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Abstract

Using area detectors for stress determination by diffraction methods in a single ex-
posure greatly simplifies the measurement process and permits the design of portable
systems without complex sample cradles or moving parts. An additional advantage
is the ability to see the entire or a large fraction of the Debye ring and thus deter-
mine texture and grain size effects before analysis. The two methods most commonly
used to obtain stress from a single Debye ring are the so called cosα and full-ring
fitting methods, which employ least-squares procedures to determine the stress from
the distortion of a Debye ring by probing a set of scattering vector simultaneously.
The widely applied sin2 ψ method, in contrast, requires sample rotations to probe a
different subset of scattering vector orientations. In this paper we first present a de-
scription of the different methods under the same formalism and using a unified set of
coordinates that are suited to area detectors normal to the incident beam, highlighting
the similarities and differences between them. We further characterize these methods
by means of in-situ measurements in carbon steel tube samples, using a portable de-
tector in reflection geometry. We show that, in the absence of plastic flow, the different
methods yield basically the same results and are equivalent. An analysis of possible
sources of errors and their impact in the final stress values is also presented.

1 Introduction

Area x-ray detectors allow the recording of residual elastic strain in a material along a
set of scattering vectors in a single measurement, so that the number of sample rotations
required for determination of the residual stress state is significantly reduced and, in some
cases, completely eliminated. This well-known fact formed the basis of traditional ‘film’
techniques, where Debye Ring(s) from a polycrystalline sample were captured on x-ray
sensitive photographic film using laboratory systems [1–3] or portable stress analyzers
[4]. A comprehensive review of such ‘single-exposure’ techniques was given by James and
Cohen in 1978 [5]. Within the last decade modern detectors which record and(or) read out
incident x-ray intensitites electronically from the cells of a pixellated area detector replaced
film. Publications utilizing these new area detectors reported ‘new’ techniques for the
analysis of residual stresses, where terms like ‘XRD2: Bidimensional X-Ray Diffraction’
[6] or ‘2-dimensional x-ray diffraction’ [7] were introduced. In contrast to the conventional
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sin2 ψ technique used with point detectors, which requires the measurement of strain in
at least two distinct sample orientations for plane stress states [8, 9], with area detectors
the residual stress can in principle be determined in a single exposure, irrespective of the
type of detector, or the terms used to describe it. This advantage, combined with the
miniaturization of image plates, x-ray sources and associated reading electronics, have
resulted in commercial portable apparatus designed for in-line and field measurement
applications, especially for ferrous metals [10]. An additional advantage of an area detector
is the ability to see the entire Debye Ring before analysis and thus determine texture and
grain size effects [11]. Due to these benefits, area detectors are specially well suited for
performing in-situ measurements, either at elevated temperatures or as function of applied
stress, i.e. references [12, 13].

Different approaches for the determination of the stress state from the information
contained in a single Debye exposure exist, such as the cosα method introduced by Sasaki
et. al [14–16] or the direct least squares fitting of the measured strain [17]. Despite the
attractiveness of these portable devices in both industrial and scientific applications, there
is no current agreement among experts on the most efficient, precise and accurate stress
determination formalism.

In this work, we compare the three proposed methods from both theoretical and ex-
perimental points of view. A code for the generation of synthetic 2D x-ray diffraction
patterns was developed and used to study the different methods’ sensitivity to misalign-
ment, detector calibration parameters as well as scatter in the data. For the experimental
assessment we have used a portable x-ray residual stress measurement apparatus (µ-X360
residual stress analyzer from Pulstec Industrial Co., Ltd.) to determine the residual stress
in 1010 Carbon Steel cylindrical tubes in-situ during tensile loading. The measurement
conditions, with tight space constraints for the detector, as well as the use of a non-flat
specimen, were chosen to approach those of actual applications. Several samples were
tested through the proportional limit and the residual stress at various loads was deter-
mined from single x-ray exposures, using both the cosα and the direct least squares fitting
methods. Measurements were performed at different sample orientations with respect to
the incoming beam to both assess its effect on the calculated stress, as well as to allow us
to use the sin2 ψ technique for comparison. We emphasize that our purpose is comparing
the stresses obtained by these techniques to each other, not to a known (applied) stress.
The latter case would be testing the accuracy of the techniques. However, portable resid-
ual stress measurement devices are easy to misalign during field measurements [10], and
if so, will measure the wrong stress value independent of the technique used. Our results
show that, for a mis-aligned machine all techniques will be in error by the same amount,
and in the case of a perfectly aligned sample all three would yield the correct stress.

2 Stress determination using area detectors

X-ray based techniques to determine the (elastic) strain and stress in a material rely on
the use of inter-planar spacing in a crystalline material as a built-in strain-gauge [7–9].
By measuring the lattice spacing d in a stressed sample and comparing its value with the
lattice spacing d0 of a stress-free sample (ideally identical to the stressed one in every other
aspect), we obtain the projection of the strain tensor along the scattering vector used in
the determination of d. Let (ψ, ϕ) be the polar angles that determine the scattering vector
q⃗s in sample coordinates,
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q⃗S =





sinψ cosϕ
sinψ sinϕ

cosψ



 =





q1
q2
q3



 (1)

Then the strain measured along the scattering vector at angles (ψ, ϕ) can be expressed
in terms of the strain components ϵij in sample coordinates as:

ϵψφ = (dψφ − d0)/d0 = qiqjϵij =ϵ11 cos
2 ϕ sin2 ψ + ϵ12 sin 2ϕ sin

2 ψ

+ ϵ22 sin
2 ϕ sin2 ψ + ϵ33 cos

2 ψ (2)

+ ϵ13 cosϕ sin 2ψ + ϵ23 sinϕ sin 2ψ

Due to the shallow penetration of x-rays in most materials, typically only near-surface
stresses can be measured, where due to boundary conditions the normal stresses vanish to
zero at the surface [8]. An additional hypothesis is the absence of steep strain gradients
[18, 19]. If that is not the case, a more detailed treatment is needed [20]. It is then
customary to assume a biaxial (or plane stress) stress state so that:

σij =





σ11 σ12 0
σ12 σ22 0
0 0 0



 =⇒ ϵij =





ϵ11 ϵ12 0
ϵ12 ϵ22 0
0 0 ϵ33



 (3)

We will further assume that the material’s elastic behavior can be described as isotropic
and homogeneous, so Hooke’s law takes the form:

ϵij =
1 + ν

E
σij − δij

ν

E
σkk (4)

Where Einstein’s summation convention is used throughout. With these assumptions
eq. (2) simplifies to:

ϵψφ =
dψφ − d0

d0
=

(

ϵ11 cos
2 ϕ+ ϵ12 sin 2ϕ+ ϵ22 sin

2 ϕ− ϵ33
)

sin2 ψ + ϵ33

Or, in terms of stresses:

dψφ − d0
d0

=
1 + ν

E
σφ sin

2 ψ −
ν

E
(σ11 + σ22) (5)

Where σφ = σ11 cos
2 ϕ+ σ12 sin 2ϕ+ σ22 sin

2 ϕ. Equation (5) is the basis of the sin2 ψ
method, that has been used for over 50 years as the x-ray method of choice for stress
determination [8].

Now we need to introduce the goniometer conventions that will relate the orientation
of the scattering vector in laboratory (diffractometer) coordinates with those in sample
coordinates (Figure 1). We will consider a 2D x-ray area detector oriented so it is normal
to the incoming (primary) beam and thus records backscattered beams diffracted from
the sample (2θ > π/2). Diffracted x-rays will, for a certain family of lattice planes, form
cones that will intersect the detector forming circles or Debye rings. The semi-angles of
these cones will be defined as 2η = π − 2θ, and the polar angle along each of the Debye
rings will be noted as α. Thus, for each point in the detector with coordinates (x, y), the
equivalent cone coordinates can be determined using [7]:
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tan 2η =

√

(x− x0)2 + (y − y0)2

z0
, tanα =

x− x0
y − y0

(6)

Where (x0, y0) describes the location of the incident x-ray beam in detector coordinates,
while z0 is the sample to detector distance. The scattering vector corresponding to each
point in the Debye ring also resides in a cone, in this case of semi-angle η. Since each
point in the ring corresponds to a different orientation of the scattering vector, there must
exist a transformation that relates its coordinates q⃗L in the lab system to those q⃗S in the
sample system.

q⃗L =





− cos η
− sin η sinα
− sin η cosα



 =





− sin θ
− cos θ sinα
− cos θ cosα



 =⇒ q⃗S =





sin η cosα
sin η sinα

cos η



 =⇒ (ψ, ϕ) = (η, α) (7)

[Figure 1 about here.]

We will now consider sample rotations (ω0, ψ0, ϕ0) defined according to Figure 1. The
transformation matrix between the two reference systems is then:

A =





− cosω0 sinψ0 cosϕ0 + sinω0 sinϕ0 sinω0 sinψ0 cosϕ0 + cosω0 sinϕ0 − cosψ0 cosϕ0
− cosω0 sinψ0 sinϕ0 − sinω0 cosϕ0 sinω0 sinψ0 sinϕ0 − cosω0 cosϕ0 − cosψ0 sinϕ0

− cosω0 cosψ0 sinω0 cosψ0 sinψ0





(8)
And so we can transform the coordinates by simple matrix multiplication.

q⃗S = Aq⃗L =





a11 a12 a13
a21 a22 a23
a31 a32 a33









− cos η
− sin η sinα
− sin η cosα



 =





sinψ cosϕ
sinψ sinϕ

cosψ



 =





q1
q2
q3



 (9)

It is instructive to consider some special cases of sample rotations (ω0, ψ0, ϕ0) that lead
to traditional scattering geometries commonly used in x-ray diffraction experiments.

2.1 Normal incidence

We consider now the case where ω0 = ψ0 = ϕ0 = 0. Now the primary x-ray beam is
normal to the sample surface, and thus sample and detector planes are parallel. Now, in
sample coordinates the scattering vector is simply:

q⃗S =





cosα sin η
sinα sin η

cos η



 (10)

And thus we have ψ = η, ϕ = α. In this geometry the polar angle ψ is fixed and the
azimuthal angle ϕ is equivalent to the polar angle along the Debye ring.

2.2 Conventional θ − θ geometry

In a conventional θ − θ experiment, the incident beam makes an angle θ with the sample
surface and if ψ0 = 0 the scattering vector is normal to the sample surface, too. This
implies that ω0 = η. In this geometry, the primary and scattered beam lie in a plane
containing the scattering vector when ψ = 0. In a two dimensional vector, this condition
is fulfilled at α = −π/2, and we get q⃗S = [001].
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2.3 Arbitrary ψ0 tilt with ω0 = 0

This is the case most relevant to our purposes, since it describes the geometry in the
portable x-ray stress measurement device utilized in this study. Now the scattering vec-
tor in sample coordinates can be written in terms of sample rotations and Debye ring
coordinates as:

q⃗S =





cos η sinψ0 cosϕ0 + sin η cosψ0 cosϕ0 cosα− sin η sinϕ0 sinα
cos η sinψ0 sinϕ0 + sin η cosψ0 sinϕ0 cosα+ sin η cosϕ0 sinα

cos η cosψ0 − sin η sinψ0 cosα



 (11)

We must remember that, in general, (ψ, ϕ) ̸= (ψ0, ϕ0), and the relationship to perform
the transformation (η, α) → (ψ, ϕ) is rather complex. Two special cases can be described
at angles α = 0, π, as can be seen in Figure 2: at α = 0 we have ψ = ψ0 + η, while at
α = π we have ψ = ψ0 − η. This means that, for this geometry, the points in the Debye
ring at α = 0, π can be used directly in the sin2 ψ method once the η angle is accounted
for.

[Figure 2 about here.]

2.4 The cosα method

One of the methods that allows the calculation of stress from a single measurement with
an area detector is the cosα method described by Sasaki et al. and others [14, 21] and
implemented in commercial instrumentation for residual stress determination. The basic
idea is to start from the expression of the scattering vector in sample coordinates in terms
of Debye ring coordinates, in the case of arbitrary ψ0. For simplicity we will restrict
ourselves to the sample-detector geometry depicted in Figure 1, where the incoming x-ray
beam is normal to the flat 2D detector and only a rotation along S2 in sample coordinates
is allowed. For a stress-free sample the scattering vectors lie along cones with semi-apex
angle η = θ − π/2 for each set of lattice planes fulfilling Bragg’s condition, producing a
series of concentric Debye rings. For every point in the detector with coordinates (x, y)

q⃗S =





cos η sinψ0 + sin η cosψ0 cosα
cos η sinψ0 sinϕ0 + sin η cosψ0 sinϕ0 cosα+ sin η cosϕ0 sinα

cos η cosψ0 − sin η sinψ0 cosα



 (12)

The strain projection along (η, α) coordinates could be written in terms of the scatter-
ing vector and strain components as ϵα = qiqjϵij . We will assume plane-stress conditions
and consider an elastic, isotropic and homogeneous material such that:

ϵij =
1 + ν

E
σij − δij

ν

E
σkk (13)

We can substitute to find the strain projection in terms of stress components:

ϵα =
1 + ν

E
qiqjσij −

ν

E
σkk (14)

Now we define parameters a1, a2 as:

a1(ϕ0) =
1

2
{[ϵ(α)− ϵ(π + α)] + [ϵ(−α)− ϵ(π − α)]} (15)

a2(ϕ0) =
1

2
{[ϵ(α)− ϵ(π + α)]− [ϵ(−α)− ϵ(π − α)]} (16)

5



From here we can now obtain:

a1(ϕ0) =
1 + ν

E
sin 2ψ0 sin 2η cosα [σ11(1 + cos 2ϕ0) + σ22(1− cos 2ϕ0) + 2σ12 sin 2ϕ0)]

(17)

a2(ϕ0) =
1 + ν

E
sinψ0 sin 2η sinα [σ22 sin 2ϕ0 − σ11 sin 2ϕ0 + 2σ12 cos 2ϕ0)] (18)

And we now consider the special case of ϕ0 = 0 to get:

a1(ϕ0 = 0) =
1 + ν

E
σ11 sin 2ψ0 sin 2η cosα (19)

a2(ϕ0 = 0) = 2
1 + ν

E
σ12 sinψ0 sin 2η sinα (20)

So by plotting the parameters a1, a2 as a function of cosα and sinα we obtain two
linear relationships, the slopes of which will be proportional to σ11 and σ12, respectively.

2.5 Full Debye ring fitting

For simplicity, let us continue assuming that ω0 = 0, so the scattering vector can still be
written as:

q⃗S =





cos η sinψ0 cosϕ0 + sin η cosψ0 cosϕ0 cosα− sin η sinϕ0 sinα
cos η sinψ0 sinϕ0 + sin η cosψ0 sinϕ0 cosα+ sin η cosϕ0 sinα

cos η cosψ0 − sin η sinψ0 cosα



 (21)

As we have seen, there is a linear relationship between the experimentally determined
strain projection ϵα and the strain components in the sample coordinates ϵij , where the
linear coefficients qi are simply the components of the scattering vector, meaning that:

ϵα = qiqjϵij (22)

Now the qi’s depend only on sample geometry parameters and Debye coordinates
ψ0, ϕ0, η, α and are thus known, so equation (22) represents a set of linear equations for
each polar angle α at which the strain is determined. The four unknowns are the ϵij (in
plane stress ϵ13 = ϵ23 = 0) and the independent terms ϵα are determined experimentally.
Since the number of α values probed is more than four (typically 360 at least), the system
is overdetermined and can be numerically solved in the least-squares sense.

Experimentally, the Debye ring is fitted to obtain 2θ(α) and then the strain is calculated
using:

ϵα = ln

(

sin θ0
sin θ(α)

)

(23)

2.6 Effect of diffraction volume

For diffraction to occur, the incident and diffracting beam vectors and the normal to the
diffracting planes must be co-planar, with the normal of the diffracting planes making equal
angles with the two wavevectors. Consequently distinct groups of grains, with parallel
diffracting plane normals, contribute to the diffraction profiles obtained at the various
ψ, ϕ, η, α coordinates. We define the total volume of such a set of grains as the information
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volume for these angular coordinates. All formulations discussed above for computing the
stresses from diffraction data assume that the same quasi-homogeneous bi-axial stress
tensor exists within all diffracting volumes sampled by all techniques. This is not a strong
assumption and must be verified experimentally on a case-by-case basis. For example,
this assumption is justified in shot-peened samples where, because of the random plastic
deformation field caused by multiple impacts, any pre-existing crystallographic texture is
destroyed in the peened layer, and the same macrostress distribution is obtained from all
reflections and all accessible ψ tilts of a given reflection. However, this is not the case for
samples plastically deformed in uniaxial tension [8]. In such cases, the results from the
three formulations might not agree.

3 Materials and Methods

3.1 Experimental setup

A miniature portable 2D x-ray apparatus (Pulstec µ-X360, Pulstec Corp., Japan) was used
to determine residual stresses in carbon steel tubular samples as a function of applied load.
This apparatus has been described elsewhere [10]; in brief, it consists of a low intensity
Cr Kα source with a filter and an image plate 30 mm in radius positioned normal to the
incident beam. Under these conditions, back-diffracted beams from the sample surface
are captured by the image plate at 50 µm resolution. Beam spot size is approximately 2
mm for the default 1 mm pinhole collimator, and angular coverage for a 40 mm sample to
detector distance is 2θ = 145◦ − 175◦.

An Instron 5984 Universal Testing Machine was used to apply a tensile load to the
specimens via pneumatic grips. The machine was operated in load control and strain was
recorded using a clip-on extensometer. Nominal loads corresponding to stresses in the
range of 0 - 275 MPa were applied in 25 MPa increments, and at each load one x-ray
diffraction pattern was acquired. Once a target load was reached it was held for the total
duration of the x-ray measurement, which in our case amounted to 40 s of exposure plus
50 s of image plate readout and processing time.

3.2 Samples

Samples studied in this work were seamless tubes 25.4 mm in diameter and with a wall
thickness of 1.24 mm, conforming to ASTM 179 and SAE J524 standards. The tube
material was very low carbon steel conforming to AISI 1010 specifications, which was cold
drawn and heat treated at 650 oC. The microstructure of this material is presented in
Figure 3: as expected from the composition, it consisted of primary ferrite with small,
isolated islands of pearlite. Ferrite grain size was determined to be (12± 2)µm by the line
intercept method.

Samples were checked for texture and phase composition by using a laboratory diffrac-
tometer using Cu-radiation with a graphite monochromator (figure S1 of the supplemen-
tary information): no significant texture was detected (see figure S2). Due to the very
low cementite content, no Fe3C peaks were observed. The use of tubular samples intro-
duced an additional set of alignment difficulties, when compared with the more typical
flat specimens, that were in our opinion more representative of actual applications where
complex geometries, tight space constraints and alignment difficulties are to be expected
(see Figure S3 in the supplementary information for actual pictures of the setup).

[Figure 3 about here.]
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3.3 Data analysis and stress calculation

Internal software supplied by the x-ray apparatus was used to compute detector parameters
(beam center and sample-to-detector distances) at zero external load. This approach
referred all subsequent measurements to this datum and ensured that, as long as the
applied load stayed below the elastic limit (and, consequently, did not change any initial
residual stresses), subsequent x-ray analysis would only yield the (uniaxial) applied stress
values. Nominal detector-to-sample distances were in the 35-50 mm range, which resulted
in only one Debye ring, from the (211) reflection of the BCC ferrite phase, being recorded.
We used a = 2.8664 Å as the unstressed lattice parameter at zero load for calculating the
sample to detector distance.

Detector tilt and/or distortion were determined by fitting the Debye ring to an ellipse
using the hypothesis that, for a residual stress-free sample in the absence of applied load,
any ellipticity in the Debye ring must be due to detector rotation. Since a deviatoric strain
tensor would also result in a deformed, elliptical Debye ring, we fitted the rings obtained
at zero applied stress using the full-ring procedure described previously and obtained a
‘fictitious strain’ (the strain state that would result in the same deformation of the Debye
ring as observed due to detector tilt) that was used to correct subsequently determined
strains under load.

For all stress calculations, the x-ray elastic constant, 1+ν
E

, was taken to be 5.71 TPa-1.
This value was computed from the quasi-isotropic elastic parameters for ferrite, E =
224GPa and ν = 0.28 . Utilization of Neerfeld-Hill or Kroener x-ray elastic constants, com-
puted from single-crrystal compliances for the (211) ferrite reflection ( 5.94 and 6.21 TPa-1,
respectively) would have uniformly shifted all calculated stress values by approximately
4% and 8% . Since the term 1+ν

E
is a multiplier in all three formalisms, comparing the

equivalency of their stress output is independent of the selection of elastic constants.
Two sets of data were acquired for each of the three different beam incidence angles

studied, at ψ0 = 0◦, 35◦, 45◦. This allowed us to study the effect of beam incidence angles
on stress calculation, and also to obtain a set of strain values at different ψ so as to be
able to use the sin2 ψ method for comparison. Nominal ψ values studied were 11.8, 23.2,
33.2, 46.8 and 56.8o; additionally the extensometer provided the strain at ψ = 90◦.

A code solving equation (22) in the least squares sense was implemented in MATLAB.
A slight modification of the fitting equation was performed so the variation of scatter-
ing angle θ(α) with the polar coordinate was performed directly without requiring the
specification of a stress-free reference angle θ0:

ln (sin θ(α)) = ln(sin θ0)− qiqjϵij (24)

This has the advantage that the stress-free angle θ0 is now the independent term and
can thus be obtained as part of the least-squares fit. The previous equation is, in theory,
valid for the general case of a triaxial stress state, however some simplifications can be
introduced for plane stress conditions, namely ϵ13 = ϵ23 = 0 and ϵ33 = −ν(ϵ11 + ϵ22),
where ν is the Poisson’s ratio of the material.

The produced code was tested by generating synthetic data sets, adding normal noise
and then fitting the resulting data to obtain the stress components and compare with the
initial values. Additionally, the impact of errors in the determination of some of the input
parameters (sample rotation) in the final stress result was assessed by means of these
simulations.
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4 Results and Discussion

Figure 4 shows the raw information from the image plate, showing some spottiness of the
Debye ring, also evidenced in the variation of the (211) Fe peak area along the Debye ring
and, to a lesser extent, in the change in FWHM of the peak. There are also variations in
the experimental 2θ vs α profiles as can be seen in figure 5, which shows the 2θ position of
the peaks as a function of α, along the Debye ring, for tests performed at ψ0 = 35◦, 45◦.
The measured profiles exhibit slight systematic undulations around the expected values:
these ‘undulations’ are along the α angle and are not related to the well-known oscillations
in sin2 ψ [22–26], but are due to the (proprietary) pixel intensity-data analysis algorithm
in this particular machine; these algorithms are inaccessible to the users. We also observed
these undulations in data measured from the calibration powders (annealed ferrite powder
with grain size around 1 µm) supplied by the system manufacturer [10]. Peak area plots
as a function of azimuthal angle (Figure 4, lower left panel) were uniform and allowed us
to discount effects of crystallographic texture.

[Figure 4 about here.]

[Figure 5 about here.]

As we saw in section 2.3 (and Figure 2), a single exposure that covers the whole Debye
ring also allows for the determination of stress using the sin2 ψ method, although only
using the two points that correspond to ϕ = 0, namely those at α = 0, 180◦. In this
case the information volume of the two-tilt sin2 ψ method is a subset of the information
volume of the Debye ring analysis. In light of this fact, we used diffraction data from a
single exposure to calculate the average axial stress and standard deviation using both area
detector-based single exposure techniques, and the two-tilt sin2 ψ method. This approach
somewhat alleviated the sampling issues arising from the use of multiple ψ tilts, with
completely independent information volumes. A comparison between the sin2 ψ and the
full Debye ring method can be seen in Figure 5: in addition to experimental Debye ring
profiles at different stresses, we plot simulated Debye rings where the input stresses value
is obtained from the sin2 ψ method. Reasonable agreement is observed.

Figure 6 shows axial (σxx) stresses calculated using single exposure methods (either
least squares fitting of the entire Debye ring or cosα) against stresses calculated using
the conventional (two-tilt) sin2 ψ approach. Black symbols represent averages over four
measurements at ψ0 = 35, 45◦ and error bars represent ± one standard deviation. For
completeness, individual measurements are plotted as well, using red symbols (hollow for
ψ0 = 35◦ and filled for ψ0 = 45◦). The dashed line, with slope of 1, denotes the locus of
identical values. The following observations can be made:

1-The precision of ‘real’ residual stress measurements on an enginering sample, ob-
tained under conditions which are similar to those encountered during typical field prac-
tice, is worse, by an order of magnitude, than the values quoted for ‘ideal’ samples, i.e,
±20 vs. ±2 MPa. This is consistent with past residual-stress measurement practice using
laboratory and field instruments. We again note that the scatter in the measured data in
this figure is related to the precision (not accuracy) of the particular system (instrument,
sample, measurement conditions).

2-The stress values obtained from both area-detector based single exposure techniques
are, within error, equal to the two-tilt sin2 ψ formulation for applied stresses in the elastic
range (Figure 7). For higher applied stresses we observe a systematic deviation of the
stresses measured by the single exposure techniques from the dashed line denoting 1-to-
1 correspondence with the two-tilt sin2 ψ formulation. As noted before, this deviation

9



might be caused by either (i) the elastic grain interaction stresses forming in response to
the heterogeneous distribution of plastic flow in the microstructure, and the correspon-
dent heterogeneous elastic residual strain distribution within the diffracting volumes, or
(ii) the modification of any existing residual stresses due to plastic flow, or a combination
of both effects [5]. This point should be taken into consideration in the selection of instru-
ments/techniques for measurements on samples with complex residual stress distributions,
as well as in the interpretation of the results. It might be possible to overcome these issues
with careful texture measurements, calibrated elastic constants and a better theoretical
framework. We are working on this issue and will report our findings in a later article.

[Figure 6 about here.]

[Figure 7 about here.]

5 Error analysis

Even though errors associated with the sin2 ψ method are extensively treated in the lit-
erature [8, 9], there are very few publications dealing with the errors associated with
single-tilt, area-detector-based, techniques. We used the equations presented in Section 2
to investigate the sensitivity of cosα and full Debye ring fitting formalisms to variations
in measurement parameters, such as 2θ values vs. α. We chose to study errors associated
with the angle ψ0 because it will be difficult to measure accurately for a portable detector
not mounted in a goniometer with precise reference to the sample. For this purpose, we
performed a series of calculations aimed to assess the impact of errors in the Debye ring
radius determination ∆(2θ) as well as error in sample rotation ∆ψ0. For the first case,
gaussian noise was added to the Debye rings with various standard deviations. For each
selected standard deviation, a total of 200 Debye rings were simulated with a uniaxial
stress of σxx = 0 and fitted (see figure 8 for an example), and the standard deviation of
the calculated stress was computed. Results are shown in the top panel of figure 9. Both
methods gave almost identical results, and it is clear from the data that both are robust:
if errors in 2θ were normally distributed (although admittedly, they usually are not) then
only a standard deviation of 10−2 would be required to determine uniaxial stress with a
relative error of 10%.

The errors in determination of the sample orientation have a much higher impact. To
assess this effect, Debye rings were calculated again for a uniaxial stress of σxx and different
orientations ψ0+∆ψ0, and later fitted with both methods using the ‘wrong’ value ψ0. The
bottom panel of figure 9 shows our results: the error in stress determination is larger for
larger δψ0 as expected, but also for a given δψ0 it is larger for smaller ψ0, meaning that
accurate measurements require large sample tilts which are less sensitive to misalignment.
Unfortunately, the irradiated area on the sample becomes much larger at higher ψ0 tilts;
which can cause defocussing errors. Further, this will limit the use of the technique to
strain fields which are homogeneous over larger areas, and away from features such as
fillets, weld-spots, key-ways, etc. which can cause rapid stress variations.

[Figure 8 about here.]

[Figure 9 about here.]
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6 Conclusions

We have rigorously compared the methods used for determining residual stresses from
diffraction profiles acquired with a portable x-ray measurement device utilizing an area
detector. Our results show that the cosα and the direct least squares fitting method for
the entire Debye ring are theoretically identical to the two-tilt sin2 ψ technique for a bi-
axial stress state which is homogeneous in the diffraction volumes of the three techniques.
Our experimental results using in-situ uniaxial loading verify this conclusion. We observe,
however, that plastic flow during loading impairs this equivalency. Consequently, we do not
recommend the application of these techniques to samples possessing general strain tensors,
or heterogeneous elastic strain distributions without careful calibration and analysis.
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is gratefully ackonowledged. The x-ray portable stress measurement device was kindly
supplied by Pulstec Industrial Co., Ltd. Authors would like to thank Toshikazu Suzuki
and Yoshinobu Teramoto for installation and technical support. J. Ramirez-Rico gratefully
acknowledges support from the Universidad de Sevilla Research Fund (V Plan Propio).

Compliance with Ethical Standards

The authors declare that they have no conflict of interest.

References

[1] K. Heindlhofer, Evaluation of Residual Stress. New York: McGraw-Hill Book Co.,
1948.

[2] C. S. Barrett, Structure of Metals. New York: McGraw-Hill Book Co., 1952.

[3] A. Taylor, X-ray Metallography. New York: John Wiley and Sons, 1961.

[4] R. J. Homicz, “Fundamentals and basic techniques of residual stress measurements
with a portable x-ray diffraction unit,” Society of Automotive Engineers Transactions,
vol. 76, no. s1, pp. 912–917, 1967.

[5] M. R. James and C. J. B, “The measurement of residual stresses by x-ray diffraction
techniques,” Treatise on Materials Science and Technology, vol. 19, no. A, pp. 1–62,
1978.

[6] M. Gelfi, E. Bontempi, R. Roberti, and L. Depero, “X-ray diffraction debye ring
analysis for stress measurement (drast): a new method to evaluate residual stresses,”
Acta Materialia, vol. 52, no. 3, pp. 583–589, 2004.

[7] B. B. He, Two-dimensional X-ray diffraction. John Wiley & Sons, 2011.

[8] I. C. Noyan and J. B. Cohen, Residual Stress. New York: Springer-Verlag, 1987.

[9] V. Hauk, Structural and residual stress analysis by nondestructive methods:

Evaluation-Application-Assessment. Elsevier, 1997.

11



[10] J. Ling and S.-Y. Lee, “Characterization of a portable x-ray device for residual stress
measurements,” Advances in X-ray Analysis, vol. 59, pp. 153–161, 2015.

[11] B. Boyce, T. Furnish, H. Padilla II, D. Van Campen, and A. Mehta, “Detecting rare,
abnormally large grains by x-ray diffraction,” Journal of Materials Science, vol. 50,
no. 20, pp. 6719–6729, 2015.

[12] J. Ramirez-Rico, F. Stolzenburg, J. Almer, J. Routbort, D. Singh, and K. Faber,
“In situ imaging and strain determination during fracture in a sic/sic ceramic matrix
composite,” Scripta Materialia, vol. 69, no. 7, pp. 497–500, 2013.

[13] B. J. Harder, J. Ramirez-Rico, J. D. Almer, K. N. Lee, and K. T. Faber, “Chemical
and mechanical consequences of environmental barrier coating exposure to calcium–
magnesium–aluminosilicate,” Journal of the American Ceramic Society, vol. 94,
no. article 670151, pp. s178–s185, 2011.

[14] T. Sasaki, Y. Hirose, K. Sasaki, and S. Yasukawa, “Influence of image processing
conditions of debye scherrer ring images in x-ray stress measurement using an imaging
plate,” Advances in X-ray Analysis, vol. 40, pp. 588–594, 1997.

[15] T. Sasaki and Y. Kobayashi, “X-ray multiaxial stress analysis using two debye rings,”
Advances in X-ray Analysis, vol. 52, pp. 248–255, 2009.

[16] T. Sasaki, Y. Maruyama, H. Ohba, and S. Ejiri, “Two-dimensional imaging of debye-
scherrer ring for tri-axial stress analysis of industrial materials,” Journal of Instru-

mentation, vol. 9, pp. C07066, 2014.

[17] A. Kampfe, B. Kampfe, S. Goldenbogen, B. Eigenmann, E. Macherauch, and D. Lohe,
“X-ray stress analysis on polycrystalline materials using two-dimensional detectors,”
Advances in X-ray Analysis, vol. 43, pp. 54–65, 2000.

[18] H. Behnken and V. Hauk, “Determination of steep stress gradients by x-ray diffrac-
tion—results of a joint investigation,” Materials Science and Engineering: A, vol. 300,
no. 1, pp. 41–51, 2001.

[19] M. Marques, A. Dias, P. Gergaud, and J. Lebrun, “A methodology development for
the study of near surface stress gradients,” Materials Science and Engineering: A,
vol. 287, no. 1, pp. 78–86, 2000.

[20] H. Dolle, “The influence of multiaxial stress states, stress gradients and elastic
anisotropy on the evaluation of (residual) stresses by x-rays,” Journal of Applied

Crystallography, vol. 12, no. 6, pp. 489–501, 1979.

[21] S. Taira, K. Tanaka, and T. Yamazaki, “A method of x-ray microbeam measurement
of local stress and its application to fatigue crack growth problems,” Journal of the

Society of Materials Science, Japan, vol. 27, no. 294, pp. 251–256, 1978.

[22] D. Chidambarrao, Y. Song, and I. Noyan, “Numerical simulation of the x-ray stress
analysis technique in polycrystalline materials under elastic loading,” Metallurgical

and Materials Transactions A, vol. 28, no. 12, pp. 2515–2525, 1997.

[23] I. Noyan and L. Nguyen, “Oscillations in interplanar spacing vs. sin2ψ a fem analysis,”
Advances in X-Ray Analysis, vol. 31, pp. 191–204, 1988.

12



[24] I. Noyan and L. Nguyen, “Effect of plastic deformations on oscillations in d vs. sin2 ψ
plots,” Advances in X-Ray Analysis, vol. 32, pp. 355–364, 1989.

[25] I. Noyan and J. Cohen, “Determining stresses in the presence of nonlinearities in
interplanar spacing vs. sin2 ψ,” Advances in X-Ray Analysis,, vol. 27, pp. 129–148,
1983.
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Figure 1: Schematic geometry used for the experiments and analysis perfomed in this
work
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Figure 2: Stereographic projection sample coordinates (S1, S2, S3) for the case of sample
rotations with ω0 = ϕ0 = 0. In this case the scattering vectors laying at α = 0, π
correspond to angles ψ = ψ0 ± η in sample coordinates.
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Figure 3: Microstructure of the 1010 carbon steel samples studied in this work: optical
microscopy (left) and scanning electron microscopy (right).
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Figure 4: Raw data from the image plate at zero applied stress, for the case of ψ0 = 35◦.
Top: normalized diffraction intensity as a function of 2θ and α. Bottom-left: peak area
along the Debye ring. Bottom-right: peak fwhm along the Debye ring.
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reflection, at different loads. Symbols correspond to experimental data while solid lines
are calculated Debye ring profiles using the stress obtained from the sin2 ψ method.
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range, which yielded 210 GPa as the (effective) Young’s Modulus. The ∆σ values (right
ordinate) show the difference between the extrapolated elastic stress and the actual load
cell output.

21



  155.5  156  156.5  157

30

210

60

240

90 270

120

300

150

330

180

0

0 100 200 300
155.9

156

156.1

156.2

156.3

156.4

156.5

α(º)

2
θ
 (

º)

(2 )=0.1º

  155  156  157  158

30

210

60

240

90 270

120

300

150

330

180

0

0 100 200 300
156.05

156.1

156.15

156.2

156.25

156.3

156.35

156.4

α(º)

2
θ
 (

º)

(2 )=0.01º

Figure 8: Simulated Debye rings and fitting results for the full-ring fitting method, after
adding gaussian noise.

22



10
-3

10
-2

10
-1

10
-2

10
-1

10
0

10
1

10
2

10
3

-4 -2 0 2 4
-50

-25

0

25

50

75

100

125

150

∆σ
xx

∆σ
xy

∆σ
yy

∆
σ
ij
(M
P
a)

∆(2θ) (degrees)

∆σ
yy

C
al
cu
la
te
d

σ
ij
(M
P
a)

∆ψ
0
(degrees)

ψ
0
=15º

ψ
0
=30º

ψ
0
=45º

∆σ
xx

Figure 9: Top: Error in the determination of stress as a function of error in 2θ (as one
standard deviation). The hollow symbols are for the full-ring fitting method while the
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