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Abstract 

Exposure to certain acute and chronic stressors results in an immediate behavioral and 

physiological response to the situation followed by a period of days when cross-sensitization to 

further novel stressors is observed. Cross-sensitization affects to different behavioral and 

physiological systems, more particularly to the hypothalamus-pituitary-adrenal (HPA) axis. It 

appears that the nature of the initial (triggering) stressor plays a major role, HPA cross- 

sensitization being more widely observed with systemic or high-intensity emotional stressors. 

Less important appears to be the nature of the novel (challenging) stressor, although HPA cross-

sensitization is better observed with short duration (5–15 min) challenging stressors. In some 

studies with acute immune stressors, HPA sensitization appears to develop over time 

(incubation), but most results indicate a strong initial sensitization that progressively declines 

over the days. Sensitization can affect other physiological system (i.e. plasma catecholamines, 

brain monoamines), but it is not a general phenomenon. When studied concurrently, behavioral 

sensitization appears to persist longer than that of the HPA axis, a finding of interest regarding 

long-term consequences of traumatic stress. In many cases, behavioral and physiological 

consequences of prior stress can only be observed following imposition of a new stressor, 

suggesting long-term latent effects of the initial exposure. 

 

 

Short title: stress-induced sensitization 
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Introduction 

Exposure to stressors induces a broad and coordinated repertoire of behavioral and 

physiological responses to enhance probability of survival. In mammals, the two major 

physiological components of the stress response comprise the hypothalamic-pituitary-adrenal 

(HPA) axis and the sympathetic nervous system. The activation of the latter results in several 

physiological responses and the immediate release of catecholamines: noradrenaline 

(norepinephrine) from sympathetic nerve terminals (and to a lower extent, the adrenal medulla) 

and adrenaline (epinephrine) from the adrenal medulla. The stress-induced peak of plasma 

catecholamine concentration is achieved within 1–5 min. Among other effects, sympathetic 

activation and catecholamines promote hepatic glycogenolysis and increase heart rate and blood 

pressure. 

 

The initial step in the activation of the HPA axis is activation of parvocellular neurons in the 

paraventricular nucleus of the hypothalamus (PVN) and the release of corticotropin-releasing 

hormone (CRH), arginine vasopressin (AVP) and other secretagogues into the portal circulation 

in the median eminence. These releasing hormones act on the corticotrope cells of the anterior 

pituitary to stimulate the synthesis and secretion of ACTH, which in turn acts on the zona 

fasciculata of the adrenal cortex to promote the synthesis and release of glucocorticoids 

(corticosterone in rats and mice; predominantly cortisol in humans and other mammals). Peak 

levels of plasma glucocorticoids are achieved 15–30 min after the onset of a brief stressor or 

even later with exposure to stressor lasting for more than 30 min. A main effect of stress-

induced glucocorticoid release is to inhibit the ongoing activation of the HPA axis through 

negative feedback mechanisms that involve both mineralocorticoid and glucocorticoid receptors 

(MR and GR, respectively), acting at multiple target areas, such as the medial prefrontal cortex, 

the hippocampal formation, the PVN and the anterior pituitary (Myers et al., 2012). 
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However, stress-induced glucocorticoid release has a wide range of additional physiological 

effects aiming to control for the correct mobilization of resources, to prevent excessive response 

of the different systems initially activated by stress, and preparing the organism for further 

stress (Frank et al., 2013; Sapolsky et al., 2000). Importantly, glucocorticoids also play a major 

role in the elaboration of behavioral strategies to cope with stress, as well as the consolidation of 

memory regarding the situation (de Kloet et al., 1999). 

 

Sensitization is a simple concept that probably includes a wide range of different underlying 

processes. In its more general meaning, sensitization is a phenomenon thereby exposure to a 

particular stimulus triggers a state of hyperresponsiveness to the same or other different stimuli. 

The triggering stimulus has to be strong and harmful, and the hyper-responsive state can last 

from some minutes-hours to days (short-term and long-term sensitization, respectively). In order 

to be more precise, we will use the term sensitization when enhanced responses to the same 

(homotypic) stimulus are found, and cross-sensitization when enhanced responses to novel 

(heterotypic) stimuli are observed. Sensitization can affect a particular peripheral physiological 

system or can affect brain processing, as it is the case of behavioral sensitization. The latter is 

considered as a primitive form of non-associative learning characterized by a progressive 

increase in the response to aversive or noxious stimuli after repeated exposure (Rahn et al., 

2013). Sensitization and cross-sensitization are considered to underlie a number of 

physiological and behavioral pathologies including gastrointestinal disorders, chronic pain, 

post-traumatic stress disorder (PTSD), psychosis and addiction (Overmier et al., 2006; Rahn et 

al., 2013; Robinson & Berridge, 2008; Ursin, 2014; van Winkel et al., 2008). 

 

The term sensitization became extensively used in studies dealing with the long-term 

consequences of repeated experiences with drugs of abuse, on the basis of the observation that 

the motor response to a wide range of abused drugs progressively increased after repeated 

intermittent administration of the drugs (particularly after a period of withdrawal from the 
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drugs) (Steketee & Kalivas, 2011). This progressive sensitization process is considered by some 

authors to be in the roots of addiction (Robinson & Berridge, 2008). One of the most relevant 

topics in sensitization is the specificity of the phenomenon, i.e. whether or not sensitization is 

observed in response to the same stimulus/drug (homotypic sensitization) or between different 

stimuli/drugs. In the field of drug addiction, there is evidence for cross-sensitization between 

different drugs and also between drugs and stress (Kalivas & Stewart, 1991). Cross-sensitization 

is not surprising, given that the mechanisms involved rely on downstream processes that are 

shared by both types of stimuli (e.g. the dopaminergic system in stress-drug interaction) (Saal et 

al., 2003). 

 

In the stress and HPA axis field, sensitization has also been a relevant topic since pioneering 

work by Dallman and Jones (1973) in the early 1970s. They reported that the endogenous 

release of corticosterone induced by restraint stress did not modify the adrenocortical response 

to a subsequent mild stress of intraperitoneal injection when applied several hours later. 

However, injection of ACTH or corticosterone, which mimicked the corticosterone response to 

restraint, inhibited corticosterone response to subsequent injection stress. They concluded that 

stress appears to induce a short-term (hours) facilitation of the HPA response that overcomes 

negative glucocorticoid feedback. A prediction derived from this hypothesis is that the blockade 

of glucocorticoid release during the first stress exposure should result in an enhanced response 

to the second stress, since facilitation is not counteracted by glucocorticoids. This hypothesis 

has been demonstrated using a single prior exposure to restraint after pharmacological blockade 

of glucocorticoid synthesis and testing ACTH response to injection stress on the next day 

(Wong et al., 2000). Although facilitation has been mainly used to explain changes in the HPA 

response to novel stressors, it might also apply to homotypic stressors. Thus, four brief 

exposures to immobilization (1 min) on the same day did not alter the ACTH response to the 

stressor in intact rats, but resulted in facilitation of the ACTH response in adrenalectomized 

(ADX) rats supplemented with low corticosterone levels in water (ADX+B) (mimicking resting 
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corticosterone levels) (Andrés et al., 1999). In contrast, more prolonged exposures to 

immobilization reduced the HPA response to subsequent stressors (Martí et al., 1999). The 

balance between stress-induced facilitation and negative feedback might explain why 

controversial results have been found in intact animals using different combinations of stressors 

(Graessler et al., 1989; Le Mevel et al., 1979); particularly, when elevated levels of 

corticosterone are found just prior to the second stress (Graessler et al., 1989; Martí et al., 

1999). 

 

Whereas the term facilitation is widely used regarding the effects of prior stress on the HPA 

axis, sensitization has been more extensively used in other behavioral and physiological fields. 

Since it is difficult to know whether or not sensitization and facilitation are similar terms, the 

present review will use the terms ‘‘sensitization’’ and ‘‘cross-sensitization’’ as defined before. 

 

Chronic stress-induced sensitization 

 

In general, daily exposure to the same stressor results in a reduction of the response of certain 

endpoints (mainly plasma levels of ACTH, corticosterone and adrenaline) to an acute session of 

the homotypic stressor (Martí & Armario, 1998), a process that is usually termed habituation. In 

some cases, an enhanced corticosterone response to the homotypic stressor was found, which 

was considered to reflect sensitization (i.e. Natelson et al., 1988). However, we have repeatedly 

found that repeated exposure to a severe stressor, such as immobilization increases plasma 

corticosterone levels measured immediately after the stressor despite a marked decrease in 

plasma ACTH (i.e. Armario et al., 1988a; Márquez et al., 2004). This paradox can be easily 

explained by a chronic stress-induced increase in maximal capability of the adrenal to secrete 

corticosterone (Armario et al., 1988a; Ulrich-Lai et al., 2006) and a saturation of adrenal 

capability with intermediate levels of ACTH (Keller-Wood et al., 1983). If repeated exposure 

resulted in strong decrease of ACTH with respect to the first exposure, but levels of ACTH are 
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still capable of eliciting maximal adrenal secretion, reduction of plasma ACTH levels associated 

with higher levels of corticosterone is to be expected. Indeed, if we consider only the variable 

more proximal to the brain (ACTH), we would not be able to conclude that sensitization to the 

homotypic stressor took place.  

 

These arguments do not preclude the possibility that attenuated neuroendocrine habituation or 

even development of sensitization can occur after repeated exposure to certain stressors. Orr et 

al. (1990) observed enhanced ACTH and corticosterone responses to daily repeated tail-shocks. 

More recently, we have compared the habituation of the ACTH response to daily repeated 

immobilization with that to electric foot-shock using two different (low and high) shock 

intensities (Rabasa et al., 2011). Although immobilization appears to be a stronger stressor than 

high intensity footshocks in terms of all classical biological markers, habituation of ACTH was 

clearly found with immobilization and with the lower intensity foot-shock procedure, but not 

after daily repeated sessions of high intensity foot-shocks. We argued that high-intensity foot-

shocks might cause a strong activation of nociceptive pathways leading to development of 

sensitization that opposes the expected habituation. A recent paper using a single exposure to 

foot-shocks followed by daily repeated exposure to the context (fear conditioning) found that 

some physiological responses to the same stressor in another context were enhanced (heart rate, 

hyperthermia), whereas that of corticosterone did not (Thompson et al., 2014), illustrating again 

that sensitization not homogeneously affected all stress-responsive systems. Sensitization of 

corticosterone response to daily exposure of rats to a cat (potential rat predator) has been 

reported, although the results are difficult to interpret because ACTH data were not reported 

(Figueiredo et al., 2003). Moreover, habituation rather than sensitization has been found with 

repeated exposure to ferret odor (Weinberg et al., 2009). 

 

The hypothesis that certain particular characteristics of systemic stressors can not only impede 

habituation but rather cause sensitization after daily repeated exposure is supported by other 
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data showing reduced plasma catecholamine response to daily repeated immobilization, but 

enhanced response to daily exposure to trauma (rotation in the Noble-Collip drum) (Kvetnansky 

et al., 1984). Similarly, whereas repeated exposure to forced swim at 34 ºC elicited habituation 

of both noradrenaline and adrenaline responses, daily swim exposure to 18 and 24 ºC did not 

cause habituation of adrenaline and the response of noradrenaline was enhanced rather than 

reduced (Konarska et al., 1990). These data are supported by our recent results demonstrating 

that relatively low temperature of water (24 versus 36 ºC) interfere with the habituation of the 

HPA axis to forced swim (Rabasa et al., 2013). 

 

More typically, enhanced HPA response has been described in animals with a prior history of 

chronic stress when facing novel (heterotypic) stressors (cross-sensitization), although 

controversial results have been obtained (Dallman, 1993; Martı´ & Armario, 1998). The reasons 

for these discrepancies are not entirely clear, but some general pattern emerges. When plasma 

levels of ACTH rather than that of corticosterone have been evaluated (for the reason explained 

above), cross-sensitization has been found in response to a variety of stressors (saline injection, 

restraint, ether) after chronic exposure to continuous or intermittent cold (Bhatnagar & Dallman, 

1998; Bhatnagar & Meaney, 1995; Hauger & Aguilera, 1992; Ma & Morilak, 2005; Pardon et 

al., 2003; Sakellaris & Vernikos-Danellis, 1975), with some exceptions (Akana et al., 1996; 

Bhatnagar et al., 1995). Chronic administration of hypertonic saline also resulted in HPA 

sensitization to a different stressor (ether) (Kiss & Aguilera, 1993). Therefore, prior chronic 

exposure to systemic stressors appears to induce HPA cross-sensitization. 

 

With stressors having lesser systemic components (i.e. noise, predator odor, restraint or 

immobilization on boards), there are studies reporting a normal response to heterotypic stressors 

(Armario et al., 1986, 1988a; Babb et al., 2014; Ferland et al., 2014; Spiga et al., 2009; 

Weinberg et al., 2009), and others showing an enhanced response (Hauger et al., 1990; 

Heydendael et al., 2011; Lachuer et al., 1994; Ma et al., 1999). In a few cases, a reduced 
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response has also been reported after repeated exposure to restraint or immobilization (Chen et 

al., 2008; Mansi & Drolet, 1997; Martí et al., 1994). Interestingly, some reports using ADX rats 

or ADX rats supplemented with low corticosterone pellets (mimicking resting levels) (ADX+B) 

have observed chronic-stress-induced cross-sensitization of the ACTH response that were not 

found in intact rats (Akana et al., 1996; Martí et al., 1994). It is possible that, at least with 

predominantly emotional stressors, the eventual consequences of prior chronic stress might 

depend on two opposite processes: stress-induced HPA facilitation and glucocorticoid-induced 

inhibition by negative feedback. In conclusion, HPA cross-sensitization appears to be more 

likely with certain systemic stressors and with high-intensity (predominantly) emotional 

stressors, but individual/strain differences might explain why under apparently similar 

conditions sensitization can develop or not. 

 

Chronic-stress-induced cross-sensitization also affects the central and peripheral 

catecholaminergic systems (see Kvetnansky et al., 2009 for an extensive review about these 

systems). Whereas habituation of the plasma noradrenaline and, more particularly, adrenaline 

responses to a daily repeated stress is observed with typical laboratory stressors 

(immobilization, restraint, foot-shock), the response to novel heterotypic stressors is 

consistently increased (Konarska et al., 1989a,b; Kvetnansky et al., 1984). Similarly, 

sensitization of both adrenaline and noradrenaline has been observed in response to an acute 

immobilization after chronic administration of lipopolysaccharide (endotoxin), an immune 

stressor (Moncek et al., 2003), and chronic cold (Kvetnansky, 2004). 

 

The pattern is somewhat different when looking at the adrenomedullary expression of enzymes 

involved in catecholamine synthesis: tyrosine-hydroxylase (TH), the first and rate synthesis 

limiting enzyme, and phenylethanolamine-N-methyltrasferase (PNMT), the enzyme responsible 

for the synthesis of adrenaline. Prior exposure to chronic immobilization increased resting levels 

of TH and PNMT mRNA, while slightly reducing the response to acute immobilization and 
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completely blocking the response to heterotypic stressors of different nature (Kvetnansky et al., 

2003; Kvetnansky, 2004; McMahon et al., 1992; Viskupic et al., 1994). Basic maintenance of 

responsiveness to the homotypic stressor (immobilization) is associated with marked changes in 

the induction of transcription factors from acute to chronic immobilization (Sabban & Serova, 

2007). It is unclear whether lack of responsiveness to heterotypic stressors is related to the 

already high resting levels of mRNA and protein levels of enzymes or the choice of challenging 

stressors of lower intensity than immobilization. In contrast to the effects of immobilization, 

chronic exposure to cold potentiated the increase in TH and PNMT mRNA levels caused by 

various acute heterotypic stressors (Kvetnansky, 2004), again revealing the particular 

characteristics of chronic cold. 

 

Chronic stress-induced cross-sensitization of anterior pituitary hormones other than ACTH has 

been poorly studied. Prolactin is of interest because it is as sensitive to the intensity of stressor 

as ACTH (Armario et al., 2012). There is one report revealing cross-sensitization of prolactin 

release using daily cage transfer or handling as the chronic stressors, with exposure to the 

opposite stressor used to test the heterotypic response (Dobrakokova & Jurcovicova, 1984). In 

contrast, studies using more prolonged and/or severe stressors (i.e. noise, restraint, 

immobilization, foot-shock) to induce or test sensitization indicated normal or reduced response 

to heterotypic stressors (Armario et al., 1986, 1988b; Kant et al., 1985; van Raaij et al., 1997). 

Since glucocorticoids exert an inhibitory effect on stress-induced prolactin release (Martí & 

Armario, 1998), it is possible that daily glucocorticoid release acts to impede the expression of 

any stress-induced sensitization, if present at other levels. 

 

Although chronic-stress induced sensitization and cross-sensitization can obviously affect 

peripheral physiological response to stressors, the brain is likely to be critically involved. 

Evidence for neurochemical homotypic sensitization was reported by Anisman and Sklar 

(1979), who observed hypothalamic noradrenaline depletion after a brief foot-shock session in 
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mice previously exposed to a long footshock session the day before, but not in stress-naïve 

controls. Cross-sensitization of serotonin and noradrenaline responses to a superimposed acute 

stressor (immobilization on boards) was also demonstrated several decades ago in rats 

chronically restrained in plastic tubes (Adell et al., 1988). Furthermore, several groups have 

obtained evidence for development of sensitization of certain neurochemical systems after 

chronic stress. Most studies have been focused on the noradrenergic and dopaminergic systems, 

using microdialysis to evaluate neurotransmitter release. The role of chronic stress on the 

dopaminergic system is extremely complex and out of the scope of the present review, but it is 

of note that several studies have demonstrated that prior chronic stress enhances dopamine 

release in response to novel stressors in the medial prefrontal cortex and the nucleus accumbens 

(Cuadra et al., 2001; Di Chiara et al., 1999). 

 

Using microdialysis, Nisenbaum et al. (1991) firstly demonstrated that continuous exposure of 

rats to cold (4 ºC) for 3–4 weeks resulted in enhanced hippocampal noradrenaline synthesis and 

release in response to tail-shock. With the same chronic stressor, cross-sensitization of the 

dopamine and noradrenaline response to tail-shock was also observed in the medial prefrontal 

cortex (Gresch et al., 1994). In the latter report, dopamine response was also studied in striatum 

and nucleus accumbens, with no evidence for cross-sensitization, indicating that the 

phenomenon was region-specific. It is important to note that cold has a strong systemic 

component and would not be a representative stressor, particularly when using continuous 

exposure to the stressor (see above discussion of the effects of cold on the HPA axis and 

peripheral catecholamines). Thus, the same authors reported that medial prefrontal cortex 

noradrenaline release induced by an acute session of tail-shocks was not observed after chronic 

intermittent (4 h/day) exposure to cold or after continuous exposure to foot-shock (Jedema et 

al., 1999). Nevertheless, chronic intermittent cold can induce cross-sensitization under certain 

conditions. This stressor did sensitize the noradrenaline response to an acute immobilization in 
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the bed nucleus of the stria terminalis, but only in Wistar Kyoto rats and not in Sprague-Dawley 

rats (Pardon et al., 2003). 

 

The effects of prior chronic stress on the transcriptional response of locus coeruleus (LC) 

catecholamine synthesis enzymes to homotypic and heterotypic stressors are poorly known. In 

addition, basal levels of enzymes prior to the last challenging stressor have not always been 

assessed, thus confounding the interpretation of the results (i.e. Makino et al., 2002). The issue 

is further complicated by the fact that the contribution of post-transcriptional mechanisms 

appears to be more relevant in the LC than in the adrenal medulla (Osterhout et al., 2005; Sun et 

al., 2004). Nevertheless, when basal levels of enzymes prior to the last stress exposure have 

been assessed, daily repeated immobilization resulted in enhanced resting levels of TH, with 

reduction of the acute response to the homotypic stressor and normal response to heterotypic 

stressors (Rusnak et al., 2001). Accordingly, after daily repeated exposure to a relatively mild 

stressor (air-puff)-reduced TH gene expression in response to the homotypic stressor has been 

observed in WKY and SHR rats (McDougall et al., 2005). 

 

The critical role of stressor type is also supported by studies on stress-induced changes in 

electrophysiological activity of LC. Whereas chronic continuous cold has been found to exert a 

slight enhancement or null effect on spontaneous firing rate of LC neurons (recorded in 

anesthetized rats on the day after the last exposure) (Jedema et al., 2001; Mana & Grace, 1997), 

the responsiveness of LC neurons to superimposed physical stressors was increased (Mana & 

Grace, 1997). These effects are associated with a potentiated stimulatory response to CRH 

(Jedema et al., 2001) and reduced sensitivity to negative feedback mediated by a2 receptors 

(Jedema et al., 2008). However, after daily repeated social defeat reduced firing rate has been 

reported in resting conditions, associated with a higher l opioid tone (Chaijale et al., 2013). 

Unfortunately, the response to other stressors was not studied. 
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Recent evidence implicates the LC and noradrenergic systems in PTSD-like effects of a single 

exposure to stress. Thus, exposure of mice to a single shock followed by situational reminders 

caused long-term changes in anxiety-like and social behavior in susceptible but not resilient 

animals. Behavioral changes were associated with enhanced activation of the LC and prevented 

by pharmacological blockade of the noradrenergic system (Olson et al., 2011). After exposure to 

the single prolonged stress model for PTSD (consisting of exposing the animals to three 

different stressors on the same day), George et al. (2013) demonstrated a long-lasting reduction 

of spontaneous electrophysiological activity of LC neurons after, but enhanced response to a 

noxious stimuli. Additional studies with other acute and chronic stress models are needed to 

clarify the impact of stress on LC neuronal activity and its functional consequences. 

 

In conclusion, there is evidence that chronic stress can, under certain conditions, induce cross-

sensitization of the sympathoadrenomedullary (SAM) and HPA axes in response to heterotypic 

stressors, but the effect does not generalize to other neuroendocrine systems. Central 

sensitization of monoamines is also sometimes observed, although it is unclear the extent to 

which chronic exposure to stressor having a predominant emotional component are able to 

induce cross-sensitization of brain noradrenaline release. More consistent evidence appears to 

link long-term effects of acute stressors with altered noradrenergic activity. Finally, important 

regional differences as well as individual/strain differences in the development of cross-

sensitization are expected. 

 

Acute stress-induced HPA sensitization 

 

In the past decades, a great interest has been generated for the long-term consequences of a 

single exposure to stress in animal models for PTSD in order to understand biological 

mechanisms underlying this pathology (Armario et al., 2008). In animal models of PTSD, 

sensitization appears to be a crucial phenomenon to explain enhanced responsiveness to both 
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stimuli associated with the trauma and other types of stressors. In some experiments, electric 

shocks were used for both inducing and expressing sensitization, with shocks given in the same 

manner (i.e. foot-shock) or in different body regions (i.e. tail-shock versus foot-shock or foot-

shock versus probe-shock). In the latter cases, it is difficult to know whether the animals can 

perceive the stimulus as distinct. 

 

Behavioral sensitization has been demonstrated after  exposure to a session of several shocks in 

rats and after a single shock in mice (i.e. Servatius et al., 1995; Siegmund & Wotjak, 2007; van 

Dijken et al., 1992). Shocked animals showed an enhanced freezing response to superimposed 

stressors, such as sudden interruption of a background noise or sudden appearance of a noise 

burst (Siegmund & Wotjak, 2007; van Dijken et al., 1992, 1993), and an enhanced startle 

response (Servatius et al., 1995). In our laboratory, we have demonstrated that a single exposure 

to immobilization can transiently enhance anxiety, but when such an effect apparently 

disappeared after 10 days, a brief superimposed session of shocks markedly increased anxiety as 

measured with the elevated plus maze, whereas the same shocks had no effect in stress-naive 

rats (Belda et al., 2008). These data strongly indicate that animals are still more susceptible to 

novel stressors, but the long-lasting effect of prior severe stress could not be evident unless a 

new challenge has to be faced. Similarly, a single inescapable foot-shock or tail-shock session 

has been demonstrated to enhance foot shock-induced fear conditioning for several days after 

the inescapable footshocks (Baratta et al., 2007; Rau et al., 2005). In some cases, the impact of a 

prior stress is only observed after an incubation period of several days (typically one week), 

suggesting some kind of slowly progressing phenomenon (Pamplona et al., 2011). There is also 

evidence for incubation of fear after exposure to single prolonged stress (Knox et al., 2012; 

Koda et al., 2007; Takahashi et al., 2006; Wang et al., 2008). Thus, it appears that some 

behavioral consequences of stressors reach a maximum on the next hours or days whereas in 

other cases such consequences progressively increase over time (Figure 1). Interestingly, when 

simultaneously studied, behavioral sensitization to further stressors outlasted HPA sensitization 
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(Belda et al., 2008). Nevertheless, this does not preclude that some components of the HPA axis 

or other biological systems activated in response to the stressor might lead to long-term changes 

in gene expression and consequently in behavior. 

 

Caggiula et al. (1989) and van Dijken et al. (1993) were the first to report that a single session 

of foot-shocks was able to induce long-lasting (10–14 days) enhancement of ACTH or 

corticosterone response to a short exposure to another brief shock session or to a novel 

environment, respectively. In parallel, several reports appeared regarding long-term effects of 

single exposure to systemic stressors on HPA responsiveness. Although the present review 

focuses on the long-term effects of emotional stimuli, we will make a brief mention of some 

relevant data on systemic stimuli. Tilders’ lab was also the first to report that a single cytokine 

(IL-1b) administration in rats was able to induce long-term sensitization of the HPA response to 

a variety of challenging stressors including IL-1b (Schmidt et al., 1995), amphetamine (Schmidt 

et al., 1999, 2001), novel environments and foot-shocks (Schmidt et al., 1995, 2001, 2003). 

When the time-course of sensitization was studied, it was found that the effect of IL-1b on HPA 

responsiveness to a novel environment reached a maximum of 11–22 days after the 

administration of the cytokine and vanished at 42 days (Schmidt et al., 2003). After these initial 

studies with IL-1b, Anisman’s lab published a series of papers studying the long-term effects 

(between 24 h and 28 days) of a single administration of other immune stimuli including 

endotoxin and the cytokine tumor necrosis factor-a (TNF-a). They studied not only the response 

of the HPA axis, but also changes in sickness behavior and neurochemistry (Anisman et al., 

2003; Hayley et al., 2003). With respect to the HPA axis, the time-course of the effects appears 

to show a relatively high level of variability depending on both the particular nature of the 

initial immune stimuli and the challenging systemic stressor, but evidence for homotypic and 

heterotypic sensitization was found that in some cases enhanced with the time elapsed between 

the two exposures. Taken together, it appears that exposure to systemic stressors, in contrast to 

emotional stressors, can induce sensitization of the HPA response to both the homotypic and the 
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heterotypic stressors and this effect progressively enhances over time (see Armario et al., 2004). 

In contrast, emotional stressors would induce sensitization of the response to heterotypic 

stressors, particularly when the challenging stressors have immune components. 

 

Regarding emotional stressful stimuli, the data obtained so far point to a long-lasting 

sensitization of the HPA response when animals are exposed to a heterotypic stress. After a 

long-term sensitization of the HPA axis with a single exposure to a moderate session of foot-

shocks was described (van Dijken et al., 1993), we demonstrated that a single prior exposure to 

immobilization resulted in a reduced HPA response to the homotypic stressor, but an enhanced 

response to a different (forced swim) stressor, particularly evident in both cases during the post-

stress period (Martí et al., 2001). Later on, long-lasting HPA sensitization of the response to 

heterotypic stressors was observed in Maier’s lab using the inescapable tail-shock procedure 

typical of the learned helplessness paradigm. They observed that a single session of shocks 

caused sensitization of the HPA response to emotional (pedestal) and systemic (endotoxin, 10 

µg/kg) stressors (Johnson et al., 2002a, 2003; O’Connor et al., 2004). Although the effect on 

exposure to the pedestal was studied only after 24 h (Johnson et al., 2002a; O’Connor et al., 

2004), sensitization to endotoxin was already observed on the day after shock and lasted for at 

least 10 days, disappearing at 21 days (Johnson et al., 2002a). Having control over the aversive 

experience (comparing the effects of escapable and yoked inescapable tail-shocks) does not 

modify long-term sensitization of corticosterone response to other emotional stressor, such as 

restraint (Weinberg et al., 2010). Interestingly, the same lab also reported that prior exposure to 

one tail-shock session can induce sensitization (priming) of the immune response to endotoxin 

that might be mediated by glucocorticoid released during tail-shocks (Frank et al., 2010, 2012; 

Johnson et al., 2002b, 2003). 

 

Supporting our preliminary results using forced swim as the heterotypic stressor (Martí et al., 

2001), we have repeatedly observed that prior exposure to a single immobilization session 
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induces sensitization of the HPA response to novel environments that lasts for around one week 

(Belda et al., 2008; Gagliano et al., 2008; Muñoz-Abellan et al., 2008). It is unclear whether 

qualitative aspects of triggering stressors, rather than their intensity or duration, are responsible 

for long-lasting HPA sensitization. We then exposed rats to 2 h of immobilization, 2 h of severe 

foot-shock (2 mA, 6 s, one per min), or to a brief session of three mild shocks (0.5 mA, 3 s, one 

per min). Seven days after that, these rats, together with appropriate controls were exposed for 5 

min to an open-field and sampled immediately after. As it can been seen in Figure 2, 

sensitization of the ACTH response was observed after previous exposure to immobilization 

and severe footshocks, but not after a brief session of mild foot-shocks. These results support 

the hypothesis that long-lasting HPA sensitization is mainly dependent on the intensity and/or 

duration of the triggering stressor rather than on its particular nature. As HPA sensitization can 

be induced by both acute and chronic exposure to a particular stressor, it is important to know 

whether stress-induced sensitization changes when animals are daily exposed to the same 

triggering and challenging stressors. After daily repeated exposure to immobilization (1 h) and 

to an open-field (5 min) for one week, sensitization of ACTH response was basically 

maintained, with a slight decline of ACTH response associated to a modest increase in 

corticosterone response (Daviu et al., 2014). It is possible that corticosterone sensitization after 

chronic stress could be associated to an extra-ACTH regulation that remains to be studied. 

 

The mechanisms underlying acute stress-induced HPA sensitization are unclear at present. 

Previous studies using tail-shock as the inductive stressor demonstrated that HPA sensitization 

was associated with a reduced efficacy of negative glucocorticoid feedback (O’Connor et al., 

2003). More recently, O’Connor et al. (2004) showed, using the same paradigm, that the greater 

ACTH and corticosterone response to a novel acute stressor 24 h later were accompanied by 

increased activation of the PVN (enhanced cfos expression and CRH mRNA levels) and the 

anterior pituitary (enhanced cfos and pro-opiomelanocortin gene expression). This strongly 

suggests that sensitization took place in the brain rather than peripherally. Although 
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sensitization could be secondary to the lower efficacy of glucocorticoid negative feedback, it 

was also observed in ADX animals (O’Connor et al., 2004), indicating that glucocorticoids are 

not needed to induce or express HPA sensitization. Therefore, sensitization is likely to be the 

result of a brain sensitization process independent of glucocorticoids. That glucocorticoids play 

no role in stress-induced sensitization was confirmed in our lab using immobilization as the 

inductive stressor and two different approaches to block or reduce the effects of glucocorticoid 

released during stress: the inhibition of glucocorticoid synthesis with metyrapone (MET) and 

blockade of GR with the antagonist mifepristone (Belda et al., 2012). 

 

There are several reasons to consider CRH as a possible candidate for the induction of 

sensitization. First, there is evidence that CRH is involved in the induction and/or expression of 

stress-induced locomotor sensitization to amphetamine, acting centrally (Cador et al., 1993; 

Cole et al., 1990). Second, sensitization of ethanol withdrawal-induced reduction of social 

interaction was potentiated by prior exposure to two restraint stress sessions one week apart, an 

effect that was prevented by the administration of a CRH type 1 receptor (CRHR1) antagonist 

prior to stress (Breese et al., 2004). Third, CRHR1 receptors are involved in the development of 

stress-related visceral hyperalgesia (Larauche et al., 2012). Finally, repeated administration of 

urocortin into the basolateral amygdala causes long-lasting increases in anxiety-like behavior, 

probably acting through CRHR1 receptors as CRHR2 receptors have not been detected in this 

area (Rainnie et al., 2004). We then tested whether CRHR1 receptors are important for 

immobilization-induced HPA sensitization by given the selective antagonist R121919 prior to 

immobilization. The drug did not block sensitization (Belda et al., 2012), thus tentatively 

suggesting that CRHR1 receptors are not involved in this process. It will be of interest to 

determine whether CRHR1 receptors are important for the expression of HPA sensitization, and 

whether CRHR2 also plays a key role in the process. 
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Despite the consistent effect of single exposure to severe stressors to cause HPA sensitization, it 

appears that not all stressors have this property. Taking advantage of our previous data 

demonstrating that high doses of MET can act itself as a pharmacological stressor (Rotllant et 

al., 2002), we further studied whether prior MET administration can induce similar HPA 

sensitization as severe stressors. We found negative evidence (Belda et al., 2012), suggesting 

that HPA sensitization is not an universal consequence of exposure to all stressor-like agents, 

even if they are severe. 

 

Another question is whether sensitization can affect other stress-sensitive neuroendocrine 

systems. When animals are exposed on two consecutive days to hemorrhage, sensitization of 

HPA response as well as the adrenaline response has been observed (Lilly et al., 1982, 1983, 

1986). In contrast, repeated exposure to noise on the same day resulted in a (homotypic) 

reduction of corticosterone, adrenaline and noradrenaline response that is likely to be due to 

short-term habituation to an emotional stressor, as the behavioral response was also reduced (De 

Boer et al., 1988). Unfortunately, the response to a heterotypic stressor was not studied. We 

have analyzed plasma prolactin levels in several situations where HPA sensitization was found, 

examining the influence of prior immobilization on the prolactin response to a 5-min open-field 

exposure on the following day. As shown in Figure 3, prior exposure to 2 h immobilization 

caused a modestly enhanced prolactin response to the open-field in one experiment and no 

significant effect in another similar experiment. It is thus clear that unlike the HPA axis, the 

prolactin response to heterotypic stressors is not consistently sensitized by prior acute severe 

stressors. This inconsistency is similar to that achieved after chronic stress. However, in this 

case we could demonstrate that the lack of consistent acute stress-induced prolactin sensitization 

is not due to a constraining effect of glucocorticoids released during exposure to 

immobilization, as blockade of GR at this time had no effect on subsequent prolactin response 

to the open-field the following day. 
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Conclusions 

 

Exposure to both acute and chronic stressors induces sensitization of certain behavioral and 

physiological responses to further stressors. The type of stressor, particularly whether they are 

systemic or emotional, could be critical to observe sensitization, especially when the response to 

the homotypic stressor is studied. In general, sensitization: (a) is dependent on the particular 

characteristics of the triggering and challenging stressors (nature, duration, intensity); (b) affects 

only a restricted subset of peripheral physiological processes and centrally mediated behavioral 

and physiological responses; (c) is better observed in response to novel heterotypic stressors; (d) 

in very restricted number of cases appears after an incubation period (days to weeks). The 

heterogeneity of the phenomenon precludes its consideration as a unitary process. We suggest 

some avenues to a better understanding of this phenomenon. For instance, in the case of 

homotypic stressors, it would be of particular interest to delineate the characteristics of the 

stimuli that determine the development of adaptation versus sensitization and the behavioral or 

physiological responses affected. Simultaneous evaluation of several different behavioral 

patterns or physiological systems could contribute to identify those systems more prone to 

sensitize. Finally, individual differences play a major role in the development of sensitization, 

but it is likely that some individuals are more susceptible to sensitization of particular behaviors 

or physiological systems, rather than showing a generalized susceptibility to develop 

sensitization in all systems. 
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FIGURES  

 

 

Figure 1. Exposure to severe emotional stressors can induce HPA and behavioral 

sensitization. HPA sensitization is maximally observed on the day after the stressors and can 

persist for up to 2 weeks depending on the characteristics of the stressor and the individual 

susceptibility (solid line). Behavioral consequences of stressors belong to two categories: (i) one 

that showed a maximum very soon after stressor exposure to progressively vanishing after that 

(Behavior I; dotted line); and (ii) another that are fully manifested long after stressor exposure 

showing some kind of incubation process (Behavior II; dashed line). Note that behavioral 

sensitization can be unmasked by superimposing a brief stressor, appears to be longer lasting 

than HPA sensitization and is usually reflected in different types of tests related to fear 

conditioning and anxiety-like behavior (i.e. elevated plus-maze, acoustic startle response). 
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Figure 2. Long-lasting HPA sensitization is dependent on the intensity and/or duration of 

exposure to the triggering stressor. Adult male rats remained undisturbed or were exposed to 

a brief 5 min session of low intensity foot-shocks (3 x 3 s scrambled, AC current, shocks of 0.5 

mA), a prolonged (120 min) session of high intensity foot-shocks (120 x 6 s scrambled, AC 

current, shocks of 2.0 mA) or 120 min of immobilization on boards (IMO). Seven days later all 

animals were exposed for 5 min to an open-field and immediately blood sampled. Means and 

SEM are represented (n¼8 per group). *p<0.05, **p<0.01 versus control. 
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Figure 3. Prior acute stress induces null or weak prolactin sensitization. In contrast to the 

consistent sensitization of the HPA response to a brief heterotypic stressor caused by a single 

exposure to immobilization (IMO, 2 h) on the day before (Belda et al., 2012), prolactin response 

is only slightly enhanced, the results being statistically inconsistent among the different 

experiments. Panels A and B present results from representative experiments that always show 

consistent HPA sensitization and inconsistent prolactin sensitization. Means and SEM are 

represented (n = 10–12 per group). *p<0.05, ***p<0.001 versus control. 

 

 


