-TAM (S1F Fig). These data show inducible

expression of the DTA transgene in nestin-lineage cells results in reduction in progenitors and

neuroblasts/immature neurons 12d post-TAM, but that the reduction in neuroblasts/immature

neurons is transient since it is normalized by 30d post-TAM.

Transient TAM-induced reduction in DCX+ and cell number does not
change total locomotion activity and does not result in baseline anxiety-
like behavior

Having established that Cre+DTA+ mice have a transient reduction in neuroblasts/immature

neurons relative to control mice, we examined new cohorts of mice to examine whether tran-

siently-reduced neurogenesis led to changes in general behavior (locomotion, baseline anxiety-

like behavior, Fig 2) or behavior relevant to stress-induced anxiety, depression, or social

memory.

Cre+DTA+ and control Group 1 mice (examined at a short TAM-behavior interval) had no

difference in locomotor activity when examined as total beam breaks during the 2 hr test

(p>0.05 Fig 3A inset). Analysis of locomotor activity as 5 min bins (Fig 3A main panel)

revealed significant effects of time (two-way ANOVA, F23,253 = 36.57, p<0.0001) and subject

(matching; F11,253 = 16.84, p<0.0001) but no main effect of genotype (F1,11 = 2.266, p>0.05) or

time X genotype interaction (F23,253 = 1.344, p>0.05). Posthoc analyses revealed the expected

significant decrease in activity over time, with all activity significantly lower than the initial

locomotor activity (p’s<0.05). Similar effects were seen in Cre+DTA+ and control Group 2

mice (examined at a longer TAM-behavior interval): no difference in locomotor activity when

examined as total beam breaks over 2 hr test (p>0.05, Fig 3B inset), but data plotted over time

(Fig 3B main panel) revealing main effects of time (F23,1012 = 92.40, p<0.0001) and subject

(matching; F44,1012 = 22.51, p<0.0001), but no main effect of genotype (F1,44 = 1.387, p>0.05)
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or time X genotype interaction (F23,1012 = 0.5397, p>0.05). Again posthoc analyses revealed the

expected significant decrease in activity over time, with all activity significantly lower than the

initial locomotor activity (p’s<0.05). These locomotor data from Group 1 and Group 2 support

that subsequent behavior results would not be grossly compromised by different locomotor

activity or habituation between Cre+DTA+ and control mice, even when examined at the rela-

tively short time period post-TAM when progenitors and neuroblasts/immature neurons were

reduced in Cre+DTA+ mice (Fig 1).

We next examined the performance of Cre+DTA+ and control mice in Group 1 and Group

2 on OF (Fig 3C–3F) and L/D (Fig 3G–3J) to assess anxiety-like behaviors. Irrespective of

whether mice were examined at a short TAM-behavior interval (Group 1) or a long TAM-

behavior interval (Group 2), there was no difference between Cre+DTA+ and control mice in

time spent in the center (Group 1 p>0.05, Fig 3C; Group 2 p>0.05, Fig 3E) or periphery

(Group 1 p>0.05, Fig 3D; Group 2 p>0.05, Fig 3F). There was a similar lack of effect in L/D

(Fig 3G–3J). Irrespective of whether mice were examined at a short TAM-behavior interval

(Group 1) or a long TAM-behavior interval (Group 2), there was no significant difference

between Cre+DTA+ and control mice in number of transitions between chambers (Group 1

p>0.05, Fig 3G; Group 2 p>0.05, Fig 3I) or latency to enter the dark chamber (Group 1

p>0.05, Fig 3H; Group 2 p>0.05, Fig 3J). These data suggest DTA-dependent transient reduc-

tion in neurogenesis does not alter exploratory or baseline anxiety-like behavior. This agrees

with prior work showing no correlation between genetically-ablated adult neurogenesis and

anxiety behavior when examined at baseline [31, 32, 34].

Transient TAM-induced reduction in DCX+ cell number results in stress-
induced anxiety and depressive-like behavior, but no change in a test of
social memory

Having established that DTA-dependent transient reduction in neurogenesis does not alter

general exploratory or baseline anxiety-like behavior, we considered the performance of Group

1 and Group 2 Cre+DTA+ and control mice on behavioral tests that offer insight into stress-

induced anxiety, depression-like behaviors, and social memory: the NIH, TST, and JI tasks,

respectively. In the NIH test, Group 1 Cre+DTA+ mice (examined at a short TAM-behavior

interval) took 42% longer to consume highly palatable food in the unfamiliar cage, but not in

the familiar cage as compared to control mice (Fig 4A, Group 1 p<0.05; S2 Fig, Group 1 main

effects of trial [F3,156 = 10.14, p<0.0001] and genotype [F1,156 = 4.752, p<0.05], but no trial X

genotype interaction [F3,156 = 0.9536, p>0.05]). However, at a longer TAM-behavior interval,

Group 2 Cre+DTA+ and control mice showed similar latency to consume the highly palatable

food (Fig 4B, Group 2 p>0.05; S2 Fig, main effect of trial [F3, 208 = 8.058, p<0.0001] but no

main effect of genotype [F1, 208 = 0.1038, p>0.05], and no trial X genotype interaction [F3, 208 =

0.1495, p>0.05]). Thus, transient TAM-induced reduction in DCX+ cell number results in

increased latency to consume the highly palatable food in an unfamiliar cage but not in a famil-

iar cage, suggesting the deficit is seen under stressful or anxiety-provoking conditions.

To complement the testing of stress-induced anxiety, mice were also examined in the TST

In the TST, Cre+DTA+ mice examined at a short TAM-behavior interval showed significantly

more total immobile time compared to control mice (Group 1 p<0.05, Fig 4C). However, as

with the NIH test, this effect was transient, as at a longer TAM-behavior interval Cre+DTA

+ mice and control mice showed similar immobile time (Group 2 p>0.05, Fig 4D). Thus, cou-

pled with the lack of DTA-dependent difference in other anxiety tests (Fig 3C–3J), these NIH

and TST data suggest transient reduction in progenitors and neuroblasts/immature neurons is

associated with stress-induced anxiety and depressive-like behavior.
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A variety of neuropsychiatric disorders including depression are characterized by disrup-

tions in social behavior and social recognition [75]. Since Cre+DTA+ mice examined at a short

TAM-behavior interval showed depressive-like behavior, we also examined whether these mice

were different from controls in social interaction or social memory. Analysis of juvenile inter-

action in Group 1 mice (short TAM-behavior interval; Fig 4E) revealed main effects of trial

(two-way ANOVA, F1,37 = 8.345, p<0.01) and subject (matching; F37,37 = 1.747, p<0.05) but

no main effect of genotype (F1,37 = 0.6022, p>0.05) or trial X genotype interaction (F1.37 =

1.403, p>0.05). Posthoc analyses of trial via Bonferroni revealed a significant lower interaction

time in test trial vs. train trial in control mice (p<0.001) not in Cre+DTA+ mice. Analysis of

juvenile interaction in Group 2 mice (long TAM-behavior interval; Fig 4F) revealed main

effects of trial (two-way ANOVA, F1,55 = 43.66, p<0.0001) and subject (matching; F55,55 =

3.493, p<0.0001) but no main effect of genotype (F1,55 = 0.0245, p>0.05) or trial X genotype

interaction (F1,55 = 2.516, p>0.05). Posthoc analyses of trial via Bonferroni revealed a lower

interaction time in test trial vs. train trial in both control mice and Cre+DTA+ mice

(p’s<0.0005). Taken together, these NIH, TST, and JI data suggest transient reduction in pro-

genitors and neuroblasts/immature neurons is associated with indices of stress-induced anxiety

and depressive-like behavior but no robust change in a test of social memory.

Discussion

While much has been written about the “neurogenic hypothesis of affective and anxiety disor-

ders”, it remains unclear whether the number of new neurons in the adult DG relates to depres-

sion and anxiety, and the expression of depressive-like behaviors. For example, some studies

find that inducible reduction of DG neurogenesis results in baseline anxiety and depressive-

like behaviors, but many do not [21]. The reasons for these conflicting data have been discussed

extensively elsewhere [28, 29, 76, 77], and include the stress state of the animal, the mode and

efficiency of ablation, the interval between ablation and behavioral testing, and the behavioral

tests employed [21]. Here we show that induced, transgenic-mediated, transient reduction in

DCX+ neuroblasts/immature neurons resulted in stress-induced anxiety and depressive-like

behavior. While Ki67+, postmitotic DCX+, and YFP+ progenitors and immature neurons were

reduced by ~50%, 30%, and 60%, respectively, at the early time point post-TAM when the mice

demonstrated stress induced anxiety and depressive-like behavior, DCX+ and YFP+ cell num-

bers were normalized at the later time points post-TAM when the stress-induced anxiety and

depressive-like behavior was not detectable. These results show that induced, transient reduc-

tion of DCX+ cell number is linked to a component of affective disorders. Below we discuss

these results in relationship to the dynamics of neurogenesis and the published literature on

the controversial relationship between neurogenesis and mood disorders. We also discuss

whether or not our results support a stage-specific role for adult born DG neurons in depres-

sive- and anxiety-like behavior.

Transient reduction in neuroblasts/immature neurons after ablation:
relationship to depressive-like behavior?

Many studies show that viral mediated- or transgenic-induced decreases in neurogenesis

recover over time [37, 39, 78, 79]. In contrast, irradiation-induced decreases in neurogenesis do

not recover, presumably due to the more severe disruption of the components of the neuro-

genic niche, destroying both “seed and soil” [24, 40, 80]. This variability in neurogenesis regen-

eration can be exploited to investigate the differential contribution of neurogenesis to behavior

and physiology. Recently an inducible transgenic mouse with transient reduction in surviving

adult-generated neurons showed no depression-related behaviors [30]. However, the surviving

Anxiety- and Depressive-Like Behavior and Neurogenesis in DTAMice

PLOS ONE | DOI:10.1371/journal.pone.0147256 January 21, 2016 14 / 25



adult-generated neurons that were the focus of that study are only one functional component

of the process of neurogenesis. Cells in “earlier” stages of neurogenesis, like progenitors and

neuroblasts/immature neurons, are known to serve both neurogenic and nonneurogenic func-

tions in the adult DG [33, 42]. Here, our inducible transgenic mouse with transient reduction

in DCX+ cells showed depression-related behaviors. Considered along with Deng et al., 2015,

our present data suggest “stage”-specific roles for adult-generated cells in depressive-like

behavior.

These studies join a host of others that suggest “stage”-specific roles for adult-generated

cells–particularly DCX+ cells–in other, non-depression related hippocampal-dependent

behaviors. For example, transient depletion of DCX+ cells (~80%) in a DCX-diphtheria toxin

receptor (DTR) knock-in mouse results in impaired learning of place avoidance shortly after

DT administration [41]. However, when DCX+ cell number recovered 1 month later, spatial

learning behavior was normalized. Notably, reduced neurogenesis and learning correlated with

reduced number of DCX+Arc+ (activity-regulated cytoskeleton-associated protein) cells as

well with reduced total Arc+ DG cells during learning. This suggests that a reduction in DCX

+ cell number contributes to decreased DG activity during learning. Interestingly, stress and

antidepressants have the opposite effect on the DG activity. For example, chronic mild stress

(CMS) leads to decreased ventral DG activity, while chronic antidepressant treatment leads to

increased ventral DG activity [35]. Adult hippocampal neurogenesis appears to play a role in

both the antidepressant efficacy and the subsequent antidepressant-induced enhancement in

DG activity [16, 35, 81]. As a whole, these studies support the hypothesis that transient reduc-

tion of immature neurons–particularly by physiological stimuli like stress [24, 32, 82, 83]–leads

to decreased DG activity and depressive-like behavior, and cellular recovery is associated with

normalized DG activity and behavior [25, 35, 41, 81].

Notably, there are other inducible, transient tools that could be employed for future testing

of this hypothesis [30, 37, 84, 85]. For example, transgenic-induced reduction in neurogenesis

in the nestin-inducible Bax bigenic mouse that overexpressing Bax recovers 4 weeks later, and

this recovery is accompanied by normalization of key electrophysiological characteristics of the

hippocampus [84]. This nestin-inducible Bax mouse has also been tested for mood-related

behaviors, but only when neurogenesis was reduced. Interestingly, ablation of neurogenesis led

to baseline anxiety-like, but not depressive-like, behaviors. As our data here suggest that the

behavioral profile of mice changes along with recovery of neurogenesis, it would be very inter-

esting to test how the behavioral profile of this nestin-inducible Bax mouse—and other models

of transient reductions in neurogenesis—changes over time, as such data will significantly

advance efforts to dissect a potential temporal relationship between neurogenesis and affective

behaviors.

Neurogenesis and anxiety-like behavior

Anxiety and major depressive disorders are often comorbid in humans. However, as with

depression and neurogenesis, the relationship with anxiety and neurogenesis is unclear. For

example, in rodent studies running on an exercise wheel is anxiogenic [86] and also increases

neurogenesis [51]. Moreover, neurogenesis ablation model using nestin-inducible TK trans-

genic mouse fails to show baseline anxiety-like behaviors [30]. Paradoxically, neurogenesis

ablation in the nestin-inducible Bax transgenic mouse increases baseline anxiety-related behav-

iors [17]. However, there is not a straightforward relationship between new neuron number

and anxiety, since both running-induced enhancement in adult neurogenesis and ablation of

the running-induced enhancement are anxiogenic [86, 87]. Also, many neurogenesis ablation

models fail to show baseline anxiety-like behaviors in EPM, OF, L/D or other tests [30, 31, 34,
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87, 88]. Taken together, this mixed literature emphasizes the importance of looking over time

and assessing both baseline and stress induced anxiety- and depression-like behaviors.

Here we assessed both baseline and stress induced anxiety-like behaviors and depressive-

like behavior in our mouse model of transiently-disrupted neurogenesis. While our Cre+DTA

+ mice have transiently fewer DCX+ cell number and display depressive-like behaviors, they

do not display baseline anxiety-like behavior in the L/D, OF, or EPM tests (data not shown) at

any time point examined. Our results are consistent with results from other neurogenesis abla-

tion models, such as the GFAP-TK mouse line [34], and also with a key message that emerged

from a meta-analysis of the field [89]: ablated neurogenesis leads to depressive-, but not base-

line anxiety-like, behaviors.

What might explain the diverse findings in the literature between depression-like and anxi-

ety-like behaviors and neurogenesis? One concept, formally advanced by Snyder et al., in 2011,

is that new neurons buffer the stress response [34], and therefore loss of new neurons would be

functional or evident primarily in times of stress. In our transient TAM-induced reduction in

DCX+ cell number results in only stress-induced anxiety in the NIH not baseline anxiety tests.

Recently, this concept was tested under gain-of-neurogenesis conditions [38]. Induced-deletion

of Bax in nestin-expressing cells increased hippocampal neurogenesis and had no influence on

baseline anxiety and depressive-like behaviors. In contrast, inducible increased hippocampal

neurogenesis blunted anxiety- and depressive-like behaviors produced in a mouse model of

stress [20, 38, 90, 91]. Clearly, additional studies are warranted to further test the hypothesis

that neurogenesis differentially affects mood-related behavior under baseline conditions and

after stress. Based on our data presented here, we propose such future studies utilize transient

reductions in neurogenesis if possible, and also consider the role for DCX+ cell number as well

as more mature cells in the resulting behavioral performance.

Future directions

Given the specificity of the genetic components of the bigenic mouse model used here (e.g.

Cre-induced recombination is only evident in nestin-lineage cells [45, 92]), our results suggest

that the transient display of stress-induced anxiety and depression-like behavior is due to tran-

sient decrease in neuroblasts and immature neurons. However, future work is needed to make

a firm conclusion, and to test the associated hypothesis that immature neurons are functionally

important in mood-related behaviors.

For example, the field continues to be limited by a lack of consistent definition of what con-

stitutes depressed or anxious behavior in animal models, and specifically what defines “stress-

induced behavior” [93]. Certainly, experimentally-induced “despair” or “anxiety” are com-

monly measured using a battery of tests, as is performed in the present work. However, these

phenotypes are induced in a variety of ways, from acute stress to repeated injection of a stress

hormone, such as corticosterone, and the resulting phenotype does not always respond to anti-

depressant or antianxiolytic interventions [28, 76]. In addition, given that animal models typi-

cally show a heterogeneous response in a battery of tests—as in the present work, where there

is no obvious anxiety phenotype but significant effects in the novelty induced hypophagia and

tail suspension test—the declaration of a resulting phenotype as “depressive-like” is subjective

rather than objective. One way to address this challenge is to utilize more standardized

approaches to inducing depression, such as repeated application of uncontrollable or unpre-

dictable stress, and importantly to couple this induction with quantifiable measures of stress

hormones (e.g. corticosterone), stress and stress hormone-sensitive measures (e.g. weight

change, adrenal hypertrophy), and behavior (e.g. grooming, eating, or social interaction) [28,

93, 94]. While we believe it is reasonable to interpret our data as suggesting a functional
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association between adult neurogenesis and stress induced anxiety- and depressive-like behav-

iors, future studies are warranted to test this association under conditions that clearly and

physiologically mimic stress. We would predict that depression-like behavior in our mouse line

would be amplified when tested in the context of, for example, social defeat stress [36, 95].

Also, use of alternative approaches to transiently reduce new neurons will allow mechanistic

dissection of our conclusion. For example, is depressive-like behavior driven by loss of a neuro-

genic, non-neurogenic function, or both functions of immature neurons? Such questions could

be addressed via chemogenetic-induced silencing of cells over a period of time. Another set of

future studies are prompted by the design of our experiment, in that our conclusion relies on

static measurement of neurogenesis indices at two time points post-TAM as well as dynamic,

ongoing measurements of behavior starting at short or longer time points post-TAM. While

we specifically did not examine neurogenesis in mice that went through behavioral testing (as

behavior testing is well-documented to itself change neurogenesis), future studies monitoring

neurogenesis and DG functionality in awake and behaving animals are warranted [96].

Another important consideration is whether the relatively small decrease in DCX+ cells

reported here can actually be responsible for a behavioral change. In this regard, it is useful to

note that we find postmitotic DCX+ cells and YFP+ (e.g. nestin-lineage cells) progenitors/imma-

ture neurons decreased to a larger extent (30% and 60%, respectively) than total DCX+ cells

(20%). Decreased neurogenesis in this range of magnitude certainly has been shown to result in

behavioral change [30, 31, 34, 37, 97, 98]. This underscores both the integration of postmitotic

cells into DG-CA3 circuitry [13, 99–102], and that loss of these cells may indeed influence behav-

ior. Certainly, the nature of DG-CA3 synapse supports a non-linear relationship between cell

number and behavior, as one DGGCL neuron can have significant impact on downstream struc-

tures despite representing a small fraction of the DGGCL neuron population [103, 104]. How-

ever, as we did not rescue neurogenesis in our model, but rather let it recover over time, it is not

yet possible to attribute the behavioral change we report specifically to a loss of neurogenesis. In

fact, it is also useful to note that inducible gene deletion in a specific lineage of cells can result in a

compensatory response outside that lineage. We have recently referred to this as a “community

level” response, where inducible loss of new neurons in one lineage has a secondary or cell non-

autonomous effect on cells outside of that lineage [58]. As it is currently unclear whether the

change in behavior reported here is due to the transient loss of neurogenesis, to some secondary

effect, or both, here we opted to report several measures of decreased neurogenesis, including the

decrease in lineage-specific cell number (YFP+ cells) as well as total and postmitotic DCX+ cell

number. We hope providing these additional measures will help advance our understanding of

whether the magnitude of decrease or the lineage of cells directly affected relate to the behavioral

outcome. The relationship among the magnitude of cell loss, the lineage influenced, the commu-

nity level response, and resulting behavioral effects (or lack thereof) is proving to be complex,

and thus warrants additional studies. In this regard, well-designed studies that have negative

results are also of great interest to the field [105–109], and it is hoped that researchers will recog-

nize the importance of having negative data in general published.

Finally, and on a related note, it may be that there is not a direct relationship between reduc-

tion in neuroblast cells and the behaviors reported here, and that other intermediates are ulti-

mately producing our behavioral changes. For example, changes in glia, inflammatory signals,

or vasculature can augment the depressive-like phenotype [18, 33, 110, 111]. While other abla-

tion methods have side effects (i.e. nestin-TK or irradiation leading to vascular changes or

impaired cellular function of other brain regions) [30, 40, 80], the DTA line that we used here

has not had any obvious side effects reported [44]. Therefore it will be important to carefully

assess whether indices of glia, inflammatory signals, or vasculature markers are evident after

TAM in this Nestin-CreERT2/DTA line.

Anxiety- and Depressive-Like Behavior and Neurogenesis in DTAMice

PLOS ONE | DOI:10.1371/journal.pone.0147256 January 21, 2016 17 / 25



Conclusions

The neurogenesis hypothesis of depression and anxiety is supported by many correlative find-

ings (e.g. postmortem analysis of brains from humans diagnosed with MDD, or animals given

chronic antidepressants) and an increasing number of causative studies (e.g. irradiation, anti-

mitotic agents) [21]. More recently, studies using transgenic-mediated ablation of neurogenesis

have provided more insight into whether and how new neurons relate to the development and

treatment of affective and anxiety disorders [34, 38], and these add to the growing complexity

and intrigue of the research findings, such as the apparent importance of new neurons particu-

larly during times of stress. This complexity is likely a main reason that a clear relationship

among neurogenesis, stress, and affective disorders has yet to emerge, even after the publication

of many studies. However, this complexity is also precisely the reason to call for more, not fewer,

well designed and controlled studies to probe and understand the complete cascade of steps and

mechanisms underlying the potential association between neurogenesis ablation and an anxiety-

and depressive-like phenotype, and to test the hypothesis—not to prove the theory—that ablated

neurogenesis leads to or exacerbates mood disorders.

Our findings highlight that early neurogenic cells are functionally associated with stress-

induced anxiety and depressive-like behavior in adult mice. The concept that young adult-gen-

erated cells contribute to behaviors relevant to mood regulation is novel, and these findings

therefore offer a unique perspective on etiology of anxiety and depression. Also, our data

underscore that the timing of the behavioral testing relative to ablation is crucial. While this is

not surprising since adult neurogenesis is a dynamic process, it is rare that the issue of timing is

as obvious as presented here. Taken together, our work highlights the importance of additional

study with other transient neurogenesis ablation approaches followed by the examination of

anxiety- and depressive-like behaviors.

Supporting Information

S1 Fig. Inducible expression of DTA in nestin-lineage stem/progenitor YFP+ cells decreases

the number of total YFP+ cells 12d, but not 30d, post-TAM, as well as decreases specific phe-

notypes of YFP+ cells, including Type-1 cells, progenitors, and immature neurons. (A) Repre-

sentative photomicrograph of DG from a control mouse 30d post-TAM stained with an antibody

against YFP (pink; blue, DAPI counterstain). (B-D) Representative photomicrographs of nestin-

lineage YFP+ cells, including Type-1 radial glial-like neural stem cell (B), progenitors/immature

neurons (C), and mature neurons (D). (E,F) Stereological quantification of YFP+ cells in the DG

GCL 12d (E, control N = 3, Cre+DTA+ N = 2) and 30d (F, control N = 3, Cre+DTA+ N = 3)

post-TAM. Total YFP+ cell number was significantly decreased in Cre+DTA+mice 12d post-

TAM (E, p<0.05), but total YFP+ cell number was similar between control and Cre+DTA+mice

in 30d post-TAM group (F). Phenotypic analysis of YFP+ cell types via two-way ANOVA (vari-

ables genotype and phenotype) revealed at 12d post-TAM that there were main effects of genotype

(F1,9 = 29.59, p<0.005) and phenotype (F2,9 = 62.54, p<0.0001), and a genotype X phenotype

interaction (F2,9 = 9.632, p<0.01), and 30d post-TAM nomain effects or interactions (p’s>0.05).

Posthoc analysis on 12d post-TAM data revealed significantly fewer Type-1 cells and progenitors/

immature neurons in Cre+DTA+mice relative to control mice. Phenotypes posthoc not shown.
�p<0.05, unpaired Student’s t-test; ap<0.05, bp<0.01, cp<0.005, dp<0.0001, two-way ANOVA

with Bonferroni posthoc. Data represent mean±SEM. Scale bar = 200 um (A), 20 um (B).

(EPS)

S2 Fig. NIH testing (Day 3) reveals significant main effects of trial and genotype in the 12d,

but not 30d, post-TAM group.Mice underwent 2 training days with 3 trials per day (1.1, 1.2,
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1.3, 2.1, 2.2, 2.3) at a short TAM-behavior interval (Group 1) or long TAM-behavior interval

(Group 2). While not shown, two-way ANOVA of Day 1 and Day 2 Group 1 and Group 2 data

revealed: Group 1, Day 1 main effect of trial (F2,117 = 27.51, p<0.0001), but no main effect of

genotype (F1,117 = 3.320, p = 0.07) or trial X genotype interaction (F2,117 = 1.630, p>0.05); Group

1, Day 2 no main effect of trial (F2,117 = 1.862, p>0.05) or genotype (F1,117 = 0.5077, p>0.05),

and no trial X genotype interaction (F2,117 = 0.2022, p>0.05); Group 2, Day 1 main effect of trial

(F2,156 = 30.19, p<0.0001), but no main effect of genotype (F1,156 = 0.03665, p>0.05) or trial X

genotype interaction (F2,156 = 0.2096, p>0.05); and Group 2, Day 2 no main effect of trial (F2,156
= 2.597, p = 0.077) or genotype (F1,156 = 0.2245, p>0.05), and no trial X genotype interaction

(F2,156 = 0.07013, p>0.05). On Day 3, NIHmice were trained in the familiar home cage for three

trials (3.1, 3.2, 3.4) and tested in an unfamiliar cage for one trial (3.3). (A)When Group 1 Day 3

trials were examined (short TAM-behavior interval) via two-way ANOVA (trial x genotype),

there were main effects of trial (F3.156 = 10.14, p<0.0001) and genotype (F1,156 = 4.752, p<0.05),

but no trial x genotype interaction (F3,156 = 0.9536, p>0.05). (B)When Group 2 Day 3 trials

were examined (long TAM-behavior interval) via two-way ANOVA (trial x genotype), there was

a main effect of trial (F3,208 = 8.058, p<0.0001), but not of genotype (F1,208 = 0.1038, p>0.05)

and no interaction of trial x genotype (F3,208 = 0.1495, p>0.05). Trial posthoc not shown.
ap<0.05, dp<0.0001, two-way ANOVA with Bonferroni posthoc. Data represent mean±SEM.

(EPS)
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