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Abstract: The purpose of this review is to critically evaluate the effects of different stress factors on
higher plants, with particular attention given to the typical and unique dose-dependent responses that
are essential for plant growth and development. Specifically, this review highlights the impact of stress
on genome instability, including DNA damage and the molecular, physiological, and biochemical
mechanisms that generate these effects. We provide an overview of the current understanding of
predictable and unique dose-dependent trends in plant survival when exposed to low or high doses of
stress. Understanding both the negative and positive impacts of stress responses, including genome
instability, can provide insights into how plants react to different levels of stress, yielding more
accurate predictions of their behavior in the natural environment. Applying the acquired knowledge
can lead to improved crop productivity and potential development of more resilient plant varieties,
ensuring a sustainable food source for the rapidly growing global population.

Keywords: higher plants; stress agents; dose–response relationship; bystander effect; genome
instability; hyper-radiosensitivity; hormesis; transgenerational memory

1. Introduction

Climate change is a multifaceted phenomenon that affects plant and animal species, as
well as their habitats and ecosystems due to altered weather patterns and an increased fre-
quency of extreme weather events. It also contributes to the spread of pests and diseases [1].
Being rooted in one place, plants are highly sensitive to fluctuations in temperature, rain-
fall, radiation, and other environmental factors, which induce a range of short-term or
medium-term reactions, such as the acclimation processes, or long-term phenomena, such
as transgenerational adaptation [2]. These reactions can impact the physiological state of
plants, affecting their growth and development and leading to reduced seed production
and germination, decreased nutrient uptake, and water use efficiency, increased vulner-
ability to pests and diseases and, in extreme cases, death [3]. The kinetics of the normal
biological response is contingent on the intensity and duration of the stressor (acute or
chronic) [4]. Plants have developed intricate defense mechanisms to withstand natural
adversities and secure their survival against various challenges [5]. Altering the anatomy
and morphology of plants through modification of their structural features is a potential
strategy for combating the consequences of climate change [6–8]. At the genetic level,
plants have developed mechanisms to repair or tolerate DNA damage, allowing them to
maintain genome integrity [3,9]. A recent review by Hartmann et al. [2] traces the impact
of different stressors on the stability of plant genome, focusing on the crucial underlying
mechanisms. They indicate that environmental stress can cause changes in plant DNA,
including mutations, epigenetic modifications, and alterations in gene expression. These
changes can have a profound impact on plant growth, development, and ability to adapt
to changing conditions. The crucial role of the potential interplay between genetic and
epigenetic elements in understanding plant stress responses has been discussed. The effects
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of environmental stimuli on plants can sometimes be atypical and multifaceted, requiring
more comprehensive analysis.

This review endeavors to give an insight into current knowledge of plant genome
stability, with particular emphasis on the provisional and unique dose-dependent stress
responses that are essential in determining plant growth and development when exposed
to low or high stress levels.

2. Principal Stressors Impacting Plants

Any extreme event or climate variation can disrupt the optimal conditions for plants,
leading to reduced plant growth, leaf and root development, and reduced crop yield [4,5].
Plants are affected by a variety of stress factors, which can be grouped into two main
categories: biotic and abiotic.

Biotic stress factors include pathogens, pests, and inter-species rivalry, which cause
harm to the plant through infections, herbivory, and resource competition [10,11]. The
growth and health of plants can be greatly impacted by various types of pathogens, such
as bacteria, viruses, and fungi, leading to a wide range of symptoms, including wilting,
discoloration, and even plant death. Pests such as insects, mites, and nematodes can also
inflict significant damage to plants by feeding on plant tissue, causing harm to leaves,
stems, and even roots, as well as transmitting diseases, thereby exacerbating overall harm
to the plant [12].

Biotic stress can cause detrimental effects on plant growth and development, including
but not limited to decreasing plant biomass, disrupting photosynthesis, and altering plant
morphology [13,14]. This generally leads to the production of defense compounds, such as
phenolics and alkaloids, which can negatively affect the nutritional quality of crops. The
effects of biotic stress on plants depend on the type of stress, the severity of the stress, and
the ability of plants to elicit appropriate defense mechanisms [15].

During biotic stress, plants activate various hormonal pathways to cope with the
stressor [13,16]. The Jasmonic acid (JA) pathway plays a crucial role in plant defense against
insect herbivores, necrotrophic fungi, and some bacterial pathogens. Upon perceiving
the presence of these stressors, plants release JA, which triggers a cascade of signaling
events, ultimately leading to the expression of defense-related genes and the production of
specialized metabolites, such as phytoalexins, and protease inhibitors [15,17]. Salicylic acid
(SA) is another major phytohormone that plays a vital role in plant defense against biotic
stress. It triggers the expression of genes responsible for the production of pathogenesis-
related proteins that directly attack the pathogen or restrict its spread [18]. Additionally, the
host defense system can be reinforced by administering exogenous SA treatment [19]. The
ethylene pathway is also activated in response to a range of biotic stressors, such as insect
herbivory, pathogen infection, and mechanical damage. This results in increased ethylene
levels and the production of defense-related proteins, secondary metabolites, and the
activation of signaling pathways involved in plant defense [20]. The mentioned regulatory
pathways involved in plant defense exhibit notable differences, yet they also intersect to
offer protection against pathogens. Furthermore, phytohormones such as abscisic acid
(ABA), auxin, brassinosteroids, cytokinins, gibberellins, and peptide hormones are also
involved in modulating plant immune responses [15,21–23]. Among these, JA is particularly
important in triggering the plant defense system and cross-talks with other phytohormonal
pathways [24].

Abiotic stressors encompass a wide range of environmental factors, including water
stress, temperature fluctuations, imbalanced nutrient and mineral levels, and exposure to
various forms of radiation, such as non-ionizing and ionizing radiation (IR) (high and low
linear energy transfer, LET), as well as ultraviolet radiation (UV). Water stress (drought and
flooding) affects many aspects of plant growth and development induced by genetic and
molecular changes, which alter various biochemical and physiological processes [25] and
have both individual and community-wide effects on plants [26]. Temperature stress can
result from exposure to extreme cold, freezing temperatures, or high heat, which damage
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plant tissues and disrupt growth [27,28]. All macronutrient deficiencies inhibit plant growth
and development [29]. Exposure to non-ionizing and IR and ultraviolet radiation can harm
plants through photoinhibition and photo-oxidation processes [30]. All abiotic stress factors
usually lead to genotoxic and oxidative stress, which damages plant DNA and other cellular
components [28,31]. Some abiotic stressors affecting plants have anthropogenic origin,
namely ozone, carbon dioxide (CO2), emissions of sulfur and nitrogen oxides (SOX and
NOX), formaldehydes, ammonia and various complex mixtures, soil pollutants such as
soil salinity [4,32–34], and the use of nanoparticles in agriculture, such as nano-fertilizer
and nano-pesticides [35]. In addition, plants have specialized mechanisms to counteract
the effects of sulfur dioxide (SO2) from acid rain [36]. At low concentrations, SO2 can act
as a signaling molecule in plants and play a role in seed germination, stomatal opening
and closing, and plant response to various environmental stimuli [37]. Similarly, low
concentrations of nitric oxide (NO) have a signaling role in plants. NO is non-toxic and has
an impact on plant growth and development, senescence, ethylene production, resistance
to diseases, and stress tolerance [38]. The combination of natural and anthropogenic factors
leads to the spread of heavy metals (Cd, Cr, Pb, Al, Hg, etc.) in soil through volcanic
eruptions, industrial activities, and modern agricultural practices. These elements play no
role in fundamental metabolic processes and do not have major physiological functions in
plants. All of these factors can trigger changes spontaneously, intentionally or as a result
of metabolic activity. The diversity of biotic and abiotic factors in plants is illustrated in
Figure 1.
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Figure 1. Plants can be subjected to stress due to both biotic factors, such as pathogens, pests, and
direct animal and human influences, and abiotic factors, such as diverse climatic changes, soil and air
pollution, and magnetic fields. These stressors can act individually, simultaneously, or in various
combinations, and disrupt plant homeostasis, impede growth, and impact development in wild
populations and cultivated field crops.
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3. Impact of Abiotic Stress Factors on the Plant Genome: Direct Effects

Environmental factors or treatment with agents can affect plant biological macro-
molecules (DNA, proteins, and lipids) in a direct or indirect manner, leading to oxidative,
genotoxic, and cytotoxic effects on plant cells. These effects can cause genomic instability,
mutation, carcinogenesis, or even cell death, which can negatively impact plant health
and result in reduced crop yield [33,39]. The inability of cells to preserve the integrity
of their own genome is linked to primary damage in their biomolecules. The nature of
primary DNA damage is similar, regardless of it occurs in microbial, animal, or plant
genomes. Whether it originates from external or internal sources, damage can be hydrolytic
(cleavage of glycosidic bonds, deamination of cytosine analogs, and depurination) [39];
alkylating [40]; oxidative damage [41]; damage caused by low or high LET radiation
(single and double strand breaks, SSBs and DSBs, cluster damage); UV-induced damage
(photolesions); or damage caused by base analogs and intercalating agents, crosslinking
agents, and protein inhibitors, as illustrated in Figure 2 [42–44]. Plant ability to respond to
DNA damage caused by stress is dependent on various factors, including their anatomy
and morphology, behavioral abilities, physiological resilience, phenotypic flexibility, and
the effectiveness of DNA repair mechanisms [44–46]. Most environmental factors have a
complex mode of action and can directly affect the sugar-phosphate backbone of DNA and
lead to the formation of SSBs and DSBs or necessitate metabolic activation.

Hydrolytic DNA damage can occur spontaneously or as a result of stress caused by
heating, alkylation of bases, or the action of N-glycosylases [44]. Some of these changes
lead to the formation of abasic (apurinic or apyrimidinic, AP) sites. In maize root tip cells,
spontaneous hydrolytic DNA damage occurs at a frequency of 3.75 × 105 per genome/per
cell during the first 20 h of seed imbibition [47]. According to Britt [39], hydrolytic damage
is a common event in the plant genome due to constant exposure to oxygen and UV light.
Under stress conditions, the incidence of this type of DNA damage considerably increases.

Exposure to high temperatures can result in an accumulation of hydrolytic damage
(such as deaminated cytosine and AP sites) and oxidative damage (such as 8-oxoguanine) in
the plant genome [48]. However, plants have the ability to effectively cope with a significant
amount of DNA damage through mechanisms that include tolerance or an enhanced repair
capacity [49].

Oxidative damage in plant cells is one of the best studied phenomena. Sunlight, specif-
ically its most energetic components (low and high LET; UV radiation), along with air pollu-
tants such as ozone, possess enough energy to excite electrons and ionize water molecules.
This results in the formation of water radiolysis products (reactive oxygen species, ROS),
hydrated electrons (eaq

−), ionized water (H2O+), hydroperoxyl radicals (HO2•), hydroxyl
radicals (•OH), hydrogen radicals (H•), reactive nitrogen species (RNS) [49,50], and hydro-
gen peroxide (H2O2). These events occur within a very short period of time (~10−8 s) [51].
During stress, there is typically an increase in the imbalance between the production and
scavenging of ROS [52–54]. Recently, two pathways of ROS generation in plant cells have
been identified: through plasma membrane-bound nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase and peroxidase; or during “electron leak” in chloroplasts, mi-
tochondria, and peroxisomes [55]. Furthermore, different types of ROS have varying levels
of reactivity towards DNA. Møller et al. [56] found that among all ROS, only •OH is able to
quickly react with DNA molecules. Furthermore, singlet oxygen can also react with DNA,
but it primarily does so with guanine. ROS-induced damage to the genome can take many
forms, including more than 100 different types of base damage (e.g., single pyrimidine
and purine base lesions, inter- and intrastrand crosslinks, purine 5′, 8-cyclonucleosides,
DNA–protein adducts, etc.) [57]. Extreme temperatures (frost, cold and heat stress), salinity,
drought, water and nutrient imbalance, and high light intensity can trigger oxidative dam-
age in the plant genome [58]. Accumulation of ROS can disrupt the photosynthetic system,
carbohydrate metabolism, and some plant cell structures and mechanisms, regardless of
whether oxidative damage is caused by endogenous processes or external agents [49,59].
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Figure 2. Overview of the main types of DNA lesions observed in plant genomes in response
to abiotic stress. Radiation as a stressor can lead to the accumulation of various types of DNA
damage in plant cells, including direct DNA damage (SSBs, DSBs, and cluster damage), photolesions
(6-4 photoproducts and cyclobutane-pyrimidine dimers), base damage, and interstrand crosslinks,
depending on the radiation properties (high or low LET). Temperature, water, and salt stress can
cause direct DNA lesions and oxidative damage due to an overproduction of ROS. Heat stress can
also lead to hydrolytic lesions, similar to those caused by heavy metal stress. Primary alkylated
damage is not connected to the stress factors shown in the figure as it results from the application of
alkylating agents, which are not typical stress factors for plants. The relationships between specific
DNA lesions and stress factors are indicated by arrows.

To combat the detrimental effects of oxidative damage, plants have developed a variety
of antioxidant regulatory systems, both enzymatic and non-enzymatic [58]. Furthermore,
plants possess mechanisms for tolerance, such as ignoring or neglecting induced DNA
damage without repair, as discussed by Roldán-Arjona and Ariza [49]. Oxidative stress
is often accompanied by nitrosative stress [60]. Activation of RNS, such as NO and nitric
dioxide (NO2), as well as nonradicals, such as nitrous acid (HNO2) and dinitrogen tetroxide
(N2O4), when combined with superoxide radical (O2•) can lead to disruptions in lipids,
thiols, proteins, and DNA bases [56,61]. These signaling molecules are typically associated
with the response to abiotic and biotic stresses, but they also play a crucial role in regulating
various processes in plants, such as metabolism, growth and development, solute transport,
autophagy, and programmed cell death (PCD) [62]. Despite their importance in plant stress
response, their potential role in IR stress has not been fully explored [61]. Primary alkylated
DNA lesions are a common occurrence in plant genomes, regardless of their endogenous
or exogenous origin. They result from the addition of alkyl groups (such as methyl or ethyl
group) to oxygen and nitrogen atoms within DNA bases and phosphodiester bonds [43].
These lesions have genotoxic, cytotoxic, or mutagenic properties because they can obstruct
gene transcription and replication process within the plant genome.

Secondary damage to the genome, such as AP sites, DNA strand breaks, and inter-
strand crosslinks, can also occur [63]. In human genomes, the most common alkylated
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DNA lesions are N7-methylguanine and N3-methyladenine [43,64]. These types of DNA
damage can block replication and transcription, leading to the formation of AP sites [64,65].
AP sites can be produced spontaneously or enzymatically during base excision repair (BER).
In Arabidopsis, it has been suggested that different groups of endonucleases are active for
the removal of AP sites [65].

The use of alkylation damage in plants is often utilized in breeding and genetic mod-
ification programs. There are different types of alkylating agents, which are classified
by the number of reactive sites as monofunctional, bifunctional, and polyfunctional [66].
These agents can also be classified by their specific nucleophilic substitution reactions,
either as monomolecular nucleophilic substitution (SN1) or bimolecular nucleophilic sub-
stitution 2 (SN2) [67]. SN1 agents can affect both nitrogen and oxygen atoms on the bases,
while SN2 agents mainly affect ring nitrogen atoms (N1, N3 and N7) on the bases. These
mutations have been utilized to improve cereal crops and medicinal plants, as well as to
breed Capsicum annuum in order to obtain economically valuable traits. Examples of SN1
alkylating agents include N-methyl-N-nitrosourea (MNU), ethyl methanesulfonate (EMS),
and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), while an example of SN2 agents is
methyl methanesulfonate (MMS) [68,69].

The main components of solar radiation, namely UV-B and short-wavelength UV-C,
induce direct photolesions, such as cyclobutane pyrimidine dimers (CPDs) or pyrimidine
(6-4) pyrimidone photoproducts (6-4 PPs), as well as indirect DNA damage through the
accumulation of ROS. UV-A radiation primarily causes SSBs, alkali-labile lesions, and
oxidative DNA damage due to the low level of absorption by DNA [70].

Exposure to IR, both high and low LET, primarily causes base damage and direct
DNA strand breaks, including SSBs and a small number of DSBs (<5%). These breaks occur
randomly throughout the plant genome. Depending on the intensity of exposure, AP sites
and cluster damage may also occur [71]. It is known that low doses of low LET radiation
do not usually cause breaks in the DNA chain. When such breaks do occur, they are more
likely to be SSBs than DSBs [72]. SSBs are less severe for the genome as they can be repaired
quickly, usually within a minute, as the cell has a copy of intact DNA and can restore its
structure during repair. However, if there are more than 100,000 SSBs, cell-cycle arrest may
occur. In contrast, DSBs are primarily caused by the breakage of phosphodiester bonds
between the sugar residues of two complementary DNA, which occur 10–20 bp apart in
both DNA strands [73]. It is known that one to ten DSBs can lead to cell-cycle arrest and
ultimately cell death [74]. DNA strand breaks can also be caused by other complex types of
abiotic stressors. For instance, heat stress can lead to SSBs and DBSs [48], while cold stress
can cause DNA damage, including DSBs in root stem cells [75].

Clustered DNA damage refers to complex DNA injury (including DSBs and non-DSBs)
that occurs when there are at least two or more lesions of the DNA helix resulting from
single exposure to IR or treatment with radiomimetic agents [76,77]. This type of damage
includes harm to DNA bases, SSBs, and AP, as well as modifications to sugar residues [76].
It is believed that cluster damage mainly occurs as an indirect effect of radiation expo-
sure and is highly dependent on the neutralization of free radicals and the structure of
chromatin [78,79]. Research on the impacts of IR on plants offers an opportunity to study
changes in regions affected by radiation pollution, such as Chernobyl, Fukushima, and
the Marshall Islands, as well as in naturally radioactive areas [80,81], to track the adapta-
tion process. Additionally, using radiation in a controlled environment allows radiation
mutation breeding to create new plant varieties with desirable traits [82]. In addition to
traditional forms of radiation, such as X-rays and gamma rays, there is growing interest in
using high-energy particle radiation to enhance the quality of ornamental plants [83], and
economically important crops [83–85], as well as for algae biofuel production [86].

Plants often need to respond to multiple abiotic factors simultaneously, and the con-
sequences of these impacts can lead to secondary and tertiary stress. The most common
secondary stress in plants is oxidative stress (Figure 3), which is caused by an overpro-
duction and accumulation of ROS resulting from an imbalance in internal homeostasis.
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Heat stress causes a variety of changes in plants, including denaturation of proteins and
membrane instability, which in turn cause redox stress and an accumulation of ROS [87].
Exposure to radiation can also contribute to the occurrence of heat stress. Salt stress, caused
by high soil salinity, leads to both osmotic and ionic stress. The resulting osmotic stress
provokes a decrease in plant water content, which is also known as dehydration stress [88].
Dehydration stress primarily occurs during droughts, but it also occurs as a secondary
stress during cold, frost, and heat, as well as due to salt. It also occurs as a tertiary stress
following radiation stress [89]. Disturbances in K+/Na+ homeostasis, a result of ionic stress,
can alter plant metabolism, disrupt membrane structure, and change enzyme activity. These
changes can lead to an increase in ROS levels, resulting in the development of oxidative
stress as a secondary stress [90], as well as nutritional imbalances [88] (Figure 3). Drought
and salt stress elicit similar metabolic responses in plants [91].
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4. Dose–Response Models in Plant Ecotoxicology

Investigating the impacts of chemical agents on plants, known as plant ecotoxicology,
can be challenging due to the complexity of interpreting the relationship between the dose
of the agent and the observed biological effects. Basic models, such as dose–response
models, can aid in understanding this relationship by showing how different doses of
a chemical agent can lead to different levels of DNA damage in plants. The impact of
chemicals on plants can vary depending on the type of agent, concentration, duration of
exposure (acute or chronic)], and the mode of action in which the chemical acts on the
plant [92,93]. Furthermore, the choice of plant species, testing method (in vivo or in vitro),
and the way the chemical is absorbed and metabolized by the plant cells can also affect the
results of ecotoxicological research and the effects of the chemical on plants.
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Agents can be classified as genotoxic or non-genotoxic based on how they affect
cells [93]. Genotoxic agents cause damage to DNA and proteins, and this damage can be
classified as primary or secondary depending on whether or not an inflammatory response
is present [94]. Primary genotoxins interact directly with cellular components and DNA
and lead to the formation of harmful molecules, such as ROS/RNS. They can damage
DNA directly or indirectly through the production of free radicals in the mitochondria and
membrane-bound NADPH oxidases [94]. Toxicity tests, both in vivo (using live animals)
and in vitro (using cell/tissue cultures of human or animal origin), aim to determine the
effective dose of the agent that leads to a carcinogenic effect. Non-genotoxic or epigenetic
agents primarily affect cell behavior rather than DNA. These agents include tumor pro-
moters, endocrine modifiers, receptor mediators, immunosuppressants or elicitors, and
can cause tissue-specific toxicity and inflammatory responses [95]. Most of the agents have
little or no impact on plant health as plants possess mechanisms to prevent the spread of
tumor cells [96]. On the other hand, some of these agents can be used to achieve specific
effects in plant cells through transformation. A key characteristic of these agents is that they
have a threshold dose, below which they do not produce a biological effect [93]. Similarly,
plants have a threshold radiation dose of 10 mGy·d−1 (417 µGy/h) before adverse effects
occur [97]. Genotoxic agents directly damage DNA and chromosomes and have mutagenic
effects that do not require metabolic activation. Pro-carcinogenic agents, which do require
metabolic activation to cause cancer, also belong to this group. Some inorganic substances,
such as metals or metalloids, can also be genotoxic. Their level and distribution in soil
and water are crucial for plant growth as some are essential micronutrients [98]. However,
excessive amounts could be harmful to both plants and humans. When metabolized by
plants, metals/metalloids can enter the food chain and accumulate in the human body,
causing harm. High concentrations of these substances in soil also lead to contamination
and decreased crop yield [98]. In plant model systems, various agents cause sublethal and
lethal effects [92]. These effects often have a specific dose–response relationship, which can
be linear or non-linear, with a threshold or non-threshold level. As previously mentioned,
non-genotoxic agents typically have a threshold dose, but it has recently been observed
that some genotoxic carcinogens also have threshold doses [93].

Haber’s law, one of the earliest models used to describe the relationship between dose
and response, states that toxic effects are related to both the concentration and duration
of exposure. This model suggests that even small doses of a substance can have an effect,
which means that exposure to low levels of a toxic substance over a long period of time
can be just as harmful as exposure to a higher level for a shorter period of time. However,
in reality, many toxic effects are found to be more influenced by the concentration of the
substance rather than the duration of exposure [99]. This means that the amount of a toxic
substance in a given environment is more crucial in determining its potential for harm
than the length of time when the substance is present. It is important to note that the
dose–response relationship is not always linear, and the toxic effects of a substance can also
depend on the route of exposure, the organism, and other factors.

Plants, like all biological systems, are complex organisms and their response to external
factors depends on various structural and behavioral factors. There are also notable differ-
ences in the way plants and animals respond to agents. According to Karban et al. [100],
plants tend to have a higher threshold for agents and a lower sensitivity compared to animal
models. The relationship between the amount of an agent (a drug or chemical) applied to
an organism and the resulting biological response can be represented by a dose–response
curve as illustrated in Figure 4. This type of graph illustrates the relationship between
the increased dose or the concentration of the agent and the corresponding increase in
biological response. There are two main types of dose–response curves, namely graded
and quantal. Graded dose–response curves describe the continuous relationship between
increased biological response and increased dose or concentration in the single biological
unit. These curves are characterized by four parameters as follows: potency (also known
as the half-maximal effective concentration or dose, denoted as EC50 or ED50), which is
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the dose that produces the maximum effect; slope, which describes how steep the curve
is; maximum, which is the highest level of response that can be achieved; and threshold
dose, which is the minimum dose required to produce any response [101]. On the other
hand, quantal dose–response curves describe the relationship between the proportion
of organisms experienced or a not particular effect, known as an “all-or-nothing” phe-
nomenon. Depending on the variation in biological response per unit dose or concentration,
different types of dose–response curves can be observed. These can include monotonic
curves, where the slope does not change sign; non-monotonic, where the slope changes
sign [102]; and curves with no dose–response relationship (WDR), characterized by a zero
slope [103]. Examples of different types of curves include linear, non-linear, threshold,
sigmoidal, saturation, and U-shaped curves.
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Figure 4. Hypothetical curves of the dose–response relationship. I. Monotonic type (blue background).
(a) Linear, sublinear and supralinear curves with no clear threshold. The lowest dose at which an
effect can be observed is named the threshold limit value (TLV); (b) threshold curves; (c) S-shaped
curves (saturation curve). The S-shaped curves are characterized by an increasing trend, reflecting
the beneficial effects on the plant organism as the dose/concentration gradually increases. II. Non-
monotonic (yellow background). (d) U-shaped or J-shaped curves; (e). inverted U- or β-shaped
curves. This type of curve reflects the hormetic response at low doses; (f) biphasic curve; (g) N-
shaped dose–response curves of HRS/IRR response in terms of DSBs and cell survival (adapted
from Thomas et al. [104] and Devic et al. [105]). III. Curves without dose–response relationship
(WDR) (green background). (h) Binary curve and bystander response (adapted from Prise and
O’Sullivan [106]).
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In plants, different stressors can produce various dose–response relationships de-
pending on the specific responses and the ability or inability to overcome a particular
stressor. Linear response models (Figure 4a,b) with or without threshold dose or concen-
tration (linear no-threshold, LNT; linear threshold, LT) have been used for over 90 years
as the standard model for assessing the risk of chemicals, radiation, and environmental
agents [107,108]. It should be noted, however, that this model may not always be appro-
priate for all types of stressors and its limitations should be taken into account. The LNT
model, originally developed to explain evolutionary processes [108], has become the main
model for assessing the risk of IR effects used by the World Health Organization (WHO)
and the Environmental Protection Agency (EPA) as the standard for human health protec-
tion. In this model, the biological effect is assumed to be proportional and have a linear or
linear-quadratic curve [109]. The linear no-threshold model is based on the principle that
radiation is extremely hazardous and there is no safe level of exposure. Even low doses of
radiation can result in heritable genetic mutations and tumorigenesis. The target effects
of radiation exposure on DNA molecules also follow this pattern [110], which is directly
related to the high-dose effects of radiation on human populations. However, this does
not necessarily apply to all types of stressors. Furthermore, this model does not always
explain the observed short- and long-term effects of low-dose radiation [111], which have
been observed in humans during space exploration, after the catastrophic nuclear disasters
in Hiroshima and Nagasaki in 1945, and those affected by nuclear disasters at Chernobyl
(1986) and Fukushima (2011) [109]. It is worth mentioning that alternative models, such as
the hormesis or threshold model, may better explain these effects.

When evaluating the risk for plants, it is important to consider both the potential
harm to the plant itself and the potential impact on human health through consumption
or other means. For instance, plants grown in areas with high radiation levels or heavy
pesticide use may contain dangerous levels of radionuclides or pesticides that could harm
humans if consumed [80,112]. Furthermore, doses or concentrations that would affect
humans have a greater impact on plants because they have a higher tolerance for radiation
and chemical exposure. It should also be noted that various factors, such as the type of
agent, the exposure level, the extent of contact with the plant, the accumulation in the plant,
the distribution in different plant parts, and the plant ability to neutralize the agent, are
crucial in determining the impact. It is also important to consider the context in which the
exposure takes place and the specific plant species and variety being studied.

5. Abiotic Stress Factors Elicit Off-Target Effects in Plants In Vivo

The wide variety of plant stressors leads to a number of biological effects. Ideally,
stressors only affect specific targets, such as the DNA molecule, resulting in targeted effects
that can be seen within one or two generations. However, in reality, organism response is
more complex and off-target effects, which are not fully understood, are also observed [113].
Despite limited research in this area, radiation exposure often leads to such effects in
animal and human model systems, and similar effects are seen in plants due to various
environmental stressors. The known off-target effects of radiation exposure, such as signal-
mediated effects, stress-induced genomic instability, transgenerational effects, sensitivity to
low doses, biphasic response or hormesis, and others, also occur in the plant genome under
environmental stress as outlined by the study of Joiner [114]. More research is needed to
fully understand the extent and mechanisms of these off-target effects in plants.

6. Signal-Mediated Effects in Plants

The signal-mediated effects deviate from the traditional target theory and there is
ongoing discussion regarding the dose–response relationship. There are two opposing
hypotheses. One states that these effects increase with dose, while the other argues that
they do not. Some researchers suggest that the effects reach a saturation point at low
doses and no further effects are seen at higher doses [104,115,116]. Others consider that
a binary response, with a clear threshold dose below which no effects are observed, is
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also possible [104]. The shape of the dose–response curve describing these effects is still
under investigation and can vary depending on the specific stressor and plant species.
Typical dose–response curves describing these effects are shown in Figure 4h. The term
“signaling-mediated effects” encompasses two physiological phenomena called bystander
and abscopal effects, which refer to the ability of untreated cells to pick up stress signals
from treated cells, displaying similar changes [117]. These two effects can be differentiated
based on the location of the stress response, either in neighboring cells or in distant organs
from the site of stress application (“out-of-field”), respectively [118]. The mechanisms
that lead to signaling-mediated effects in plants are still being studied, with some theories
suggesting that they result from intracellular gap–junction communication [119] or by
extracellular low-molecular-weight factors released in the growth medium, such as ROS,
cytokines, calcium ions, and short RNAs [120–123]. The transmitted signals can be harmful
or beneficial to the organism, which are referred to as the “kiss of death” and “kiss of
life”, respectively [119]. It is known that even low doses of high and low LET radiation
can induce radiation bystander effects. Research on signaling-mediated effects in plants
began relatively recently with reports on the occurrence of bystander/abscopal effects in
plants [120,121]. In these studies, the researchers showed that post-embryonic developmen-
tal defects occur in Arabidopsis thaliana after exposure to α-particles and low-energy heavy
ions in the shoot apical meristem embryo or intact seeds. Furthermore, some researchers
have proposed that the activation of auxin-dependent transcription processes by ROS [124],
as well as an increase in homologous recombination events caused by the induction of
long-distance DNA damage [125,126], may be responsible for this phenomenon. These
findings have been supported by research of Medicago truncatula when studying bystander
effects [127]. Further examination of the mechanisms underlying bystander effects has
revealed changes in DNA methylation patterns and histone modification [128,129], as well
as hormone levels [130]. Evidence of chromosomal damage, including rearrangements
and sister chromatid exchanges (SCEs), micronuclei, mutations, cell death, altered gene
expression [131], and differentiation and changes in microRNA (miRNA) profiles, have
also been found [50].

It has been shown that when Arabidopsis plants grown in Petri dishes are irradiated
with UV-C and X-ray, communication between plants leads to phenomenon bystander
effects [132]. Similar reactions have also been observed in response to various abiotic
stress factors, as well as to biotic stressors, such as pathogen infection and pest infesta-
tion [133,134]. When one tobacco plant was infected with tobacco mosaic virus, it resulted
in an increased frequency of homologous recombination events that spread to uninfected
tissue in both a sensitive and resistant cultivar [133]. Other bystander-like effects have
been observed in plant–plant interactions when volatile organic compounds emitted by
herbivore-damaged cabbage plants trigger the production of defense traits in nearby un-
damaged plants in field conditions [135].

7. Transgenerational Memory Effects in Plants

Plants need to adapt better to constantly changing environments in order to pass on
their acquired memory to future generations. This can occur through short-term memory
factors, such as stress-induced signaling chemicals, proteins, RNAs, and metabolites in
the germline, or through changes in certain epigenetic features, referred to as long-term
memory factors [136,137]. Changes in the progeny of plants that occur one or two gen-
erations after stress are referred to as intergenerational stress response, while changes
that occur in several generation or result in permanent changes, called epimutations, are
referred to as transgenerational stress response [137]. The chronic effects of low-dose
IR on organisms can result in genetic changes that are inherited by the next generation.
Studies on the long-term consequences of nuclear power plant accidents, such as those
in Chernobyl and Fukushima, have shown that transgenerational heritable effects of IR
on plant germline are particularly evident. These effects include an increase in somatic
homologous recombination frequency and activation of the ROS scavenging system in
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plants [138,139]. There is also an increase in the activity of transposable elements [140].
Factors that contribute to transgenerational memory can include not only different types of
IR, but also various biotic and abiotic environmental factors [128,141–145]. Transmission
of environmental information through epigenetic marks is crucial for transgenerational
memory effects in plants. In recent years, there has been growing interest in studying these
phenomena, which can have both negative and positive impacts, such as increased genome
instability, higher stress tolerance, and cross-tolerance [146,147].

The epigenetic landscape of a plant that includes DNA methylation [148–151], post-
translational histone modifications [152], and small RNAs [153] can be dynamically altered
in response to environmental cues [154]. During cell division, DNA methylation patterns
are copied to newly synthesized DNA strands and are heritably transmitted from the parent
plants to their offspring. Differences in gene expression or phenotype within and between
populations can be attributed to stable “epialleles” where the variation in gene expression
is caused by epigenetic differences [151]. A well-studied example of such a phenomenon
is “paramutation”, wherein one gene allele can transfer epigenetic information to another
allele, resulting in a persistent and inheritable modification in gene expression [148,155].
Epigenetic marks can be removed or maintained during reproduction depending on de-
velopmental stage and tissue context of the gametes. For instance, DNA methylation can
be erased in male gametes but maintained in female gametes. This differential erasure
is called genomic imprinting and can result in distinct epigenetic inheritance patterns
across paternal and maternal lineages [156]. Following transmission to the next genera-
tion, epigenetic marks are interpreted and translated into changes in gene expression and
chromatin structure. One example is DNA methylation, which recruits proteins to modify
histones, leading to changes in chromatin and gene expression. These modifications are
critical for various developmental processes, stress responses, and adaptation to changing
environments. They can be transmitted across generations through mitotic and meiotic
divisions, contributing to transgenerational epigenetic inheritance. Histone modifications
are now recognized as important players in shaping the phenotype and evolution of plant
populations [151,152].

Epigenetic marks have varying capacities for long-term inheritance, with DNA methy-
lation being more stably transmitted than other regulators [156]. While histone modi-
fications are more likely to be reset during meiosis, they can work together with other
regulators to ensure transgenerational effects. Transgenerational memory can be induced by
coordinated epigenetic regulation driven by various factors, such as histone demethylases,
heat-shock transcription factors, and trans-acting siRNA biogenesis, to enhance growth
and attenuate plant immunity under increased temperature stress [151].

8. Stress-Induced Genomic Instability

Stress-induced instability describes de novo changes at the genomic and chromosomal
levels in the progeny of stressed cells, leading to increased carcinogenic susceptibility in
these cells. This instability can manifest as an abnormal cell state, such as an accumula-
tion of inherited genomic changes, such as gene mutations, high levels of microsatellite
or expanded simple tandem repeat (ESTR) mutation levels, and delayed cell death, or
epigenetic modifications, such as changes in DNA methylation, chromatin remodeling,
and gene expression [121,157,158]. In addition to genomic instability, stress can also result
in chromosomal instability, characterized by high levels of chromosomal rearrangements,
formation of micronuclei, increased somatic hyperrecombination, and changes in ploidy
levels. Several endpoints have been used to study radiation-induced genome instability
in plants, such as analyzing chromosomal aberrations in meiotic pollen mother cells in
rice [159], micronuclei formation and cell proliferation in tobacco cells [160], and rearrange-
ments between parental chromosomes in certain root meristem cells in interspecific tobacco
hybrids [161]. Significant insights into plant genome instability have been gained through
the examination of reconstructed karyotypes of plants produced through IR in breeding
practices and analyzed by comet assay [162,163]. It has been proposed that exposure to
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radiation may cause genome instability, potentially due to an increased accumulation
of inherited genomic rearrangements. The presence of specific mutations, such as dele-
tions and translocations, leads to different levels of genomic instability in the irradiated
progenitor offspring, which translates into different levels of sensitivity in the lines to
IR [162,164]. Initially, a basic understanding of genomic instability in plants came from IR
studies; however, further research has revealed that this type of instability can also occur
as a result of other methods used in plant breeding, for instance, physical, chemical, or
radiation mutagenesis. Recent studies have shown that stress-inducing factors, such as low
concentrations of EMS [165], herbicides [166], and salt and heat stress [142], can also lead
to genomic instability.

9. Bet-Hedging Strategy and Stress-Induced Transgenerational Tolerance of Plants

Plants have evolved various survival strategies to cope with environmental stress,
including bet-hedging and transgenerational stress tolerance. These strategies increase
phenotypic diversity and endurance, allowing plants to adapt and survive in changing
environments [147]. Bet-hedging can occur through an intergenerational nonheritable
effect, where the phenotype of the progeny is influenced by the environmental conditions
experienced by the parent [137]. Otherwise, bet-hedging can occur through a transgenera-
tional heritable effect, where the phenotype of the offspring is influenced by the natural
surroundings experienced by previous generations [167]. For instance, the Cape Verde
islands accession (Cvi-0) of Arabidopsis shows increased phenotypic diversity and en-
durance in response to high temperatures across two successive generations. The resulting
offspring are better adapted to survive in harsh environments. S1 and S2 generations
exhibit desirable traits, such as increased plant height, length, and more rosette leaves [168],
but these characteristics may diminish in subsequent generations [137]. Similarly, trans-
generational stress tolerance in plants refers to their ability to endure various degrees of
environmental stress [169], primarily determined by the parental exposure to stress, known
as priming stress [136]. Different environmental stressors can induce a phenomenon called
primed state and tolerance [169–172]. These stressors can be applied during various stages
of plant development, from seed germination to maturity. Several plant systems have been
identified as causes for transgenerational plant tolerance, including hormonal signaling
pathways, antioxidant defense systems, and epigenetic modifications [173]. The key aspect
of this tolerance is an enhancement in plant growth, yield, performance, and defense [169],
which is epigenetically controlled and can be sustained over multiple generations free of
stress [173]. This enables plants to not only endure challenging environments but also to
maintain an advantage over other individuals, while also increasing their overall fitness
and chances of long-term survival [174].

10. Cross-Tolerance

Many studies focus on explaining the effects on plants after being exposed to a single
stressor under controlled environmental conditions. However, these effects in natural and
field environments are a result of a combination of various biotic and abiotic stressors [175].
Cross-tolerance (cross-resistance or cross-protection) is a phenomenon in which preliminary
plant exposure to a mild primary stressor induces tolerance to subsequent exposure to
another, more severe stressor. There are three types of cross-tolerances in plants as follows:
1. Transcriptional overlap between different stress responses [2,175]; 2. Induced cross-
tolerance, in which the application of priming stress or suppression stress activates plant
stress memory and makes it tolerant to subsequent exposure to a different stress [175,176];
and 3. Inherent cross-tolerance, which is characterized by genetic overlap between different
stressors. The combined effect of two or more stressors can have a positive or negative
impact on plant development and metabolism [177]. Some stress factors may have similar
modes of action, using the same signaling molecules and mechanisms [178].

Due to biological plasticity, plants have the ability to readjust and enhance their
metabolism and quality characteristics. In this process, the disruption homeostasis of ROS,
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RNS, and RCS (reactive carbonyl species) in plants is crucial. Severe stress can cause an
overproduction of ROS (such as H2O2), leading to oxidative stress. In mild stress or in
severe but short-term stress, ROS function as signaling molecules and trigger tolerance
mechanisms in plants [2,175,176,178]. Other signaling molecules from the RNS family (e.g.,
NO) and RCS (e.g., methylglyoxal) play similar roles in building plant tolerance [176,178].
They lead to synergistic co-activation of glyoxalase and antioxidant systems in plants.
Tolerance mechanisms also include the accumulation of plant hormones, osmolytes, and
heat-shock proteins (HSPs), which contribute to the protection of cellular components,
membranes, and proteins by restoring osmotic balance in cells or serving as chemical mes-
sengers in signal transduction pathways [7,179]. The cellular signal transduction network
involves important players, such as HSPs, heat-shock transcription factors (HSFs), and
mitogen-activated protein kinases (MAPKs), which yield specific signaling and connections
between different types of stressors [176,178]. To help plants tolerate stress, the expression
of stress-responsive genes is controlled by adjusting the levels of specific miRNAs, a process
known as post-transcriptional gene regulation [178].

Phytohormones, including salicylic acid (SA), ethylene (ET), jasmonate (JA), abscisic
acid (ABA), auxin (AUX), brassinosteroid (BR), gibberellic acid (GA), cytokinin (CK), and
strigolactones (SLs), work together to activate defense gene expression and orchestrate
effective plant defense responses against abiotic and biotic stress [180,181]. Abscisic acid
(ABA) is considered the master hormonal switch that determines whether to prioritize
abiotic or biotic stress responses based on the specific nature of the stressors [24]. ABA
primarily regulates plant responses to drought, low temperature, and salinity, but it also
mediates defense against pathogens [179,182,183]. Jasmonic acid (JA) enhances resistance
against hemibiotrophic pathogens, improves tolerance to abiotic stress, and plays a crucial
role in plant response to a range of stressors, including drought stress, ozone stress, UV
stress, salinity stress, and cold and temperature stress [184]. JA interacts with other hormone
signaling pathways, such as auxin, ethylene (ET), ABA, salicylic acid (SA), brassinosteroids
(BRs), and gibberellin (GA), suggesting that JA may also function as a central signal in the
network of phytohormones. Salicylic acid is usually involved in the regulation of pathogen-
associated protein expression, but it also plays an important role in the response to abiotic
stresses, including drought, low temperature, and salinity stress [185,186]. When plants are
exposed to multiple stressors, such as drought and heat, they often exhibit increased levels
of ethylene, which promotes the expression of stress-responsive genes and enhances plant
ability to withstand multiple stressors [187]. Thus, cross-talk between phytohormones is a
vital component of plant defense responses under abiotic and biotic stress.

11. Low-Dose Hyper-Radiosensitivity and Radioresistance

The concept of low-dose hyper-radiosensitivity is well-established in mammalian
systems, where cells display resistance to high single doses of radiation but show sensi-
tivity to small single doses (Figure 4g). This is typified by a limited number of exposures,
such as high and low LET IR and chemotherapy drugs [114]. However, experiments on
low-dose hyper-radiosensitivity in plant models have not been adequately described [114].
Eriksson [188] is one of the few researchers to do so, reporting this phenomenon in irra-
diated maize plants after exposure to a dose of 50 cGy where the frequency of mutation
induction and lethality in pollen grains was higher than the spontaneous mutation rate. The
differences in radiation response at low and high doses of radiation are thought to be due to
the different sensitivity of the cell-cycle phases [189]. Further research is needed to fully un-
derstand the mechanisms underlying low-dose hyper-radiosensitivity in plant models and
to examine the implications of this phenomenon for plant breeding and crop production.

12. Biphasic Dose–Response Effects in Plants: Hormesis, Stress-Induced Priming, and
Adaptive Response

Although the existence of biphasic dose–response effects in plants has been known
since Darwin’s time, it has long been incorrectly associated with homeopathy, causing a
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stagnation in its study. Another reason for the lack of sufficient knowledge is that this
phenomenon has been studied by different disciplines. For many years, it was rejected by
governmental regulatory agencies because it contradicts the established dose–response
approach to risk assessment [190]. Recently, Calabrese and Agathokleous [190] reported
that there are over 30 different terms used to describe the biphasic dose–response model,
including U-shaped, adaptive responses, hormesis, priming, preconditioning, and others,
which all describe different aspects of the same phenomenon [191].

In plant studies, various terms have been employed based on the type of stressors.
For instance, Ancel and Lallemand [192] used the term “preconditioning” to refer to this
phenomenon in plants following X-ray irradiation. As noted in the review by Calabrese and
Baldwin [193], the concept of “chemical hormesis” can be traced back to the studies from
the late 19th century, which demonstrate the stimulatory effects of sodium hypochlorite
on seed germination and the influence of different metals on root growth. In the mid-
1970s, the term “adaptive response” was utilized to describe the same phenomenon that
occurs after chemical mutagens, and later in the 1980s, it was also used for IR [194]. When
defense mechanisms were activated as a result of pathogens, arthropod attacks, or adverse
environmental conditions, the term “defense priming” was introduced [195,196]. In recent
years, this phenomenon has gained increased attention, leading to its deeper understanding.

Hormesis is considered a quantitative estimate of biological plasticity [197]. The
basis of hormetic response is prior exposure to a low dose or concentration of a stress
trigger (“priming” stress), which can reduce the toxic effects of subsequent exposure
of a higher dose or concentration (“challenge” stress) of the same or a different stress
trigger [194,198,199]. The hormetic dose–response curve is often depicted as a U-shaped or
J-shaped curve, with the main features being the hormetic stimulatory zone (HSZ) with
subinhibitory doses; the maximal stimulatory dose (MSD), which is the percentage change
from the control dose (usually <200% of control response) [200]; and the selection of the no
observable adverse effects level (NOAEL), or the zero equivalent point (ZEP) or thresholds,
followed by inhibitory doses where adverse effects are observed [201,202].

The effects of hormesis on organisms can be either harmful, known as distress, or ben-
eficial, known as eustress [202,203]. In plants, there are two main types of hormetic models,
namely inverted U-shaped and U-shaped (Figure 4d,e). The inverted U-shaped curve
describes a response in which low dose increases and high dose decreases plant growth and
photosynthesis parameters, genotoxicity, and mutagenesis [204]. The U-shaped curve, on
the other hand, shows a reduction in adverse effects at low doses and an enhancement of
adverse effects at high doses, as can be observed in defense mechanisms such as activities
of the major scavenging enzymes, such as ascorbate peroxidase (APX), guaiacol peroxidase
(GPX), superoxide radicals, endo-proteinase isoenzymes, carbonyl and malondialdehyde
groups, etc. [204]. A third type of hormesis dose–response curve with two dents has also
been proposed, but it is specific to plants and there is limited evidence of its existence.
This model has been observed in different plants under heavy metal stress [205,206]. The
scientific literature is abundant with research on the hormesis behavior of plants, which
is triggered by various stress factors. These effects are observed at different levels of bio-
logical organization, including cells, organs, organisms, and communities [107]. Hormetic
responses have been observed in plants following exposure to a wide range of agents
that affect plant growth and development, such as macro- and micronutrients [207,208],
biostimulants [209], herbicides and fungicides [210–212], heavy metals and metal ions,
nanoparticles [204,213–216], temperature [200], phytohormones [217], heat stress [218],
light [219], and pathogens [195].

A growing body of research has shown that both IR and non-IR exposure can have
hormetic effects on plants. In general, hormesis is associated with pretreatment of plants
with relatively weak exposure (called conditioning clastogenic dose), which increases
their resistance to radiation, followed by exposure to higher doses (or challenge dose)
of the agents some hours later [220]. Hormesis can be induced by both low and high
doses of radiation [221–223]. Typically, radiation hormesis in plants has a positive effect,
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resulting in increased germination, growth rate, height, weight, pigment content, flow-
ering, fertility, accelerated development, and increased radiation resistance. The degree
of hormesis depends on the genetic characteristics of the seeds or plant, moisture of the
seeds, type of low-dose radiation, and duration of irradiation [224,225]. The adaptive
response triggered by hormesis includes both short-term mechanisms, such as the use of
existing proteins, and long-term mechanisms, such as the expression of genes encoding
specific enzyme systems. Activation of HSPs, proteasomes, and kinase cascades can also
occur [225,226]. During hormesis, several mechanisms are activated in plants, including
the detoxification of ROS through increased levels of ABA, followed by increased levels of
H2O2, activation of DNA repair mechanisms, removal of damaged cells through apoptosis,
alteration of nitrogen metabolism, and stimulation of immune response [208,222,226–228].
The hormetic part of the adaptive response is associated with permanent genetic or epige-
netic changes [229]. Recent studies suggest that epigenetic mechanisms play a role in plant
adaptation and generation of transgenerational memories to stress [230]. It is worth men-
tioning that the complexity of hormesis requires additional research to fully comprehend
its underlying mechanisms.

13. Conclusions and Perspectives

In summary, research into the responses of plants to stress is rapidly growing and
many questions still need to be explored. The study of how plants handle stressors is
crucial, not only for agriculture and the environment, but also for the survival of all living
organisms. We summarized current knowledge on the direct effects of high doses or
concentrations of stressors on plants (target effects), as well as the effects seen at low
doses or concentrations (non-target effects), with a specific focus on the low-level effects
that deviate from traditional linear models and do not have a clear threshold in the dose–
response relationship. Prolonged exposure to stressors enables plants to adapt and become
more resilient, resulting in increased resistance. The response of plants to stress factors is
influenced by lifestyle and, in general, plants are more tolerant and able to withstand a
wider range of stressors than animals or humans. This is due to the various developmental,
physiological, biochemical, genetic, and epigenetic strategies they employ to overcome
stress conditions.

The information provided will assist plant scientists in identifying and investigating
these phenomena to gain a deeper understanding of the mechanisms behind plant stress
response. This response is a fundamental aspect of the natural world and understanding
it can yield predictions about the effects of excessive chemical use in agriculture and the
potential impacts of untested substances. By considering these factors, scientists and
policymakers can develop effective strategies for mitigating the effects of climate change
on plants and preserving their habitats and ecosystems.
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