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SUMMARY

Failures of many pressure vessels have been traced to surface cracks. Accurate stress

analyses of these surface-cracked components are needed for reliable predietlon of their

crack-growth rates and fracture strengths. Because of the complexities of such problems, all

investigators have used engineering estimates or approximate analytical methods to obtain the

stress-intenslty factors.

A few three-dimensional stress analyses of seml-elllptlcal surface cracks in pressurized

cylinders have been reported recently. However, these investigators considered only an

internal surface crack with a craek-depth-to-crack-l_ngth ratio of I/3 and a wall-thickness-

to-vessel-radius ratio of 0.I.

The purpose of this paper is to present stress-intensity factors for a wide range of

seml-elllptlcal surface cracks on the inside of pressurized cylinders. The ratio of crack

depth to crack length ranged from 0.2 to ]; the ratio of crack depth to wall thickness ranged

from 0.2 to 0.8; and the ratio of wall thickness to vessel radius was 0.] or 0.25. The

stress-lntenslty factors were calculated by a three-dimenslonal finlte-element method. The

finlte-element models employed singularity elements along the crack front and linear-strain

elements elsewhere. The models had about 6500 degrees of freedom. The stress-int6nslty

factors were evaluated from a nodal-force method. In this method, the nodal forces normal to

the crack plane and ahead of the crack front were used to obtain the stress-intenslty

factors.

An empirical equation for the stress-intensity factors was fitted to the results of the

present analysis as a function of crack depth, crack length, wall thickness, and vesse!

radius. The equation applies over a wide range of configuration parameters and was within

about 5 percent of the present results.

The present results were compared to other analyses of internal surface cracks in cylin-

ders. The surface-crack configuration had n crack-depth-to-crack-length ratio of I/3 and a

wall-thlckness-to-vessel-radius ratio of 0. I. Results from the literature using a boundary-

integral equation method were in good agreement (±2 percent) and those from a finite-element

method were in fair agreement (i8 percent) with the present results.

The stress-intensity factors and eq_ations presented herein should be useful _n cerre-

latlng fatigue-crack-growth rates and in calculating fracture toughness for the surface crack

in a pressurized cylinder.
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I. Introd_ctlon

Failures of many pressure vessels have been traced to surface cracks. Accurate stress

analyses of these surface-cracked components are needed for rellable prediction of their

crack-growth rates and fracture strengths. Because of the complexities of such problems, all

investigators have used engineering estimates or approximate analytical methods to obtain the

stress-£ntenslty factors.

Some engineering estimates for the stress-lntensity factors for surface cracks in pres-

surized cyllnders have been made by Underwood [I] and Kobayashi [2]. Their estimates did not

Include the effects of wall thickness. Recently, however, Kobayashi, Emery, Polvanich, and

Love [3] have estimated stress-intensity factors for internal surface cracks that did include

the effects of wall thickness.

A few three-dlmensional stress analyses nf seml-e111ptlcal surface cracks in pressurized

cylinders have been reported recently. Atlurl and g_thiresan [4] and HeGowan and Raymund [5]

used three-dlmenslonal flnlte-element methods, while Hellot, Labbens, and Pelllssler-Tanon

[6] used the boundary-integral equation method, to obtain stress-intenslty factor varlatio;is

along the crack front for a llmlted range of configuration parameters. References [5] and

[6] considered only an in.ernal surface crack with a crack-depth-to-crack-length "atlo of _3

and a wall-thlckness-to-vessel-radius ratio of 0.1.

The purpose of this paper is to present Hode I stress-lntenslty factors, calculated by a

three-dlmensional finite-element method [7-9], for a wide range of seml-elliptlcal surface

cracks in pressurized cylinders. The cracks were located on the inside of the cylinders.

The ratio of crack depth to wall thickness ranged from 0.2 to 0.8; the ratio of crack depth

to crack length ranged from 0.2 to l; and the ratio of wall thickness to vessel radius was

0. I or 0.25. The stress-intenslty factors were calculated by using a nodal-force method

[7-9]. An equation for the stress-intensity factors was also developed for a wide range of

configuration parameters. The stress-intenslty factor variations along the crack front are

presented and, where possible, compared with other solutions from the literature.
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3. Three-Dimensional Analysis

A surface crack in an internally pressurized cylinder is shown in figure I. The elastlc

cylinder of wall thickness t, internal radius R, and length 2b, contains a seml-elliptical

surface crack of length 2c and depth a on the inner surface of the cylinder. The stress-

intensity factors for the surface-crack configurations were obtained by using a three-

dimensional finlte-element analysis.

3.1 Finite-Element Idealization

Two types of elements (isoparametric _' singular [7]) were used in combination to model

the cylindrical vessels. Figure 2(a) shows a typical finlte-element model for an internal

surface crack. The model, which employed nearly 6500 degrees of freedom, idealized one-

eighth of the vessel (0 _ 0 _ 90 degrees and 0 _ X _ b). The isoparametrlc (llnear-straln,

elght-noded hexahedron) elements were used everywhere except near the crack front, where

eight singularity elements, eacL in the shape of a pentabedro_, were used [8]. The singu-

larity elements produced a square-root singularity in stress and strain at the crack front.

A typical finite-element pattern along the crack plane is shown in figure 2(b). The finite-

element models in the neighborhood of the crack were identical to those used in refer-

ences [8] and [9] for surface cracks in flat plates, except that the models were curved to

conform to the desired cylindrical shape. The vessel half-length-to-radius ratio, b/R,

ranged from 1 to 5, the b/c ratio ranged from i0 to 50, And the t/R ratio was 0.1 or

0.25. Further details on model_ng and formulation of the two types of elements used are

given in references [7-9] and are not repeated here.

3.2 Boundary Conditions and Anp1ied Loadln_

Symmetry boundary conditions were appl_ed on the X = 0 plane; Y = 0 plane, and

Z = 0 plane, and the model simulated a vessel with two syn_metric surface cracks (180 degrees

apart). The X = b plane was free.

The stress-intensity factor solutions were obtained by solving the complementary problem

of applied stresses on the crack surfaces. Four applied stress distributiens on the crack

surfaces were analyzed: constant, linear, quadratic, and cubic. These stresses, which were

applied to the crack surfaces as shown in figure 2(c), were symmetric about the y = 0 plane

and were given by

S

(_) for J = 0 to 3 (I)oj =

where z is measured from the crack mouth toward the crack front. Solutions for these four

stress distrlbutlons were superimposed to obtain stress-intenslty factors for the pressurized

cylinder. (These four solutions can be superimposed to obtain stress-intenslty factor_ for

other stress dlstributions, such as those caused by thermal shock.)
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4. $tress-lntenslt_ Factor

The Mode I stress-lntenslty factor,

to be

KI, at any point along the surface crack was taken

t

9" _ GlaaR'\j _,_-,_,q,) (2)

for J - 0 to 3. Oj Is the boundary-correctlon factor corresponding to the jth stress

distribution from eq. (I). Q, the shape factor for an e11iptlcal crack, is g__ven by the

square of the complete elliptic _ntegral of the second kind. The vessel length (2b) was

always chosen large enough that the length would have a negllglble effect on stress intensity

(b/c > 10).

The stress-intensity factors for a surface crack in an Internally pressurized cylinder

were obtained by appropriate superpositlon of the results given by eq. (2). For convenience,

the stress-lntenslty factor was written as

pR r_- aaR"t (3)
where pR/t is the hoop stress and F is the boundary-correctlon factor for a surface crack

on the inside of an internally pressurized cylinder. The expression for ¥, In terms of Gj,

was obtained from the first four terms of a pover-serles expansion of Lame's solutlon [I0]

for the hoop stress in an Internally pressurized cyllnder. The result is

where each Gj was obtained from the appropriate finite-element solution. The correction

factor F includes also the influence of the internal pressure, p, acting on the crack sur-

faces. Values for F were calculated as a function of a/c, a/t, and _ for t/R values

of 0.1 and 0.25. The a/c ratios were 0.2. O.h, and 1; and the a/t ratios were 0.2, 0.5,

and 0.8.

The stress-intensity factors from the finite-element models were obtained by using a

nodal-force method, details of which are given in references [7] and [9]. In this method,

the nodal forces normal to the crack plane aud ahead of the crack front are used to evaluate

the stress-intensity factors.

5. Results and Discussion

In the following sections, results are presented for t_o symmetric semi-elliptical sur-

face cracks on the inside of pressurized cylinders. The stress-intensity factor variations

along the crack front for various surface cracks (a/c = 0.2 and 1) are presented as a func-

tion of a/t. An empirical equation for the stress-intensity factor is also developed for a

wide range of configuration parameters. An estimate for the stress-lntensity factor for a

single surface crack is also presented. The stress-intensity factors are compared with other

soluttov.s from the literature.

5.1 Semi-Circular Surface Cracks

Figure 3 shows the boundary-correction factors for two symmetric semi-circular surface

cracks (a/c = 1) as a function of the parametric angle, _, and a/t for t/R = 0, 0.1, and

0.25. For t/R = 0 (flat plate [8,9]), the pR/t stress in eq. (3) is replaced by St, a



remote uniform applied stress. For a fixed t/R ratio, the correction factors are higher

for larger a/t ratios. Also, for a fixed a/t ratio, the correction factors are higher

for smaller t/R ratios. The maximum correction factor (or stress-intenslty factor)

occurred at the intersection of the crack front with the inner surface (_ = 0).

5.2 Sc_i-Elllptical Surface Cracks

Figure 4 shows the boundary-correction factors for two symmetric seml-elllptlcal surface

cracks (ale = 0.2) as a function of _ and a/t, for t/R = 0, 0. I, and 0.25. Again, for a

fixed t/R ratio, the correction factors are hlghez for larger a/t ratios. For a _Iven

a/t ratio, smaller t/R ratios gave higher correction factors. In contrast to results for

a semi-clrcular surface crack, the maximum correction factor (or stress-lntenslty factor)

occurred at the maximum depth point (@ = w/2).

5.3 Stress-lntensity Factor Equation

The results shown in figures 3 and 4 suggest that the ratio of the correction factors

for a given t/R and those for a flat plate (t/R = 0) are nearly independent of the para-

metric angle, so that the curve for t/R = 0 can be scaled to approximate the results for

t/R = 0.1 and 0.25. Figure 5 shows fc (the ratio of F for a given t/R to FO) as a

function of t/R. F 0 is the correction factor for a flat plate [8,9]. The abels (and

bars) give the average (and range) of fc for a given value of a/t with a/c = 0.2, 0.4,

or 1 and any value of _. (For clarity, results for a/t = 0.5 are not shown.) These

results were found to be closely approximated by

R 2
"1

- 0 5,_I t

In figure 5, the upper curve shows the exact limiting solution for a/c = 0 and alt = O.

The upper curve was obtained from Lame's stresses [I0] on the inside of the cylinder and the

solutlon for an edge-crack in a semi-infinite plate, and is-given by eq. (5) with a/t = 0.

The other curves show results from eq. (5) for various a/t ratios.

The stress-lnte1_sity factor for two symmetric surface cracks on the inside of a pres-

surlzed cylinder is given by eq. (3) where the following approximate expression for F has

been fitted to the present results and those of references [$] and [9]:

(6)

M1 = 1.13 - 0.09 _C (7)

H2 = 0.54 + --
0.89 (8)

a
0.2+--

c

0.65 + --

g : 1 + 0.i + 0.35 (l - sin
(10)

5 "_



]z14and f_ = sln 2 _ + (ca--)2 cos2 ¢
(II)

R.

for 0 -<_t -< 0.8, 0 < _c -< I, t/R <_ 0.25, and any _. Equation (6) is within about _5 per-

cent of the finite-element results.

An estimate for the stress-intenslty factors for a single crack in terms of two sym-

metric cracks was obtained from an equation (eq. (2)) given in reference [11]. For ale = 0

and t/R = 0. I, the stress-lntenslty factor for a single crack was about 2 percent lower than

that for two symmetric cracks, whereas for t/R = 0.25 the stress-lntenslty factor for a

single crack was about 4 percent lower than that for two cracks. For larger ale ratios the

differences are smaller. Thus, eq. (6) can also be used for a single surface crack without

appreciable error.

5.4 C_.mparlsons with Other Solutions

Figure 6 shows the stress-lntensity boundary-correctlon factors obtained by several

investigators for a semi-elliptical surface crack (a/c= 1/3 and a/t = 0.8) on the inside

of a cylindrical _essel with t/R = 0.I. The crack surfaces were subjected to stress dis-

tributions given by eq. (I). The correction factors, Hj, are those used in references [5]

and [6}, and are related to Gj by

= BjC_ for j = 0 to 3 (12)
Hj f¢

where BO = I, B I = _/2, B2 = 2, B3 = 3_/4, and f0 is given by eq. (II). The present

results are shown as symbols. The results from reference [6], obtained from the boundary-

Integral equotion method, are shown as solid curves and are" in good agreement (±2 percent)

with the prescnt results for _ > _/4. The dashed curves show the results from reference [5].

Their results were obtained from the finlte-element method and were within ±3 percent of the

present results. (For clarity, the results for II2 were not shown.)

6. Concluding Remarks

A three-dlmensional flnite-element elastic stress analysis was used to calculate stress-

intensity factors for a wide range of semi-clllptlcal surface cracks on the inside of

cylindrical pressure vessels. The ratio of crack depth to crack length ranged from 0.2 to I;

the ratio of crack depth to wall thickness ranged from 0.2 to 0.8; and the ratio of wall

thickness to vessel radius was 0.1 and 0.25. Singularity elements were used along the crack

front and llucar-strain elements were used elsewhere. The models of these configurations had

about 6500 degrees of freedom. A nodal-force method was used to evaluate the stress-lntenslty

factors.

The stress-intenslty factors for surface cracks in pressurized cylinders were similar to

those calculated for surface cracks in flat plates as a function of the parametric angle.

For seml-clrcular cracks, the stress-intensity factors were maximum at the Intersection of the

crack with the inside surface of the cylinder, but for seml-elllptical cracks the values were

largest at the maximum depth point. Larger crack-depth-to-wall-thickness ratios and larger

wall-thlckness-to-vessel-radlus ratios gave higher stress-lntensity factors for all surface-

crack conflguratlons considered.



Thepresentresults werecompared to other analyses of internal surface cracks in

cylinders. The surface-crack configuration had a crack-depth-to-wall-thlckness ratio of 0.8,

a crack-depth-to-crack-length ratio of I/3, and a wall-thickness-to-vessel-radius ratio of

0. I. The cracks were subjected to constant, linear, quadratic, and cubic stress distribution

on the crack surfaces. The results from a boundary-integral equation method were in good

agreement (generally ±2 percent) and those from a finite-element method were in fair agree-

ment (±8 percent) with the present results.

An empirical equation for the stress-intensity factors for an internal surface crack in

a pressurized cylinder was developed to estimate the present results. The equation applies

over a wide range of configuration parameters and was within about ±5 percent of the present

results. The results obtain_d herein should be useful in correlating fatlgue-crack-growth

rates and in calculating fracture toughness for the surface crack in a pressurized cylinder.
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Fig. 1.- Surface crack in an internally pressurized cylinder.

( ) Finite-element model. (c) Loading on crack surfaces.

" (b) Element _attern on Y = 0 plane.

] Fig. 2.- Fi -_lement _o_el and loading on a semi-elliptical

_"" suri_ crack in a cylinder.
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Fig. 3.- Stress-intensity boundary-correction factors along crack

front for a semi-circular surface crack (a/c = 1.0) in a

pressurized cylinder.
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pressurized cylinder.
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