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Abstract
Main conclusion  Environmental-friendly techniques based on plant stress memory, cross-stress tolerance, and seed 
priming help sustainable agriculture by mitigating negative effects of dehydration stress.

Abstract  The frequently uneven rainfall distribution caused by global warming will lead to more irregular and multiple 
abiotic stresses, such as heat stress, dehydration stress, cold stress or the combination of these stresses. Dehydration stress is 
one of the major environmental factors affecting the survival rate and productivity of plants. Hence, there is an urgent need 
to develop improved resilient varieties. Presently, technologies based on plant stress memory, cross-stress tolerance and 
priming of seeds represent fruitful and promising areas of future research and applied agricultural science. In this review, 
we will provide an overview of plant drought stress memory from physiological, biochemical, molecular and epigenetic 
perspectives. Drought priming-induced cross-stress tolerance to cold and heat stress will be discussed and the application 
of seed priming will be illustrated for different species.

Keywords  Cross-stress tolerance · Dehydration stress · Drought priming · Drought tolerance · Epigenetic perspective · 
Plant stress memory · Seed priming

Introduction

Dehydration stress is one of the major environmental fac-
tors affecting the survival rate and productivity of plants. 
Dehydration leads to low water availability and adversely 
affects food security (Abdelraheem et al. 2019; Mahmood 
et al. 2020). In plants, the amount of water loss by transpi-
ration exceeds the amount of water up-take via roots, giv-
ing rise to dehydration stress (Chawla 2019). Water deficit 

causes cellular dehydration, accumulation of reactive oxygen 
species (ROS), cell death, and ultimately affects metabolism 
and growth (Farooq et al. 2009). To overcome this unfavora-
ble condition, dehydration-tolerant crops have been devel-
oped through breeding programmes or transgenic technolo-
gies or genome modification approaches (Mahmood et al. 
2020). More recently, potential solutions based on plant 
immune systems, including plant stress memory, cross-stress 
tolerance, and seed priming have emerged as efficient and 
favorable approaches for enhancing plant tolerance and crop 
yield without employing genetic engineering technologies 
(Wojtyla et al. 2020). Therefore, a better understanding of 
the mechanisms of these approaches is important for bio-
technological innovation of plant resilience.

Due to frequent climatic changes and extreme conditions 
occurring recently plants are likely to be exposed to mul-
tiple abiotic stresses during their whole life span, instead 
of single stress events (Li and Liu 2016). To survive stress 
and to adapt to harsh environments, plants have to find 
suitable ways to respond to recurrent stresses. It has been 
observed that pre-exposure to a mild biotic or abiotic stress 
can prepare plants for subsequent severe stress exposures 
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(Walter et al. 2011; Ramírez et al. 2015). This phenomenon 
is referred to as “plant priming”, which is considered as a 
potential way to improve stress tolerance, and it is related to 
“plant stress memory” (Bruce et al. 2007). The expression 
“plant priming” is generally used in the context of biotic 
stresses and application of chemicals for the first exposure, 
while the similar process is termed “hardening” or “acclima-
tion” in the context of abiotic stress (Sinclair and Roberts 
2005; Chen et al. 2012; Hilker et al. 2016; Savvides et al. 
2016). The concept of stress memory represents an intrinsic 
response to repeated stress events (Avramova 2015). Many 
efforts have been made to explore the mechanisms of stress 
memory in different plant species which have encountered 
diverse stresses (Ramírez et al. 2015; Walter et al. 2011; 
Wang et al. 2014, 2015; Shukla et al. 2015; Sun et al. 2018). 
The results show that stress memory is involved in modifi-
cations at different levels, including morphological, physi-
ological, transcriptional, translational, and epigenetic levels 
(Kinoshita and Seki 2014; Sun et al. 2018).

Cross-stress tolerance represents the tolerance to a second 
strong stress which differs from the first stress after expe-
riencing a primary mild stress. Cross-stress tolerance is 
achieved by the activation of multiple stress signaling path-
ways during the first stress encounter, and these activated 
pathways work synergistically or antagonistically during 
subsequent stress events (Hossain et al. 2018). It has been 
reported that the cross-stress tolerance gained from a single 
stressor can lead to the tolerance of multiple stresses (Herms 
and Mattson 1992; Li and Gong 2011; Ferreira-Silva et al. 
2011; Zhang et al. 2013; Li et al. 2014; Faralli et al. 2015). 
Cross-stress tolerance provides the possibility to understand 
common signaling molecules and to compare individual 
responses during different stresses (Hossain et al. 2016).

In addition to priming on the whole plant level, mem-
ory and cross-stress tolerance, the priming of seeds is also 
pivotal in managing stressful conditions. Seed priming is a 
treatment applied before sowing during seed imbibition (Sen 
and Puthur 2020). Seed imbibition involves three stages of 
seed development: rapid water uptake, saturation of water 
uptake, and water uptake together with the onset of cell divi-
sion and growth. The second stage appears to be the critical 
stage for seed priming (Cheng et al. 2017). Seed imbibi-
tion is a complex physiological and biochemical process, 
and many metabolic processes take place during the sec-
ond stage, including restoring of mitochondrial and cellular 
integrity, mobilizing of stored energy, synthesis of RNAs 
and proteins (He and Yang 2013). Seed priming is a crucial 
technology for uniformity of germination and seedling estab-
lishment under adverse environmental conditions.

This review summarizes the physiochemical and molecu-
lar perspectives of plant stress memory, and illustrates how 
cross-stress tolerance and seed priming can contribute to 
stress tolerance.

Physiological and biochemical perspectives 
of drought stress memory

To optimize growth and reproduction in frequently chang-
ing environments, plants may adjust their physiology to 
give rise to structural and physiological adaptations (Fleta-
Soriano and Munné-Bosch 2016). Many plant species dis-
play a drought stress memory on the physiological and 
biochemical level, to minimize water loss, to obtain ROS 
homeostasis, alterations of photosynthetic rates, variations 
of phytohormone contents, or changes in biomass (Ding 
et al. 2014; Ramírez et al. 2015; Wang et al. 2015; Li et al. 
2016; Abdallah et al. 2017; Neves et al. 2017).

The rate of water loss from plant leaves has been pro-
posed as a basic parameter to reflect the growth conditions 
of plants. In Arabidopsis thaliana plants, which underwent 
a drought stress treatment, the stomata were still partially 
closed during the well-watered recovery period, which is 
beneficial for water conservation if exposed to a subse-
quent dehydration stress (Virlouvet and Fromm 2015). A 
repetitive dehydration/rehydration system was developed 
by Ding et al. (2012) to determine whether A. thaliana 
plants retain a drought stress memory. A significant lower 
water loss rate was observed during the second, third and 
fourth dehydration stress compared to the first stress (Ding 
et al. 2012). Similarly to A. thaliana (Ding et al. 2012), 
maize or the desiccation tolerant resurrection plant Crater-
ostigma plantagineum plants pre-exposed to dehydration 
had a higher relative leaf water content (RWC) than the 
non-trained plants when exposed to a subsequent dehydra-
tion episode (Ding et al. 2014; Liu et al. 2019). Studies 
on three contrasting potato genotypes (Solanum tubero-
sum L.) found that a pre-treatment of drought acclimation 
cycles reduces leaf wilting, induces thicker cuticular layers 
and more open stomata under a subsequent drought stress, 
compared to a direct application of drought without pre-
treatment (Banik et al. 2016).

Generally, ROS are kept at relatively low levels in 
plants under optimal growth conditions with a balance 
between ROS scavenging and ROS production (Hossain 
et al. 2016). Elevated ROS production is caused by stress, 
and the major source of ROS production are organelles 
with high oxidative activities (eg. peroxisomes, chloro-
plasts, and mitochondria) (Sharma et al. 2012). Studies on 
a drought sensitive cultivar of olive cv. Chétoui showed 
that pre-exposure to drought induces a better maintenance 
of ROS homeostasis by increasing contents of polyphe-
nols and activities of ROS scavenging enzymes like 
guaiacol peroxidase (GP), superoxide dismutase (SOD) 
and catalase (CAT) decreasing the content of hydrogen 
peroxide (H2O2) and malondialdehyde (MDA) (Abdal-
lah et al. 2017). Amoah et al. (2019) reported that lipid 
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peroxidation, reactive oxygen species, membrane stability, 
antioxidant enzyme activities, and the contents of H2O2 
and osmolytes increased in wheat plants with drought 
acclimation under subsequent water stress treatments com-
pared to non-acclimated plants.

The photosynthetic rate is sensitive to abiotic stress, espe-
cially dehydration stress. Decrease of photosynthesis under 
water deficit is initially caused by low levels of CO2 diffu-
sion from the atmosphere to the carboxylation site (Lawlor 
and Tezara 2009; Wang et al. 2015). Pre-exposure to mild 
drought could maintain the photosynthetic electron transport 
in the photosynthetic apparatus of barley plants during a 
subsequent cold stress (Li et al. 2016). A better photosyn-
thesis rate during severe stress was obtained by exposing 
winter wheat plants to a mild drought treatment (Li et al. 
2014). A drought stress memory was also reported for Apte-
nia cordifolia plants which encountered repeated stresses 
(Fleta-Soriano et al. 2015). The A. cordifolia plants exposed 
twice to drought stress had increased chlorophyll a/b ratios 
compared with a reference group not exposed to a mild stress 
(Fleta-Soriano et al. 2015).

Abscisic acid (ABA), an essential phytohormone, 
increases in response to dehydration through a complex 
equilibrium of synthesis, degradation or conjugation (Kim 
2012; Finkelstein 2013). A study of A. cordifolia plants 
found that ABA levels increased in leaves which encoun-
tered two subsequent drought stress episodes compared to 
plants which were only exposed once (Fleta-Soriano et al. 
2015). Neves et al. (2017) observed that citrus plants which 
underwent multiple exposures to dehydration also had higher 
ABA levels compared to plants stressed only once. Research 
on spring wheat (Triticum aestivum L. cv. Vinjett) showed 
that the wheat plants pre-exposed to a moderate water deficit 
had higher concentrations of ABA compared to non-primed 
plants, and the pre-exposure eventually resulted in higher 
grain yields (Wang et al. 2015).

In plants, a drought stress memory can positively influ-
ence biomass or grain yield through efficient regulations of 
water loss, ROS levels, and photosynthesis. In long-term 
stress memory experiments, the yield of potatoes was inves-
tigated using primed or non-primed tubers (Ramírez et al. 
2015). Potato tubers which had been subjected to priming 
through a mild dehydration treatment had a higher tuber 
yield than the ones produced in well watered conditions, 
when the potatoes had been grown in similar conditions 
(Ramírez et al. 2015). The biomass of Arrhenatherum ela-
tius plants which had been pre-exposed twice to drought 
stress was higher than that of plants which only encountered 
a single drought stress (Walter et al. 2011). Wheat plants 
were used to explore the possible effect of drought stress 
memory during plant development (Wang et al. 2014). The 
ascorbate peroxidase activity and photosynthesis rate of 
wheat plants primed before anthesis were higher whereas 

the content of malondialdehyde was lower than in the non-
primed wheat plants, and higher grain yield was obtained 
than in non-primed plants during a severe drought encoun-
tered during the grain filling stage (Wang et al. 2014). A 
moderate drought stress during the vegetative state in spring 
wheat alleviated yield loss caused by drought during the 
grain filling stage (Wang et al. 2015).

Molecular mechanisms and epigenetic 
changes in drought stress memory

Research on drought stress memory suggests that regulatory 
mechanisms on the transcriptional level differ in response to 
a single stress stimulation and repeated stress stimulations 
(Avramova 2015; Berry and Dean 2015). Changes of gene 
expression patterns related to stress memory are often cor-
related with changes of the chromatin status (Campos and 
Reinberg 2009). The molecular responses of the stress mem-
ory act on two levels cis-mechanisms and trans-mechanisms. 
This means that a memory is generated on chromatin marks 
(including DNA methylations and histone modifications) 
and a memory is maintained by feedback loops and cytosol 
partitioning (Bonasio et al. 2010; Berry and Dean 2015; de 
Freitas Guedes et al. 2019).

Epigenetic mechanisms like DNA methylations, histone 
modifications and chromatin structure alterations play an 
important role in the regulation of gene expression which 
contribute to epigenetic inheritance in plants (Chinnusamy 
and Zhu 2009; Friedrich et al. 2019). Changes on the epi-
genetic level are often inherited or transmitted to the next 
generation through mitotic cell divisions (Kinoshita and Seki 
2014).

DNA methylation

DNA methylation is a heritable epigenetic mark which is 
linked to transcriptional repression (Ueda and Seki 2020). 
DNA methylation is catalyzed by DNA methyltransferases 
on the fifth carbon of cytosine bases symmetrically (CG 
and CHG, H = A, T, or C) and asymmetrically (CHH) (Han 
and Wagner 2014; Vyse et al. 2020). DNA methylation is a 
reversible process and associates with plant development and 
environmental responses (Hu et al. 2013). By comparing the 
DNA methylation patterns of drought sensitive and drought 
tolerant rice plants changes of DNA methylation were more 
frequent in drought tolerant rice plants than in drought 
susceptible rice plants under drought conditions (Wang 
et al. 2011). To investigate the role of genome-wide DNA 
methylation patterns in drought stress memory, seedlings 
of A. thaliana were used in a simulated drought treatment. 
However, the results showed no correlation between DNA 
methylation levels and gene expression patterns (Colaneri 
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and Jones 2013). When on the other hand differential DNA 
methylation patterns were analyzed in rice plants using 
drought susceptible lines, drought tolerant lines, and their 
F1 hybrids DNA methylation was correlated with drought 
tolerance, and hypo-methylation of DNA was an indicator 
of drought tolerance (Joel 2013). DNA methylation patterns 
identified by DNA analysis provide evidence for drought-
induced DNA methylation associated with acclimation 
responses in rice (Sapna et al. 2020). Genome-wide bisul-
phite sequencing of rice plants uncovered that dynamic and 
distinct patterns of differentially methylated DNA regions 
are related to drought stress memory. These methylated 
regions contribute to short-term repeated drought stresses 
by regulating activity of transposable elements and gene 
expression (Kou et al. 2021). Studies on wild strawberry 
(Fragaria vesca) indicated that repeated stress conditions 
lead to the acquisition of a stable epigenetic memory on the 
level of DNA methylation (De Kort et al. 2020). Recently, 
the whole-genome DNA methylation data of the resurrection 
plant Boea hygrometrica showed that DNA methylation has 
potential implications on dehydration stress memory (Sun 
et al. 2021).

Histone modifications

Histone modifications, including histone methylation, acety-
lation, ubiquitination, phosphorylation, ADP-ribosylation, 
and sumoylation, take place in the N-terminal regions of his-
tones through covalent modifications (Zentner and Henikoff 
2013; Khan and Zinta 2016). Histone methylation predomi-
nantly occurs on lysine and arginine residues including 
mono-methylation, di-methylation, or tri-methylation (Ban-
nister and Kouzarides 2011; Zentner and Henikoff 2013). 
The profiles of histone H3 tri-methylations of lysine 4 and 
lysine 27 (H3K4me3 and H3K27me3) have been studied for 
five dehydration stress memory genes in A. thaliana plants 
(Liu et  al. 2014). The results revealed distinct memory 
responses and showed different activities of transcription 
during rehydration (Liu et al. 2014). H3K27me3 is a well-
known chromatin repressor for developmentally regulated 
genes, but it did not block the transcription of dehydration 
stress-related genes (Liu et al. 2014). The histone modifica-
tion profiles and the nucleosome occupancy of dehydration 
responsive genes (including RD20, RD29A and galactinol 
synthase (GOLS2)) changed during the transition from dehy-
dration to rehydration in A. thaliana (Kim et al. 2012). The 
presence of RNA polymerase II increased during dehydra-
tion and decreased during rehydration, which correlated with 
transcript profiles (Kim et al. 2012). Correlation of active 
transcription with the alteration of H3K4me3 indicates that 
this chromatin mark participates in the transcription mem-
ory of these genes (Kim et al. 2012). Ding et al. (2012) 
reported that the relative high levels of phosphorylation of 

serine 5 (Ser5P) and H3K4me3 of RNA polymerase II per-
sisted while the transcripts of trainable genes fall to a basal 
level during rehydration, which suggests a correlation with 
a drought stress memory. Histone acetylation is reversible 
by transferring the acetyl group to the side chains of lysine 
and it is able to neutralize the positive charge of the lysine 
residue (Khan and Zinta 2016; Vyse et al. 2020). The acety-
lation level of lysine 9 of H3K9ac is related to the active 
state of dehydration-induced gene expression (Kim et al. 
2012). Genome-wide analysis of histone modifications in 
maize plants showed that drought stress-induced changes 
of histone modifications could persist after the stress relief. 
H3K4me3 correlated better with changes of gene expression 
than H3K27me3 and H3K9ac under drought stress (Forestan 
et al. 2020). The genome-wide chromatin landscape of five 
histone markers were determined in the moss Physcom-
itrella patens to describe its dynamics during development 
and drought stress (Widiez et al. 2014). Three activating 
histone marks (H3K4me3, H3K27Ac and H3K9Ac) exhibit 
significant changes during development and drought stress. 
The changes of histone marks and gene expression induced 
during drought stress are primed to persist during develop-
mental transition (Widiez et al. 2014). Grafting rapeseed 
(Brassica rapa subsp. oleifera) onto turnip (B. rapa subsp. 
rapa) indicates that drought stress can be memorized and 
transmitted from turnip rootstock to rapeseed scion through 
the modification of histone H3K4me3 at the Δ1-pyrroline-
5-carboxylate synthetase 1–2 (P5CS1-2) gene (Luo et al. 
2020).

RNA molecules and alterations of chromatin 
structure

Chromatin changes can be achieved by exchanging canoni-
cal histone and specific histone variants, which is referred 
to as chromatin structure alteration or chromatin remodeling 
(Vyse et al. 2020). Replacement of histones with variants 
of different physical properties leads to epigenetic changes. 
Talbert and Henikoff (2014) proposed that exchange of dif-
ferent histone variants in the chromatin could be a mediat-
ing mechanism which takes place when plants encounter 
environmental changes. The chromatin structure can also 
be modified by RNA molecules (such as siRNAs, miRNAs, 
and long non-coding RNAs) through DNA modifications 
and recruitment of histone methyltransferases (Holoch and 
Moazed 2015). RNA-directed DNA methylation of cytosine 
is specific for CHH (H = A, T, or C) sequences (Singroha 
and Sharma 2019). Mozgova et al. (2019) reported that non-
coding RNAs are also becoming important players of stress 
and stress memory responses.

In conclusion, chromatin modifications and gene expres-
sion are regulated at various levels during different phases 
of dehydration and rehydration. Evidence increases for 
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epigenetic mechanisms of stress responses and memory 
in plants, but more studies are needed to understand the 
role of a drought stress memory in adaption of plants to 
dehydration.

Cross‑stress tolerance

Under natural field conditions, plants are likely to be 
exposed to different stresses at the same time or at different 
stages of their life cycle instead of being exposed to one 
stress with the same intensity as under experimental labora-
tory conditions. Thus, cross-stress tolerance is important for 
growth and development during the complete life cycle of a 
plant. Cross-stress tolerance may be obtained by establishing 
acclimation mechanisms, such as morphological changes, 
accumulation of specific transcription factors and protective 
metabolites, as well as epigenetic modifications (Munné-
Bosch and Alegre 2013; Walter et al. 2013). Heat stress, 
freezing stress and drought stress all of them will cause 
cellular dehydration and induce acclimation mechanisms, 
which are partly similar to each other (Beck et al. 2007). 
Therefore, it is highly possible that activated acclimation 
mechanisms caused by one type of stress can prevent dam-
age from other stresses which occur later. This phenomenon 
is termed cross-stress tolerance (Walter et al. 2013).

All processes involved in cross-stress tolerance are regu-
lated by a complex network covering the interaction of mul-
tiple external and internal factors, permitting plants to adapt 
to changing environments (Munné-Bosch and Alegre 2013). 
The current review highlights the drought stress memory-
induced cross-stress tolerance in plants. Drought priming-
induced cross-stress tolerance to cold and heat stress has 
been observed and reported across various species (Table 1).

Cross‑stress tolerance from drought to cold

Research has shown that a primary exposure to drought 
could affect a second stress also in form of cold or frost 
(Table 1). For example, drought stress plays a dominant role 
by inducing cold tolerance in strawberry (Fragaria × anana-
ssa) plants (Rajashekar and Panda 2014). The Mediter-
ranean Pinus nigra exposed to an extreme drought stress 
acquired tolerance to low temperatures occurring in the fol-
lowing years (Kreyling et al. 2012). Li et al. (2015) found 
that wheat plants pre-exposed to moderate drought stress 
at the vegetative stage had improved cold tolerance at the 
stem elongation stage by sustaining ROS homeostasis, 
reducing leaf water loss, decreasing oxidative injuries of 
the photosynthetic apparatus, and increased ABA levels. 
In barley plants, drought priming could also induce cold 
tolerance, which could be enhanced by application of exog-
enous melatonin (Li et al. 2016). Studies on three different 

genotypes of Coffea spp. showed that water deficit during 
the cold season was beneficial to alleviate the effect of cold 
stress by increased anti-oxidative defense (Ramalho et al. 
2018). These examples confirm that drought-primed plants 
possess higher RWC and ABA levels, more active antioxi-
dant defense systems, and higher chlorophyll contents and 
photosynthetic rates than non-primed plants under low tem-
perature stress. The improved protection results in higher 
grain yield and increased tolerance compared to non-primed 
plants.

Cross‑stress tolerance from drought to heat

Heat stress limits the growth and productivity of temperate 
plant species, therefore heat tolerance is needed for growth 
in areas with high temperature. Drought priming as a suit-
able method for improving heat tolerance has been reported 
for various plant species (Table 1). Research with spring 
wheat (Triticum aestivum L. cv. Vinjett) showed that pre-
exposure to drought stress during stem elongation improved 
tolerance to high temperature occurring later during grain 
filling (Wang et al. 2015). The effects of drought prim-
ing on grain yield during early developmental stages and 
nitrogen-use efficiency have been studied in wheat plants 
under post-anthesis heat stress. Moderate drought stress at 
the 5th-leaf stage of wheat plants improved carbon assimila-
tion and agronomic nitrogen-use efficiency during later heat 
stress, resulting in higher grain yield and enhanced stress 
tolerance (Liu et al. 2017). Zhang et al. (2016) reported that 
drought priming executed on parent plants could stimulate 
a cross tolerance in their offspring in winter wheat plants 
under heat stress conditions. The effect of cross-stress tol-
erance on lipidomic profiles was analysed in tall fescue 
(Festuca arundinacea) by Zhang et al. (2019a). The results 
suggest that drought-primed plants enhanced tolerance to 
a subsequent heat stress through reprogramming of lipid 
metabolism and stress signaling (Zhang et al. 2019a). Foliar 
application of ABA has also a positive role in drought prim-
ing-enhanced heat tolerance in tall fescue and A. thaliana, 
which is associated with the transcriptional up-regulation of 
genes related to heat protection, ABA responses and stress 
signaling (Zhang et al. 2019b). The phenomenon of cross-
stress tolerance was also reported for olive plants (Silva et al. 
2018). Olive plants grown under non-irrigated conditions 
could prevent cumulative damages by heat and UV-B radia-
tion by modulating some tolerance mechanisms compared 
to well-irrigated plants (Silva et al. 2018). The underlying 
mechanisms refer to the physiological processes, metabolic 
pathways, and the regulatory network of genes, contributing 
to drought priming-improved heat tolerance.

Another type of cross-stress tolerance was reported by 
Herms and Mattson (1992), they showed that previous 
exposure to abiotic stress (e.g. drought stress) could induce 
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Table 1   Examples of drought stress-cross-tolerance (cold and heat) in plants

a Asat saturated net photosynthesis rate
b Vmax the maximum carboxylation rate of Rubisco
c RWC​ relative water content

Primary stressor Species Cross adaptation Responsible factors References

Drought Coffea spp. Cold Higher SOD, APX, GR, CAT 
activities; higher expression 
level of APXc, APXt + s, 
PX4; higher amount of non-
enzyme antioxidants (TOC 
and ASC)

Ramalho et al. (2018)

Water stress + cold acclimation Strawberry Freezing tolerance The expression of COR47 and 
COR78 orthologs

Rajashekar and Panda (2014)

Extreme drought Pinus nigra Cold hardiness Higher soluble carbohydrates 
and chain length (ACL) of 
fatty acids

Kreyling et al. (2012

Drought priming Wheat Cold tolerance Higher RWC and ABA con-
tent, higher GPX, SOD, APX 
and CAT activities; lower 
H2O2 content

Li et al. (2015)

Drought priming Barley Cold tolerance Higher ABA and melatonin 
concentration; higher SOD, 
APX and CAT activities; 
higher photosynthetic rate 
and chlorophyll content 
index; lower H2O2 concen-
tration

Li et al. (2016)

Drought priming Spring wheat Heat stress Higher ABA concentration; 
lower RWC and transpiration 
rate; higher Asat

a and Vmax
b

Wang et al. (2015)

Drought priming Wheat Heat stress Higher leaf water potential 
and chlorophyll content; 
higher carbon assimilation 
and agronomic nitrogen-use 
efficiency; higher grain yield

Liu et al. (2017)

Drought priming (parent 
plants)

Winter wheat High temperature stress (off-
spring)

Higher SOD and POD activi-
ties; lower MDA and H2O2 
content; accumulation of 
heat shock proteins and 
up-regulation of sucrose 
synthesis

Zhang et al. (2016)

Drought stress Tall fescue Heat tolerance Higher amount of phospholip-
ids, glycolipids, phosphatidic 
acid, phosphatidylcholine, 
phosphatidylinositol, 
phosphatidylglycerol, and 
digalactosyl diacylglycerol; 
higher RWC​c, chlorophyll 
content, photochemical 
efficiency

Zhang et al. (2019a

Drought priming Tall fescue 
and Arabi-
dopsis

Heat tolerance Up-regulation of CDPK3, 
MPK3, DREB2A, AREB3, 
MYB2, MYC4, HsfA2, 
HSP18, and HSP70

Zhang et al. (2019b)

Drought treatment Olive Heat and UV-B radiation shock Lower cell membrane perme-
ability and water loss; 
Mitigating effect on quantum 
yield of PSII

Silva et al. (2018)
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herbivore resistance by increasing carbon-based second-
ary metabolites. There are many examples that cross mem-
ory takes place between drought and cold stress, between 
drought and heat stress, or even between biotic stress and 
abiotic stress in different plant species, including A. thali-
ana, strawberry, P. nigra, spring wheat, etc. (Shinozaki 
and Yamaguchi-Shinozaki 2000; Kreyling et  al. 2012; 
Rajashekar and Panda 2014; Li et al. 2015; Wang et al. 
2015). Cross-stress tolerance is regulated by a complex 
network involving the interaction of multiple external and 
internal factors (Munné-Bosch and Alegre 2013). Due to 
the irregular and variable growth environments, cross-stress 
tolerance is extremely important in overcoming unpredict-
able and diverse stresses and more attention should be paid 
to it in agricultural practices.

Priming of seeds

Seed priming has been developed as a low-cost and effi-
cient approach to increase crop yield and to increase toler-
ance against various stresses (Jisha et al. 2013; Sher et al. 
2019). According to the difference of priming agents, seed 
priming is classified into different types (Sher et al. 2019). 
Seed priming is not only promoting seed germination and 
improving plant growth and crop yield, but it also increases 
tolerance against abiotic stress under changing environmen-
tal conditions (Sher et al. 2019; Marthandan et al. 2020). 
Examples for seed priming which lead to drought tolerance 
are briefly described in Table 2. The current review focuses 
on seed priming correlated to drought tolerance.

Hydropriming of maize (Zea mays L.) significantly 
improved germination as well as seedling growth under 
drought stress conditions (Janmohammadi et  al. 2008). 
Hydroprimed cotton seeds (Gossypium hirsutum L.) 
obtained better germination parameters, growth and higher 
yield under water shortage conditions (Nasir et al. 2019). In 
the grass Cleistogenes songorica native to northern China, 
hydropriming treatments alleviated the detrimental effects 
of drought stress by decreasing lipid peroxidation and 
ROS accumulation, and increasing activities of antioxidant 
enzymes (Tao et al. 2018).

In comparison to seedlings from non-primed chickpea 
seeds, seedlings obtained from seeds primed with mannitol 
(4% w/v) had longer roots and shoots under water deficit 
conditions (Kaur et al. 2002). Primed (treated with different 
concentrations of PEG) and non-primed seeds of four rice 
cultivars were germinated under drought stress (imitated 
with PEG) to examine the effects of seed priming and physi-
ological characteristics of rice plants (Sun et al. 2010). The 
study showed that a suitable concentration of PEG improved 
germination indices, as well as quality and drought toler-
ance of seedlings under drought stress. The physiological 

changes were correlated with an increase in proline, soluble 
proteins, phenylalanine ammonia lyase (PAL), peroxidase 
(POD), SOD and CAT, and decreased soluble sugars and 
MDA (Sun et al. 2010).The effect of seed osmopriming 
(with CaCl2 solution) on wheat yield was evaluated in a field 
experiment (Hussain et al. 2018). The osmoprimed seeds 
led to increased yield and crop allometry and improved pro-
ductivity under drought stress, due to establishment of early 
and uniform tolerance mechanisms (Hussain et al. 2018). 
Melatonin-primed rapeseeds had better germination param-
eters and subsequent better seedling growth under drought 
stress. This phenomenon is ascribed to the effects of mel-
atonin-priming, including improvement of stomatal traits, 
strengthening of cell walls, enhanced activities of enzymatic 
and non-enzymatic antioxidants, and accumulation of osmo-
protectants (Khan et al. 2019).

Seed priming using 50 ppm of auxin increased seed ger-
mination and the number of seminal roots whereas 100 ppm 
of gibberellin, 50 ppm of cytokinin, and 50 ppm of ABA 
improved seed performance under drought stress conditions, 
respectively (Eisvand et al. 2010). Research on wheat plants 
showed that hormonal priming with gibberellic acid or auxin 
significantly enhanced the growth and development of wheat 
plants, resulting in higher grain yield compared with non-
primed plants (Ulfat et al. 2017; Bagheri et al. 2019).

These and related observations could contribute to the 
development of drought tolerant crop plants. In general, the 
overall growth of plants is enhanced under drought stress 
treatments. This could be further explored in future studies 
of plant priming or plant stress memory.

Priming of resurrection plants

Not only seeds but also desiccation tolerant resurrection 
plants are responsive to priming and subsequently a stress 
memory is build-up. Stress memory was observed in the res-
urrection plant Craterostigma plantagineum which belongs 
to the Linderniaceae family. After being exposed to four 
dehydration/rehydration treatment cycles, expression of four 
representative stress-related genes and ROS pathway-related 
genes gradually increased, accompanied by increasing lev-
els of SOD activity, proline content and sucrose content, 
conversely the H2O2 content and electrolyte leakage (EL) 
decreased, which indicates a gain of stress tolerance and 
also points to a stress memory (Liu et al. 2019; Liu 2020). 
Similarly, the resurrection plant B. hygrometrica acquired 
desiccation tolerance after priming through a pretreatment 
of slow dehydration (Zhu et al. 2015). Mitra et al. (2013) 
proposed that histone modifications in B. hygrometrica are 
altered during drought acclimation and are retained, which 
causes activation of downstream genes during subsequent 
desiccation. Metabolomes were compared between the 
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Table 2   Examples of seed priming-induced drought tolerance in plants

Types Chemicals Species Responsible factors References

Hydropriming Water Maize Significantly improved ger-
mination index, seedling 
vigour index and length of 
seedling

Janmohammadi et al. (2008)

Hydropriming and 
osmopriming

Water and mannitol (4%) Chickpea Higher activities of amylase, 
invertases (acid and 
alkaline), sucrose synthase 
and sucrose phosphate 
synthase; longer root and 
shoot length

Kaur et al. (2002)

Hydropriming and 
osmopriming

Water and PEGa Rice Higher proline and soluble 
protein content, PALb, 
SOD, CAT, and POD 
activities; lower soluble 
sugar and MDA con-
tent; accelerated glucose 
metabolism

Sun et al. (2010)

Hydropriming and 
osmopriming

Water and PEG-6000 Cleistogenes songorica Lower lipid peroxidation 
and H2O2 content; greater 
antioxidant enzyme activ-
ity; higher nuclear DNA 
contents during cell cycle

Tao et al. (2018)

Hydropriming and 
osmopriming

Water and CaCl2 Cotton Higher emergence index, 
mean germination time, 
number of bolls per plant, 
boll weight per plant, lint 
weight, seed weight, plant 
height

Nasir et al. (2019)

Osmopriming CaCl2 (− 1.25 MPa) Wheat Improved leaf area index, 
leaf area duration, and 
crop growth rate

Hussain et al. ((2018)

Osmopriming Melatonin Rapeseed Improved stomatal number, 
length, width, and cell 
wall strength; higher anti-
oxidant system activities

Khan et al. (2019)

Biopriming Mycorrhiza fungi Sesame Higher amount of chlo-
rophyll index, nitrogen, 
phosphorus, potassium, 
zinc, iron and copper 
uptake; Lower water 
consumption

Askari et al. (2018)

Biopriming Pseudomonas fluorescens Okra Higher RWC, sugar, and 
free amino acids content; 
higher activity of pheno-
lics, ascorbate glutathione, 
SOD, CAT, APX and 
GPX; alleviated mem-
brane damage and protein 
denaturation

Pravisya et al. (2019)

Solid matrix priming Multi-walled carbon nano-
tubes

Caucasian alder Higher seed vigour index, 
root and stem lengths, and 
dry weights

Rahimi et al. (2016)

Solid matrix priming Multi-walled carbon nano-
tubes

Hopbush Improved seed germination 
percentage, mean germi-
nation time, root and stem 
lengths, fresh and dry 
weights of root and stem

Yousefi et al. (2017)



Planta (2022) 255:45	

1 3

Page 9 of 14  45

acclimated and non-acclimated desiccation tolerant plant 
Myrothamnus flabellifolia Welw. (Bentley and Farrant 
2020), and it was shown that long-term acclimation results 
in large-scale reprogramming of the metabolome (Bentley 
and Farrant 2020).

Cross-stress tolerance between desiccation and freezing 
temperatures was found in resurrection plants like Haber-
lea rhodopensis Friv. and Ramonda myconi. Georgieva 
et al. (2021) reported that H. rhodopensis Friv. has unique 
properties and can withstand desiccation as well as freezing 
temperatures. The adaptation of H. rhodopensis to low tem-
perature is based on the readjustment of the photosynthetic 
apparatus, which has undergone modifications during pri-
mary desiccation (Mihailova et al. 2020). The resurrection 
plant R. myconi has been used to investigate the physiologi-
cal mechanisms underpinning cross-stress tolerance between 
desiccation and freezing (Fernández-Marín et al. 2020). The 
results showed that protection of chloroplast structures are a 
response common for desiccation and low temperature in R. 
myconi (Fernández-Marín et al. 2020).

Common responses are observed during seed priming and 
priming of resurrection plants. The re-synthesis of degraded 
proteins upon rehydration based on stable storage of tran-
scripts in the desiccated state, the increase of tocopherol 
in membranes upon desiccation, and the expression of tar-
geted genes and proteins during dehydration are common 
dehydration responses in seeds and vegetative tissues (Oliver 
et al. 2020). Despite these observations, it is not possible at 
present to firmly conclude that the priming mechanisms are 
identical in seeds and resurrection plants.

It stimulated us to address the question whether the des-
iccation tolerant resurrection plant C. plantagineum could 
gain tolerance to biotic and/or abiotic stress, through simi-
lar treatments as seed priming. Desiccated C. plantagineum 
plants can be treated with hydropriming, osmopriming, solid 
matrix priming, biopriming, nutripriming, hormonal prim-
ing, and thermopriming methods which have already been 
used for seed priming. If untreated C. plantagineum plants 
are treated in different ways, then stress memory responses 
are induced during a second treatment which is an exam-
ple for cross-stress tolerance. However, if the experiments 
are done with already desiccated C. plantagineum plants, 
it may induce different responses compared to untreated 
plants. This means that the physiological condition of the 
plant which undergoes priming treatments is important for 
the response. This hypothesis might contribute to uncover a 
new sight of plant priming or plant stress memory.

Concluding remarks and future perspectives

Climate change and unevenly distributed precipitations seri-
ously affect global agricultural production and food security. 
How to minimize adverse effects of climate change and to 
meet the food demand of the increasing human population 
becomes an urgent problem. Considering the conventional 
techniques (e.g. selection and hybridization) and recently 
genetic engineering (e.g. transgenic technology, gene muta-
tion and polyploidy breeding) have limitations, such as the 
length of time, large man power, or the restrictions based 

a PEG polyethylene glycol
b PAL phenylalanine ammonia lyase

Table 2   (continued)

Types Chemicals Species Responsible factors References

Nutripriming Zinc (ZnSO4) Durum wheat Higher seedling height and 
SOD activity; better seed 
germination

Candan et al. (2018)

Nutripriming Mg (NO3)2 and ZnSO4 Wheat Higher yield and yield 
attributes parameters 
(spike length, spike num-
ber, spike weight, seed 
number)

Singhal et al. (2019)

Nutripriming Zinc (ZnSO4) Wheat Higher dissipation of excess 
energy; higher leaf suc-
culence values

Pavia et al. (2019)

Hormonal priming Auxin, cytokinin, gibberel-
lin, cytokinin, ABA

Tall wheatgrass Higher CAT, GR, POD, 
SOD activities; higher 
germination percentage 
and rate of germination

Eisvand et al. (2010)

Hormonal priming Gibberellic acid Wheat Better growth and develop-
ment; higher yield

Ulfat et al. (2017)

Hormonal priming Auxin Wheat Higher grain yield Bagheri et al. (2019)
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on biosafety issues and environmental protection problems. 
Hence, alternative technologies emerged as promising solu-
tions. As we describe in this review, methods involved in 
plant stress memory, cross-stress tolerance, and seed prim-
ing have become effective and favorable techniques for envi-
ronmentally friendly and sustainable agriculture (Fig. 1). 
Currently, there is increasing evidence in the literature how 
to alleviate the negative effects of dehydration stress based 
on the plant immune system. However, biochemical and 
molecular mechanisms of plant memory and seed priming 
still need to be investigated for precise and reliable applica-
tions of this approach. Future research needs to focus on the 
elucidation of how long the stress memory can persist, how 
to prolong and increase the positive effects of plant memory, 
and how to apply priming on a large scale to diverse plants.
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