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Stress Orientations Obtained from Earthquake Focal Mechanisms:

What Are Appropriate Uncertainty Estimates?

by Jeanne L. Hardebeck and Egill Hauksson

Abstract Crustal stress orientations provide important information about the me-
chanics of regional deformation. Numerous methods exist for inverting earthquake
focal mechanisms for stress orientation, and the more widely used methods usually
obtain similar results for similar data sets. However, error estimates are highly vari-
able, complicating the interpretation of results. The southern California stress field,
for example, contains much statistically significant spatial and temporal variability
according to the error estimates of one method (Michael, 1984, 1987b), but very
little according to those of another (Gephart and Forsyth, 1984). To resolve whether
the southern California stress field is generally homogeneous or heterogeneous, we
must determine which of the error estimates best reflects the true inversion uncer-
tainty. To do this, we tested both methods on a suite of synthetic focal mechanism
data sets containing random errors. The method of Gephart and Forsyth (1984) usu-
ally provides more accurate estimates of stress orientation, especially for high-quality
data sets, but its confidence regions are in most cases too large. The method of
Michael (1984, 1987b) is more accurate for very noisy data sets and provides a more
appropriate estimate of uncertainty, implying that the stress field in southern Cali-
fornia is probably heterogeneous.

Introduction

Knowledge of the state of stress in the Earth’s crust is
important for understanding the mechanics of earthquakes
and regional deformation. The stress state at seismogenic
depths generally cannot be measured directly. However, the
orientations of the principal stress axes can be constrained
from the focal mechanisms of small earthquakes occurring
in the region of interest.

The two most commonly used inversion methods are a
grid search method called the Focal Mechanisms Stress In-
version (FMSI) method (Gephart and Forsyth, 1984; Gep-
hart, 1990a) and an unnamed linear inversion method (Mi-
chael, 1984, 1987b), which we refer to as the Linear Stress
Inversion with Bootstrapping (LSIB) method, for conven-
ience. These two methods typically obtain similar stress ori-
entations for similar focal mechanism data sets. However,
the uncertainty estimates are often quite different, with the
confidence regions given by FMSI usually being much larger
than those of LSIB.

The uncertainty estimates have important implications
for understanding spatial and temporal variations in the
stress field. In southern California, for example, spatial var-
iations (Hauksson, 1990; Kerkela and Stock, 1996; Harde-
beck and Hauksson, 1999, 2001) and temporal changes re-
lated to major earthquakes (Michael, 1987b; Hauksson,
1994; Zhao et al., 1997; Hardebeck and Hauksson, 2001)

have been observed and found to be statistically significant
according to the uncertainty estimates of LSIB and other
techniques that utilize bootstrap error estimation. However,
when an inversion method similar to FMSI is used, very few
stress variations are found to be larger than the estimated
uncertainties, and the stress field in southern California can
be concluded to be generally homogeneous (Abers and Gep-
hart, 1997).

Jones (1988) and Wyss and Lu (1995) used identical
data sets to study stress orientations along the San Andreas
Fault in southern California, and both studies found that the
stress state was different along different segments of the
fault. However, these differences appear to be significant at
the 95% confidence level if LSIB is used (Jones, 1988) but
not if FMSI is used (Wyss and Lu, 1995).

To resolve whether or not the observed stress field het-
erogeneity in southern California and along the San Andreas
Fault is real, we must determine which of the uncertainty
estimates best reflects the precision with which stress ori-
entations can be determined from focal mechanisms.

The two inversion methods cannot be directly compared
because they are conceptually very different. For this reason,
we compare the performance of the two methods on a suite
of synthetic data sets. The focus is on the appropriateness of
the confidence regions computed by each method.
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Inversion Methods

All methods for inverting focal mechanisms for stress
orientation rest on the assumption that earthquakes slip in
the direction of the resolved shear stress on the fault plane.
The orientation of the fault plane is usually not considered
to be information about the stress state because it may be a
randomly oriented preexisting plane of weakness. The goal
of an inversion is to find the stress state which minimizes
the discrepancy between the resolved shear stress direction
and the slip direction for all earthquakes in the data set.

Only geometrical information is used, so the isotropic
and deviatoric stress magnitudes can’t be estimated, and
there are only four independent model parameters. Typi-
cally, three parameters are chosen to indicate the orientations
of the three principal stress axes, and the fourth parameter

r � r1 2R � (1)
r � r1 3

indicates the relative magnitudes of the stress axes, where
r1, r2, and r3 are the magnitudes of the maximum, inter-
mediate, and minimum compressive stresses, respectively.
For a reliable inversion, the orientations of the fault planes
must be adequately diverse to sample the entire stress tensor.

There are two basic assumptions in the inversion pro-
cedures. The first is that the four stress parameters are con-
stant over the spatial and temporal extent of the data set. The
validity of this assumption can be tested for a particular data
set using the misfit of the best-fitting stress model. A high
average misfit indicates that the stress field is highly hetero-
geneous and hence that the stress inversion result may not
be meaningful. The maximum acceptable misfit has been
quantified for LSIB by Michael (1991) and for FMSI by Wyss
et al. (1992), Gillard et al. (1996), and Lu et al. (1997).

The second assumption—that slip is in the direction of
resolved shear stress—implies isotropic fault planes, without
a preferred direction of slip. Real faults may not be isotropic,
but unless there is systematic anisotropy in the set of faults
used in an inversion, this simply adds some random noise.
Pollard et al. (1993) demonstrated that fault length-to-width
ratios and proximity to the free surface can also cause dis-
crepancies between the slip direction and the direction of
resolved shear stress but that these errors are small relative
to common measurement errors.

A persistent problem with focal mechanism inversions
is the ambiguity between the fault and auxiliary planes. For
discussion of fault plane selection methods and the impact
of incorrectly chosen planes on inversion results, see the
articles by Michael (1987a) and Lund and Slunga (1999).

Linear Inversion Method

The LSIB method solves for the stress tensor using a
linear, least-squares inversion (Michael, 1984). The stress
inversion problem is nonlinear but can be linearized by as-
suming that the magnitude of the shear traction on each fault

plane is approximately the same. This assumption has some
physical basis because the planes that fail in earthquakes are
likely to be near some failure stress.

The inversion setup is:

�
A ŝ1 1
� ¯A R � ŝ (2)2 2� � � �
M M

where is a matrix determined from the orientation of the
�
Aj

jth fault plane, is a vector of the stress tensor parameters,R̄
and ŝj is a unit vector in the slip direction of the jth event.
The least-squares inversion minimizes the difference be-
tween ŝj and , the vector of resolved shear stress

� ¯s̄ � A Rj j

on the jth plane.
Confidence regions are determined using a bootstrap

technique (Michael, 1987b). The data set is resampled, with
replacement, hundreds or thousands of times to simulate re-
peated samples of the population from which the data came,
and each resampling is inverted for the stress tensor. The
X% of inversion results closest to the initial result, where
closeness is defined by the normalized tensor dot product for
stress tensor representations with zero isostatic component,
are used to define the X% confidence region. (The symbol
X is used in this article to represent the confidence level
when statements are made which hold for any level of con-
fidence.) This technique is appropriate for data containing
errors because the observed variation in the data is used to
estimate the confidence regions. We use 2000 bootstrap re-
samplings, which is adequate to produce stable confidence
regions up to the 95% level [Michael, 1987b]. To address
the fault plane ambiguity of the focal mechanisms, each
nodal plane has a 50% probability of being chosen during
bootstrap resampling.

The assumptions of this method are that the tractions on
all fault planes are of similar magnitude, and that the as-
sumptions of bootstrap error estimation apply. This requires
the data set to be adequately representative of the population
and to exhibit the full range of error.

Grid Search Method

The other widely used method, FMSI, uses a grid search
over stress field parameter space to find the stress tensor that
minimizes the misfit between model and data (Gephart and
Forsyth, 1984; Gephart, 1990a). The misfit computed for
each event is the minimum angle of rotation of the focal
mechanism, about any axis, necessary to bring the slip di-
rection into alignment with the resolved shear stress on the
fault plane. Fault plane ambiguity is addressed by using the
nodal plane with the smaller misfit. The L1 norm is used to
find the total misfit, R, for a given stress state.

We perform an initial search over all of parameter space
using a coarse grid with 10� spacing and a second finer
search with 5� spacing in the vicinity of the best-fit solution.
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Confidence regions are estimated from the distribution
of misfit values. The statistics are based on those derived for
the L1 norm by Parker and McNutt (1980). For N measure-
ments x1, x2, . . . , xN, where each measurement xj is a nor-
mally distributed random variable with mean 0 and standard
deviation rj, the random variable

N |x |jm � (3)�
rj�1 j

has an expected value of

1/22
E[m] � N (4)� �p

and a variance of

22var[m] � r � 1 � N. (5)� �p
This distribution is approximately Gaussian for N � 10. If
x1, x2, . . . , xN represent the individual mechanism misfits
due to data errors, equations (4) and (5) describe the prob-
ability distribution for the total misfit of the correct stress
state.

In order to use these statistics, however, the standard
deviation of the misfit due to data errors, rest (assuming
rj � rest, for all j), needs to be estimated. Assuming that
the total misfit value for the best-fitting stress state, Rmin, is
the expected value of the total misfit for the correct stress
state, then

N

R � E |x | � E[mr ]min � j est� �
j�1

1/22
� r E[m] � r N, (6)est est � �p

and therefore

Rmin
r � . (7)est 1/2(2/p) N

Since the model has four parameters, FMSI uses

Rmin
r � , (8)est 1/2(2/p) (N � 4)

which makes a noticeable difference in the confidence
regions only for small data sets.

The X% confidence region is defined by stress states
with misfits less than RX, where there is a (100 � X)%
chance that the correct stress state could have a misfit greater
than RX due to data errors. This is equivalent to a (100 �

X)% probability of obtaining m � MX � RX /rest from the
normal distribution of m, so

M � z r � E[m] (9)X X

where zX is the number of standard deviations corresponding
to X% of the area under the positive half of a normal distri-
bution (since no misfits are less than Rmin), for example,
z95 � 1.96.

The threshold value is found by substituting equations
(4) and (5) into equation (9):

1/2 1/2R 2 2X
� z 1 � N � N, (10)X �� � � � �r p pest

and combining them with Equation (8)

1/2 1/2z (p/2 � 1) N � NXR � R . (11)X min� �N � 4

The assumptions that go into these confidence regions
are that the individual event misfits due to data errors are
normally distributed with a constant standard deviation and
that the total misfit of the best-fit solution, Rmin, is the ex-
pected value of the total misfit of the correct solution,
restE[m].

Testing the Inversion Methods

We examine the accuracy of the two inversion methods
and the appropriateness of their uncertainty estimates by
testing them on a suite of synthetic focal mechanism data
sets. The design of synthetic data is inevitably subjective,
but we attempt to create synthetic data sets that resemble
real noisy data as much as possible.

Synthetic Data Sets

Each synthetic data set consists of a collection of focal
mechanisms all consistent with a single specified stress state.
The orientation of the principal stress axes is chosen ran-
domly from a uniform spatial distribution, and a value is
selected for R.

For most tests, the fault plane orientations are chosen at
random from a uniform spatial distribution. We make the
somewhat counterintuitive choice of uniformly distributed
planes based on the observation that small earthquakes, in
contrast with larger events, tend to occur on diverse fault
planes. It is these smaller events that are typically used as
stress indicators. The choice of uniformly distributed planes
is at odds with the assumption of LSIB of similar magnitude
shear stress on all planes and should therefore be the tough-
est test of this technique.

For some tests, fault planes are selected to be more uni-
form. Candidate planes are selected randomly as before, and
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Figure 1. Histogram of the errors in first-motion
focal mechanisms resulting from polarity and takeoff
angle errors. Forty-one diverse focal mechanisms
were chosen, and first-motion polarities for each were
assigned to stations using the station distribution of
Southern California Seismic Network (SCSN) sta-
tions for 41 actual southern California events. Ran-
dom errors in polarity and in takeoff angle (i.e., in
event location or velocity model) were added. Each
first-motion observation has a 20% chance of being
reversed. The error in azimuth to each station is nor-
mally distributed with a standard deviation of 2�, and
the error in takeoff angle is normally distributed with
a standard deviation of 10�. New focal mechanisms
were determined using the FPFIT software package
(Reasenberg and Oppenheimer, 1985), and the mech-
anism error was computed by determining the mini-
mum rotation angle between the computed and cor-
rect mechanisms. This was repeated 100 times for the
41-event data set, and a histogram of mechanism error
was compiled. Note that the mechanism errors resem-
ble an exponential distribution, not a normal distri-
bution.

the normal and shear stress on each plane is found, assuming
that the deviatoric stress is �0.65 of the isostatic stress. The
probability of including a plane in the data set is proportional
to the ratio of the shear stress to the normal stress. This
results in a data set containing a larger percentage of faults
that are close to the optimal orientation for failure.

Once the fault planes have been selected, the assumed
stress tensor is projected onto each fault plane. The rake of
each event is chosen to be in the direction of resolved shear
stress, consistent with the assumption of the stress inver-
sions.

Random errors are introduced into the data sets by ro-
tating each mechanism about some axis. The axes are chosen
from a uniform spatial distribution. An exponential proba-
bility distribution is used to select rotation angles. Random
polarity and location errors lead to errors in first-motion fo-
cal mechanisms with an exponential, rather than normal, dis-
tribution (Fig. 1). Additionally, studies using real data find
that the residuals for the best-fitting stress state are often
exponentially distributed (Gephart and Forsyth, 1984; Gep-
hart, 1990b).

The fault plane or the auxiliary plane is listed in the data
set, with a 50% probability of each. The inversions are per-
formed assuming that the correct plane is not known. The
LSIB method may use either plane during bootstrap resam-
pling, and FMSI may use either plane in computing misfits.

Data sets with varying amounts of error, number of
events, and values of R are created to observe whether these
parameters affect the inversion results. Mechanism errors of
5�, 10�, 15�, 20�, 30�, and 40� are used. These numbers rep-
resent the parameter l, where the exponential probability
distribution function is defined as . Values of 0, 0.2,1 �x/l� el
0.4, 0.5, 0.6, 0.8, and 1 are used for R. Data sets include 20,
50, 100, or 300 events. Fifty data sets are created for most
combinations of values for these three parameters.

Testing

The accuracy of the inversion methods and the appro-
priateness of their uncertainty estimates are tested by in-
verting each of the synthetic data sets using both methods.
First, we test the accuracy of the inversion results, defined
as the angle between the correct and best-fitting stress ori-
entations and the difference in R value.

We then test the appropriateness of the uncertainty es-
timates. If the confidence regions are appropriate, the correct
stress state should fall within the X% confidence region for
approximately X% of the data sets, for all X. The number of
times the correct stress state falls into the X% confidence
region, plotted versus X, should approximate a straight line.
If the confidence regions are systematically too large or too
small, it will fall above or below this line, respectively, as
illustrated in Figure 2.

When evaluating FMSI, the correct stress state is con-
sidered to be inside the X% confidence region if Rcor � RX,
where Rcor is the total misfit of the nearest grid point to the

correct stress state. For LSIB, the correct stress state is con-
sidered to be inside the X% confidence region if it is closer
to the best-fit stress state than (100 � X)% of the bootstrap
resampling inversion results, closeness again measured by
the normalized tensor dot product.

Results

Accuracy

The accuracy with which both inversion methods de-
termine the stress parameters (Figs. 3, 4) is generally good.
The accuracy of FMSI is on average slightly better, with a
mean orientation error over all the test data sets of 11� and
a mean R error of 0.09. The LSIB method has a mean ori-
entation error of 13� and a mean R error of 0.11, and FMSI
is consistently very accurate (error �5� for 90% of the tests)
in favorable conditions, such as large data sets (N � 300)
or small mechanism error (5�). However, the FMSI estimates
of R are poor for the axisymmetric case (R � 0 or R � 1).
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The accuracy of both methods improves with increasing
data set size, as one might expect, with the most improve-
ment occurring between N � 20 and N � 50. The accuracy
deteriorates with increasing mechanism error, as also might
be expected. The accuracy of the FMSI results degrade more
quickly with increasing mechanism error, making LSIB more
accurate for data sets with error greater than �25�.

The two inversion techniques make different choices
about the parameter to minimize and how to handle nodal
plane ambiguity, but both sets of assumptions are apparently
reasonable. The linearization scheme employed by LSIB ap-
pears not to have had a major adverse effect on the accuracy
of the inversion results, even though the test data sets with
uniformly distributed planes should have been particularly
tough on the linearization approximation.

The levels of accuracy for LSIB and FMSI indicate that
the difference in confidence region size does not stem from
a difference in accuracy. One might expect the more accurate
method to have the smaller confidence regions, but in this
case, it has the larger. This further suggests that either the
confidence regions of FMSI are too large or those of LSIB
are too small.

Confidence Regions

In most tests of the confidence regions (Figs. 5–8), the
uncertainty estimates of LSIB are the more appropriate. The
correct stress state generally falls into the X% confidence
region for (X � 10)% of the inversions, indicating that the
confidence regions of LSIB are approximately correct.

One exception is for large data sets, N � 300, in which

case the confidence regions are much too small (Fig. 5). In
the tests with more uniform fault planes, the confidence
regions are too small if all four stress parameters are con-
sidered, but not if the stress orientations are considered alone
(Figure 8). This indicates that the parameter R is not as well
constrained as implied by the uncertainty estimates for data
sets containing many similarly oriented events.

The appropriateness of the confidence regions of LSIB
does not degrade with increasing mechanism error (Fig. 6),
indicating that the bootstrap technique successfully incor-
porates data errors into the uncertainty estimates.

In most cases, the confidence regions of FMSI are much
too large, with the correct stress state falling within the X%
confidence region for k X% of the inversions. For example,
the given 68% confidence regions often contain the correct
result 90–95% of the time. In the axisymmetric case (R �
0 or R � 1), the FMSI confidence regions are apparently too
small when all four model parameters are considered (Fig.
7). However, when only the stress orientations are consid-
ered, the confidence regions appear more appropriate. This,
along with the observation that FMSI determines axisym-
metric values of R with poor accuracy (Fig. 4), indicates that
the problem is primarily incorrect estimation of R.

Discussion

From the aforementioned results, it is apparent that the
two inversion methods have different strengths and weak-
nesses. The FMSI method usually provides more accurate
estimates of stress orientation, especially in favorable con-
ditions such as large data sets and high-quality focal mech-
anisms. The LSIB method, although less accurate on average,
provides a better estimate of uncertainty and is more accurate
for data sets containing large errors. The method that is best
to use for a particular study depends on the quality of the
data and the relative importance of accuracy and error esti-
mation.

An ideal inversion method would combine the strengths
of both a grid search over parameter space and a nonpara-
metric approach to error estimation. Unfortunately, non-
parametric techniques such as bootstrap resampling require
repeating the inversion hundreds or thousands of times, and
the grid search method is very slow. As computational speed
increases, combining grid search with nonparametric error
estimation will become more practical. Another possibility
is to speed up the search over parameter space using tech-
niques such as genetic algorithms (Michael, 2000).

Problems with LSIB

The somewhat lower average accuracy of LSIB may be
due in part to the approximation of equal shear stress on all
fault planes used in the linearization of the problem. Uni-
formly distributed fault planes violate this approximation in
the extreme, so the results of LSIB for the test data sets prob-
ably represent the worst-case accuracy. The handling of the
fault plane ambiguity problem by the LSIB method, which

Figure 2. An illustrative plot of the number of
times the correct stress state falls within a given con-
fidence region versus the percent confidence level. If
the uncertainty estimates are correct, the plot should
approximate a straight line. If the plot falls above this
line, this means that the correct answer falls within
the X% confidence region kX% of the time and the
confidence regions are too big. Similarly, if the plot
falls below the line, the correct answer falls within
the X% confidence region KX% of the time and the
confidence regions are too small.
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Figure 3. Accuracy of LSIB for synthetic data sets with the given values of N (data
set size), R, and mechanism error. Fifty synthetic data sets were created for each com-
bination of parameter values listed. The synthetic data sets were created to be consistent
with a given stress state according to the assumptions of the inversion methods, and
random errors were added. The orientation error is defined as the angular misfit between
the stress axes determined by inversion of the synthetic data and the stress axes used
to create the data set. The R error is the difference between the R values of the two
stress states. The circles connected by the solid line represent the mean error for the
suite of data sets, and the crosses connected by the dashed lines encompass the middle
80%.
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Figure 4. Accuracy of FMSI; symbols are as described in Figure 3.

considers the auxiliary planes only in error estimation, may
also adversely affect the inversion accuracy if the data set
contains a significant fraction of incorrectly picked planes.
Surprisingly, the accuracy for very noisy data is quite good,
with the average error less than that of FMSI and much less
than the data error.

The LSIB confidence regions for large data sets (N �
300) are too small. This may be because larger data sets often
contain a number of similar focal mechanisms, which are
essentially repeated data. These same data will also be re-
peated in the resampled data sets more often than other data.
The full range of population samples, however, should re-
peat all data with similar frequency.

More representative resampled data sets can be made
by sorting the mechanisms into bins based on strike, dip, and
rake. Only one mechanisms from each nonempty bin is used
in the base data set that is resampled during bootstrap error
estimation. Although the base data sets contain �300 events,
each resampled data set still contains 300 events. The con-
fidence regions found using the modified resampling method
are of more appropriate size (Fig. 9).

Problems with FMSI

The FMSI confidence regions are systematically too
large. However, it is presently unclear why this is the case.
Here we discuss the validity of the two major assumptions,
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Figure 5. Confidence region appropriateness for both inversion methods, for vary-
ing N (data set size.) The number of times the correct stress state falls within the X%
confidence region is plotted as a function of X. If the confidence regions are appropriate,
the function should fall within the shaded area. Results from an experiment with perfect
confidence regions would have a 95% probability of falling within the shaded zone,
which is the 95% confidence region of the binomial probability distribution for 200
trials with an X% probability of success each trial. If the confidence regions are too
big or too small, the function will fall above or below the shaded area, respectively
(see Fig. 2.) There are 50 data sets for each combination of parameter values listed.
The orientations of the fault plane were chosen randomly. The label 4D indicates that
all four model parameters were considered; 3D indicates only principal axis orienta-
tions.

normally distributed mechanism misfits due to data errors
and a minimum observed misfit equal to the expected value
of misfit for the best-fit stress state. We also consider the
effects of finite grid spacing and nodal plane ambiguity. Fi-
nally, we discuss a method for recalibrating the uncertainties
of FMSI in light of our numerical tests.

Error Distribution. It may be unrealistic to assume that
the individual event misfits due to data errors are normally
distributed whereas the data errors themselves are exponen-
tially distributed. From the procedure followed in equations
(6)–(11), we see that

R z r � E[m]X X� (12)
R E[m]min

and that RX will scale with the ratio r/E[m]. In the case of
normally distributed misfits,

1/2 1/2r (1 � 2/p) N �1/2� � 0.76N . (13)1/2E[m] (2/p) N

In the case of exponentially distributed misfits, we find nu-
merically that

1/2r (0.5N) �1/2� � N . (14)
E[m] 0.7N

Assuming an exponential distribution of misfits would there-
fore result in larger RX and larger confidence regions.

The distribution of event misfits for the correct stress
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Figure 6. Confidence region appropriateness for varying focal mechanism error.
Symbols are as described in Figure 5.

state need not be the same as the mechanism error distri-
bution. For each event, the misfit for the correct stress state
cannot be greater than the mechanism error. However, it can
be less if the given mechanism is closer to another acceptable
mechanism than to the correct mechanism for that event. We
estimate the distribution of event misfits for the synthetic
data sets by finding the minimum rotation angle between
each mechanism and any focal mechanism compatible with
the correct stress state. Choosing misfits from this distribu-
tion, we find numerically that

1/2r (0.6N) �1/2� � 0.77N . (15)
E[m] N

Although the misfits are not normally distributed, the ratio
r/E[m], which controls RX and the size of the confidence
regions, is very similar to the ratio r/E[m] for a normal dis-
tribution. This implies that the assumption of a normal misfit
distribution, while not strictly correct, is not the cause of the
large confidence regions.

Expected Misfit. The computation of the threshold value
of the confidence region, RX, is based on the assumption that
the minimum observed total misfit, Rmin, is the expected
value of the total misfit due to data errors for the correct
stress state, restE[m]. It is unrealistic to expect Rmin to always
exactly equal restE[m], but if Rmin equals restE[m] on aver-
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Figure 7. Confidence region appropriateness for varying R. Symbols are as de-
scribed in Figure 5.

age, RX should be correct on average as well. To explain
confidence regions that are systematically too large, Rmin

would have to be systematically greater than restE[m]. This
would imply that something besides focal mechanism error
is contributing to the misfits. Usually, one would conclude
that model errors are being mapped into the misfits. How-
ever, since the synthetic data sets were created to be consis-
tent with the model assumptions, this should not be the case.
It is unclear what an additional source of error could be.

Finite Grid Spacing. The finite gridding of parameter
space can affect the apparent appropriateness of the uncer-
tainty estimates in cases where the size of the grid spacing

is larger than, or comparable to, the appropriate size of the
X% confidence region. In this case, the X% confidence re-
gion may appear too large even though it encompasses only
one grid point. This is not a general explanation for the large
confidence regions, however, because the 68% and 95%
confidence regions typically contain many grid points. Finite
grid spacing can explain the large confidence regions only
for cases of very high accuracy, N � 300 or error � 5�,
and low levels of confidence.

Fault Plane Ambiguity. Fault plane ambiguity may be re-
sponsible for the difficulty of FMSI in determining R in the
axisymmetric case (R � 0 or R � 1.) Random slip orien-
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Figure 8. Confidence region appropriateness for varying focal mechanism error.
The fault planes were chosen to be more uniform than in Figure 6, (see text). Symbols
as in Figure 5.

Figure 9. Confidence region appropriateness for
LSIB for N � 300 when a modified resampling
method is used. The focal mechanisms are sorted into
10�-wide bins based on strike, dip, and rake. Only one
mechanism from each nonempty bin is used in the
base data set that is resampled during bootstrap error
estimation. Although the base data set contains �300
events, each resampled data set still contains 300
events. Symbols are as described in Figure 5.

tations tend to result in R � 0.5. The introduction of incor-
rect data, such as the auxiliary planes of some events, may
move the computed value of R toward the middle of its
range. If only the correct fault planes are included in the data
set, and the misfit is computed only for these planes, the
accuracy of R and the appropriateness of the uncertainty es-
timates improve (Figs. 10, 11). In general, however, modi-
fying FMSI not to include auxiliary planes in the misfit com-
putation does not improve its performance because the
correct fault plane is usually not known.

Recalibration from Numerical Tests. Although it is cur-
rently unknown why the FMSI confidence regions are too
large, numerical tests of the kind we performed can be used
to recalibrate the uncertainty estimates. The results of the
numerical tests provide a mapping between the FMSI con-
fidence level X (x axis) and the corresponding observed con-
fidence level Y (y axis). To use the misfit surface returned
by FMSI to find the appropriate confidence region for con-
fidence level Y, we apply this mapping in reverse.

We define the calibration factor, c, as the ratio between
the corrected threshold value and the uncorrected valuecorRY

, such thatuncRY
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Figure 10. Average accuracy of R determined by FMSI, for axisymmetric stress
tensors (R � 0 and R � 1) when the fault plane is ambiguous (circles and solid line)
and known (crosses and dashed line). There are 50 data sets for each level of error.

Figure 11. Confidence region appropriateness for FMSI for the axisymmetric case
when the fault plane in known. Solid line, 3D; dashed line, 4D. All other symbols are
as described in Figure 5. There are 50 data sets for each level of error.

cor uncR � cR . (16)Y Y

Using equation (11):

cor 1/2 1/2R R z (p/2 � 1) N � NY X X
� �

R R N � 4min min
1/2 1/2 uncz (p/2 � 1) N � N RY Y

� c � c (17)� �N � 4 Rmin

so

1/2 1/2z (p/2 � 1) N � NXc � . (18)1/2 1/2z (p/2 � 1) N � NY

The calibration factor, c, clearly depends on the data set
size N, the R value, the level of random error in the data, the
confidence level of interest, and possibly other characteris-
tics of the data that are not explored in this article. For our

numerical tests with R � 0.5 and error � 5�, 10�, 15�, and
20�, c appears to strongly depend on N and weakly depend
on the other parameters. For N � 20, c � 0.929; for N �
50, c � 0.885; for N � 100, c � 0.912; and for N � 300,
c � 0.959. These estimated values of c are very approximate
and may not be appropriate for data sets that differ from the
synthetic sets used to constrain them.

Conclusions

The two most commonly used techniques for inverting
earthquake focal mechanisms for stress orientation, FMSI
(Gephart and Forsyth, 1984; Gephart, 1990a) and LSIB (Mi-
chael, 1984, 1987b), were tested on noisy synthetic data sets.
Both techniques determine stress orientation accurately. The
FMSI method is generally more accurate for high-quality
data, whereas LSIB is more accurate for very noisy data. The
confidence regions produced by LSIB are usually approxi-



262 J. L. Hardebeck and E. Hauksson

mately the right size, whereas those of FMSI are usually too
large.

The results for the synthetic data sets indicate that the
confidence regions produced by LSIB should be appropriate
for real data sets as well, as long as the model assumptions
of homogeneous stress and slip in the direction of resolved
shear stress generally hold. The numerous stress field vari-
ations that have been observed in southern California using
LSIB (Michael, 1987b; Jones, 1988; Hauksson, 1990, 1994;
Kerkela and Stock, 1996; Hardebeck and Hauksson, 1999,
2001) are therefore larger than the inversion uncertainty and
probably represent real signals. The crustal stress field in a
region can vary in space and time, and earthquake focal
mechanisms can reliably be used to detect these variations.
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