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ABSTRACT: We propose a theoretical framework for dealing with a transient polymer network undergoing small deformations,
based on the rate of breaking and reforming of network cross-links and the evolving elastic reference state. In this framework, the
characteristics of the deformed transient network at microscopic and macroscopic scales are naturally unified. Microscopically,
the breakage rate of the cross-links is affected by the local force acting on the chain. Macroscopically, we use the classical
continuum model for rubber elasticity to describe the structure of the deformation energy, whose reference state is defined
dynamically according to when cross-links are broken and formed. With this, the constitutive relation can be obtained. We study
three applications of the theory in uniaxial stretching geometry: for the stress relaxation after an instantaneous step strain is
imposed, for the stress overshoot and subsequent decay in the plastic regime when a strain ramp is applied, and for the cycle of
stretching and release. We compare the model predictions with experimental data on stress relaxation and stress overshoot in
physically bonded thermoplastic elastomers and in vitrimer networks.

■ INTRODUCTION

Transient networks, also called physical gels, play an important
role in technology and in biological systems.1 The unique ability
to reshape solid in an arbitrary way by plastic deformation at a
higher temperature, returning back to a fully rubber-elastic state
at lower temperatures without any permanent degradation,
including self-healing of mechanical damage, is what makes this
class of soft materials so attractive in a variety of biological
substitutes and functional material applications. In all cases there
is some physical (noncovalent) bonding that holds such a
network together; there are many examples of hydrogen or ionic
bonding,2,3 and local hydrophobic interactions,4,5 as well as
effective cross-linking by semicrystalline or amorphous phase-
separated micelles.2,6,7 Biological networks are often bonded by
transient protein−protein interaction,8,9 or by filament−
membrane interaction.10,11 The interest in the elastic properties
of transient networks with breakable cross-links dates back to the
early work of Thomas12 and Flory13 which, at that time, mostly
concentrated on hydrogen bonding cross-links. Later much
attention was given to thermoplastic elastomers of block
copolymers.14−16 In all of the mentioned cases, physically
bonded cross-links break under stress and at elevated temper-
ature. Very recently, a new class of transient network was
developed, and given the name “vitrimer”, where the covalent

bonds holding the polymer chains in the network can be
rearranged by transesterification reaction17−19 or a catalyst-free
transamination of vinylogous urethanes.20 In these systems, the
shape of the network can be remolded at a sufficiently high
temperature, yet the number of covalent cross-links remains the
same at all times.
Figure 1a illustrates a way of effective network cross-linking via

aggregates of chain segment, which could be in a crystalline, glass,
or just rigid hydrogen-bonded arrangement. Figure 1b illustrates
the topology of chain reconnection due to reversible covalent
bonding such as transesterification, or transamination. Although
the chemical nature of polymers involved, and the physical nature
of cross-links are very different, the common feature of all these
materials is that they all have cross-links that can be broken by
force and spontaneously reformed, usually after chain relaxation
in a nonforce-bearing configuration.
Theoretically, understanding the mechanics and relaxation in

transient networks has been a long-standing project. Micro-
scopically, Green and Tobolsky21 introduced breakage and
remaking of the cross-links when handling relaxation in
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polymeric networks, which was further developed by Fricker22

and Baxandall and Edwards.23 Following this line of research,
Tanaka and Edwards have put together a consistent framework
of treating the cross-link dynamics under external force.24,25

Separately, Rouse dynamics and reptation were used for studying
the dynamics of a transient network by Leibler et al.,26 later
developed by Rubinstein and Semenov.27,28

Macroscopically, in a series of papers, Drozdov et al.29,30

proposed constitutive models for various systems involving
transient networks, by analyzing the macroscopic deformation
energy. In this approach one simply assumes appropriate
expressions for the cross-link breakage and the reforming rates
as a function of energy density with fitting parameters. Similar
ideas were successfully applied to deal with dual networks by
Long and Hui et al.,31,32 where the system consists of
interpenetrating permanent and transient networks. For
simulations, Langevin dynamics,3,33,34 Monte Carlo35,36 and
molecular dynamics simulations37−39 were applied to study the
rheological behavior of a transient network. It is usually simple to
get a constitutive relation, if given the continuum/macroscopic
energy form of the system. If the microscopic details can be
naturally incorporated into such a macroscopic picture, then the
theory can become portable and easy to modify to meet
customized conditions.
As it is known, the classical continuum model for rubber

elasticity, sometimes called “neo-Hookean model”, can be
obtained by statistically treating polymers as Gaussian chains.40

In this work, we will follow Tanaka-Edwards method24 by
explicitly applying the classical continuum model to describe the
energy of the system, instead of using complex statistical
calculations. Specifically, we can obtain the rate of the chains to
break from cross-links, together with their recross-linking rate, by
describing polymer chains as Gaussian (which is consistent with
the level of approximation used in the neo-Hookean model). By
incorporating these molecular details into the time evolution of
the macroscopic transient network structure, we obtain the
deformation energy of the system and then the constitutive
relations under arbitrary geometry of strain. We then focus on
the uniaxial stretching as an example (one of the most common
geometries for study of dynamics and relaxation in experiment),
and derive expressions for stress relaxation, ramp deformation
and self-healing of the network in a cycle of deformation. In most
cases we also carry out matching experiments on the SIS
(styrene−isoprene−styrene) telechelic copolymer network
physically cross-linked by glassy micelles of polystyrene,15 and
on the classical transesterifying vitrimers of Leibler et al.17

Although this has never been studied in detail, one can assume
that the rate of spontaneous recross-linking of broken-out chains
is slow in SIS (where the chain end diffusion toward a new
micelle needs to occur) and fast in vitrimers where the two chains

simply reconnect at the same location. This comparison, which
we can explicitly see in the analytical theoretical expressions, was
the motivation for this choice. We find a good agreement with
experiments, and discuss this and the implications at the end of
the paper.

■ THE MODEL

In this section, we first describe the microscopic picture of rates
of breakage and reforming of cross-links in a transient network
under tension. We then derive the macroscopic elastic energy of
the system, together with the general constitutive stress−strain
relation, where the microscopic details of the cross-link dynamics
are incorporated.

Breaking and Reforming of a Cross-Link. We shall work
under a natural assumption that the cross-link is held together in
a potential energy well with a characteristic energy barrier to
overcome,Wb. The equilibrium Kramers rate of breakage of such
a system is given by the thermal activation law

β ω= − −e W fb k T
0

( )/b B (1)

where ω0 is the natural frequency of thermal vibration of the
reactive group in the isolated state. The work by an external force
f acting on the chain connected to this cross-link is obtained by
assuming that a displacement of one monomer length, b, is
enough to pass the confinement barrier. For a Gaussian chain (a
valid approximation in a polymer melt due to screening of self-
interactions), the force acting on the chain is: f = 3kB Tr/Nsb

2,
where r is the end-to-end vector of the chain, and Ns is the
number of the segments constituting a chain that connects the
cross-links. Alternatively, the acting force can be obtained from
the stress tensor, which will be illustrated later.
Equation 1 can also be arranged in the form that separates the

exponential factor containing the applied force, and converts this
force into the end-to-end distance of a polymer strand
connecting two cross-links: β = β0e

κr, where the parameter κ =
3/Nsb, and β0 is the spontaneous breaking rate determined by the
barrier Wb. The average end-to-end distance ⟨r⟩ of a deformed
network changes with imposed deformation E, following the
affine expression ⟨r⟩ = ⟨E·r0⟩ with an appropriate orientational
averaging, resulting in the dependence of the breaking rate on
deformation. When both breaking and reforming of cross-links
takes place and the deformation is dynamic, E = E(t), the
breakage rate β(t,t0) is a function of both the current time t and
the time t0 when this cross-link was formed during the process.
We shall assume that the recrosslinking of the dangling chain

ends is a simpler case, as the dangling chains are assumed to be in
the relaxed state. This is an approximation ignoring the effects of
diffusion (possibly reptation) time that is required for this chain
to equilibrate in the network. This assumption is also useful in the
discussion of the energy of the system, later in the text. The cross-
linking rate can be given by another Kramers expression,

ρ ω= −e w k T
0 0

/c B
(2)

where wc is the energy barrier for a dangling chain to overcome in
order to be cross-linked. In this form ρ0 is a reaction constant and
is independent of the deformation in the system. Usually, the
cross-linking rate is much higher than the breakage rate at
ambient temperatures, ρ0 ≫ β0 (i.e., Wb ≫wc), so the network
can be regarded as “cross-linked”. For high temperatures, one
could reach a regime when ρ0 ≈ β0 ≈ ω0, and this is clearly a
system that would undergo a plastic flow under stress. It is
interesting that by fitting the data of experiments on vitrimer

Figure 1.Network rearrangements under stretch in (a) physically cross-
linked thermoplastic elastomer and (b) covalently bonded vitrimer
network reconfiguring itself by transesterification.
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stretching17,41 later in the paper, we shall obtainWb≈1.4× 10−19

J = 30 kBT at room temperature: a reasonable value much lower
than an ordinary covalent bond.
The rate constant ρ0 measures the reaction time, but we have

to also consider the time it would take for the free dangling end of
the chain to reach the point of new cross-linking (a position that
we consider force-free for this chain). In some cases, this time is
short, e.g., when the cross-linking reaction can happen essentially
with any nearby monomer (as happens in vitrimer chemistry17).
In other situations, when the reacting end of a dangling chain
needs to travel a substantial distance to link with another
matching site, this time can be long. Many excellent theoretical
models describe this diffusion motion (usually−reptation, with
or without constraint release42,43). Here we simply account for
the diffusion time as an addition to the reaction time, making the
effective rate of recross-linking:

ρ
ρ

=
+t

1

1/diff 0 (3)

and will later consider the cases when the diffusion time is very
short (tdiff ≫1/ρ0) and very long (tdiff ≪1/ρ0).
Transient Network. Since the cross-links form and break

dynamically, the numbers of both the cross-linked chains and the
dangling chains in the network may change with time. If we take
the number of cross-linked chains at a given time to be Nc(t),
then the number of the un-cross-linked chains is correspondingly
Nb(t) =Ntot −Nc(t), whereNtot is the total number of the chains
in the system including both cross-linked and freely dangling. If
the system is in the equilibrium (reference) state without any
deformation, then the breakage rate in eq 1 becomes a constant

β β β= =κe er N
0 0

3/ s0 (the last relation is due to the average end-

to-end distance in such a network being ̅ =r b Ns0 , consistently

staying with the Gaussian approximation). The equilibrium
detailed balance gives the relationship between Nc and Nb under
no deformation: Ncβ = Nbρ0. Note that it is the reaction rate ρ0,
eq 2, that forms this detailed balance, whereas the full rate, ρ,
determines the recross-linking during the process of dynamic
deformation.
Furthermore, since the newly recross-linked chains are

assumed to be in their relaxed state, the cross-linked chains can
be categorized into two classes: one is the newly cross-linked
chains in their force-free relaxed state, with the number Nnc(t),
while the other is the “surviving” cross-linked chains, which were
cross-linked initially and are still elastically active at the present
time, with the number Nsc(t) = Nc(t) − Nnc(t) .
Table 1 illustrates in discrete form how we build up the

expressions for the time dependence of Nc(t) . Apart from losing
a portion of initially cross-linked chains, at each step with a rate
that reflects the current state of deformation, the rate of breaking
of newly recross-linked chains depends on the changing
reference state. After the first small time interval Δt, the number

of chains broken from cross-links is Nb(Δt) = Nc(0)β(Δt;0)Δt,
and the number of the survived cross-linked chains is Nsc(Δt) =
Nc(0)(1−β(Δt;0)Δt) ≃Nc(0)e

−β(Δt;0)Δt, correspondingly.
Meanwhile, the number of the newly cross-linked chains is
Nnc(Δt) =Nb(0)ρΔt. After the next time intervalΔt, the number
of the initially cross-linked surviving chains reduces further at a
rate β(2Δt;0) that corresponds to the state of deformation at this
time. For the chains recross-linked at time Δt, the breakage rate
has the reference (force-free) state at Δt, which explains the
second term in the 2Δt line of Table 1. Plus, a portion of the
chains that were broken at the previous time step re-cross-links
with the constant rate ρ. Repeating these discrete steps, the total
number of cross-linked chains at time NΔt can be written down.
Taking the limit Δt →0, the continuous version of these sums
takes the form

∫ ρ= ′ + ′ ″ ′ ′β β− ∫ ′ − ∫ ″
′N t N N t t( ) (0)e ( )e dc c

t t
t

t t t( ;0)d

0
b

( ; )d
t

t

t

0

(4)

This expression is key for our subsequent analysis. The first term
represents the initially cross-linked chains surviving from t′ = 0
until the present time, while the second term represents the
chains recross-linked during that period both from the originally
broken chains and the chains broken at different times during this
evolution. Since Nb(t) = Ntot − Nc(t), eq 4 is a formal integral
equation that determines Nc(t) for a given state of dynamic
deformation.

Macroscopic Elastic Energy. We shall use the classical
continuum model of rubber elasticity derived from statistics of
Gaussian chains.40,44 Let us at first assume that a rubbery
network, with permanent cross-links, is at its reference state at t =
0. If the system is deformed from its reference state with a general
affine deformation tensor E(t;0) at time t, then the energy
density of the system can be written as

= −F t G t tE E( ; 0)
1

2
(tr[ ( ; 0) ( ; 0)] 3)rub

T

(5)

where G is the shear modulus of the rubber. The entropic
Gaussian model will give the rubber modulus proportional to the
density of cross-linked chains,G0 = kBTNc(0)/V, but we shall not
be concerned with a specific value of this material constant.
For a deformed transient network, the average elastic free

energy is made of several contributions. Let us assume that the
initial reference (force-free) state is at time t = 0. For t > 0, the
chains in network no longer have the same reference state: the
Nsc chains cross-linked from the beginning that survived until the
current time are deformed with respect to the t = 0 state, but the
Nnc recross-linked chains are deformed with respect to their
individual reference states that were force-free at different times.
Consider Nnc(t0) chains newly cross-linked at t0, and the
macroscopic deformation tensor of the transient network E(t0;0)
at time t0 (with respect to the original reference state). Then
Nnc(t0) chains are in their reference, or relaxed state. As such,
they do not contribute any elastic energy to the system at time t0
and state of deformation E(t0;0). But, at a later time, t > t0, if the
imposed deformation has dynamically changed to a new value
E(t;t0), the energy density contributed by these Nnc(t0) chains is

proportional to Nnc(t0)e
−∫t0

t
β(t′;t0)dt′ F(t;t0), where the time-

dependent factor represents the proportion of these Nnc(t0)
chains still cross-linked at a later time t′. The elastic free energy
density F(t;t0) in this expression is determined by the
deformation tensor E(t;t0) with respect to the reference state
at t0, expressed by

Table 1. Time-Evolution of the Number of the Cross-Linked
Chains

time number of cross-linked chains

0 Nc(0)

Δt Nc(0)e
−β(Δt;0)Δt + Nb(0)ρΔt

2Δt Nc(0)e
−β(Δt;0)Δte−β(2Δt;0)Δt + Nb(0)ρΔte

−β(2Δt;Δt)Δt + Nb(Δt)ρΔt

... ...

NΔt Nc(0)e
−∑i=1

N
β(iΔt;0)Δt + ∑j=0

N−1Nb(jΔt)ρΔte
−∑k=j+2

N
β(kΔt;[j+1]Δt)Δt
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= · −t t t tE E E( ; ) ( ; 0) ( ; 0)0
1

0 (6)

where E−1 is the inverse matrix of E.
Assembling together all these contributions from the chains

that have been recross-linked during the deformation period
between t′ = 0 and t, and adding the continuously diminishing
contribution from the initially cross-linked chains, the energy
density of the transient network can be expressed by

∫ ρ= ′ +
′

″ ′ ′ ′

β

β

− ∫ ′

− ∫ ″
′

F t e F t
N t

N

F t t t

( ) ( ; 0)
( )

(0)

e ( ; ) d

t t
t

c

t t t

tr.n.
( ;0)d

rub
0

b

( , )d
rub

t

t

t

0

(7)

where in the second term the neo-Hookean free energy density
uses the dynamically changing strain tensor from eq 6.
In ordinary rubbery networks, the cross-links are permanent,

and the rubber modulus G is defined in eq 5 with an unchanged
reference state at t = 0. However, the reference state in a transient
network can only be defined locally for different chains,
depending on when they are cross-linked. Because of the
difficulty in tracking the real reference state of every cross-linked
chain, it is sometimes convenient to define an effective shear
modulus G* as the ratio45

* =
−

G t
F t

t tE E
( )

2 ( )

tr[ ( ; 0) ( ; 0)] 3

tr.n.
T

(8)

which essentially measures the relative change of the transient
network response with respect to an analogous permanently
cross-linked network with the elastic reference state at t = 0.
Elastic Stress Tensor. The stress of a transient network

usually includes two parts, the elastic stress and the viscous stress,
σ
ela + σ

vis, since the plastic flow could be an essential part of the
mechanical response. The origins of the viscous part σvis are
complex, and might include nonaffine movement of the cross-
links, dynamics of entanglements and dangling chains, etc. We
shall simply express it in the form

σ η γ γ= ̇ · ̇( )vis
(9)

where η is the viscosity tensor, which is expressed as a possible
function of the strain rate tensor γ̇. There are many studies on
how viscous stress depends on the strain rates, including shear
thinning and thickening effects, which is usually induced by
nonaffine movement inside of the network.46,47

In this work we will concentrate on how elastic stress evolves
with deformations ignoring the viscous effects during the
developed plastic flow. Earlier we discussed the Helmholtz
elastic free energy of the transient network. However, we need to
account for the material (in)compressibility, which is not
naturally included in the classical rubber-elasticity expression 5.
It is common to simply impose the incompressibility constraint
onto such an expression; however, the “cost” is often an
unphysical nonzero stress on the free sides of the deformed
sample. There are two ways to account for this: either explicitly
include the (large) bulk modulus, find a corresponding (small)
volume change on deformation and rescale the strain tensor to be
measured with respect to that state48or work with the Gibbs
free energy density g(p,T) and replace the (constant) pressure
from the constraint that free surfaces of the sample have zero
stress.49 This is the approach we follow here and introduce:

= − ·g t F t p E( ) ( ) dettr.n. (10)

where Ftr.n.(t) is given by eq 7, Eij(t; t′) = Eik(t; 0) Ekj
−1(t′;0), and

the pressure p is a Lagrangian multiplier in charge of the
incompressibility condition, determined by the boundary
conditions of the stress. Defining stress as a functional variation
of g(t)

σ
δ

δ
=t

g t

E t
( )

( )

( ; 0)
ij

ij

ela

(11)

we can obtain the expression of the stress tensor

∫σ ρ= ′ +
′

× ″ ′ ′ ′ ′ − · ·

β

β

− ∫ ′

− ∫ ″ − −
′

t GE t
N t

N

GE t t E t t p EE

( ) e ( ; 0)
( )

(0)

e ( ; ) ( ; 0) d det

ij
t t

ij

t

c

t t t
ik jk ji

ela ( ;0)d

0

b

( , )d 1 1

t

t

t

0

(12)

where the first term represents the contribution from the
surviving chains cross-linked at t = 0, and the second term
represents the contribution from the chains re-crosslinked
between t′ = 0 and t.
Let us now focus on how a transient network responds to an

imposed uniaxial stretch, as an application of the above general
model. When undergoing a uniaxial stretch along the
longitudinal direction, Figure 2(a), the polymeric sheet will

deform, with length as L = λLL0, width as W = λWW0 and
thickness as H = λHH0, where λL, λW, λH are elongation ratios
along the three orthogonal directions. Taking λL as the external
parameter λ, λW and λH can be written as 1/√λ each, due to the
incompressibility.
If the particular cross-links are formed at time t′, then their

corresponding deformation tensor at time t can be known from
eq 6, treating E(t′;0) as the reference state:

λ

λ

λ

λ
′ =

′
+

′
+t t

t

t

t

t
E e e e e e e( ; )

( )

( )

( )

( )
( )L L W W T T

(13)

where eL, eW, and eT are unit vectors along the three orthogonal
directions. In this case, Figure 2b, the average end-to-end
distance ⟨r⟩ that determines the breaking rate β in eq 1 can be
calculated using the changing average end-to-end distance that
reflects the deformation that occurs at time t with respect to a
reference state at time τ:

∫ θ θ
λ

λ τ
θ

λ τ

λ
θ⟨ ⟩ = +τ

π ⎛

⎝
⎜

⎞

⎠
⎟r r

t

t
d sin

( )

( )
cos

( )

( )
sint ; 0

0

/2
2

2 2

(14)

Here ∼r N bs0 is the mesh size of the network in its reference

state. Substituting the strain tensor from eq 13, the Helmholtz

Figure 2. Schematic illustration of (a) a polymeric sheet, and (b) a
chosen subchain in a uniaxial stretched network, with r as the end-to-end
distance and θ as the angle between the end-to-end vector and the
stretch direction.

Macromolecules Article

DOI: 10.1021/acs.macromol.5b02667
Macromolecules 2016, 49, 2843−2852

2846

http://dx.doi.org/10.1021/acs.macromol.5b02667


elastic free energy density of the system can be written explicitly
as

∫

λ
λ

ρ
λ

λ

λ

λ

= ′ + −

+
′

″ ′
′

+
′

− ′

β

β

− ∫ ′

− ∫ ″′

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎥

F t G t
t

G
N t

N

t

t

t

t
t

( )
1

2
e ( )

2

( )
3

1

2

( )
e

( )

( )

2 ( )

( )
3 d

t t

t
t t t

tr.n.
( ;0)d 2

0

b

0

( , )d

2

t

t
t

0

(15)

with the orientational averaging implicit in the expressions for
β(t,t′) in the relaxation exponents. Applying eq 8, the effective
shear modulus can be obtained by simply dividing both terms in
this free energy density by the characteristic neo-Hookean strain
combination, which for uniaxial deformation is given by the
bracket in the first term in eq 15:

∫ ρ

λ λ λ λ

λ λ

* = ′ +
′

″ ′

×
′ + ′ −

+ −
′

β β− ∫ ′ − ∫ ″
′

⎛

⎝
⎜

⎞

⎠
⎟

G t G G
N t

N

t t t t

t t
t

( ) e
( )

e

( ) / ( ) 2 ( )/ ( ) 3

( ) 2/ ( ) 3
d

t t
t

t t t( ;0)d

0

b

0

( , )d

2 2

2

t

t

t

0

(16)

The transverse diagonal components of stress can be obtained
from eq 12 by inserting the explicit components of the uniaxial
strain tensor, producing

∫

σ σ
λ

ρ λ λ

= = ′

+
′

″ ′ ′ ′ −

β

β

− ∫ ′

− ∫ ″
′

⎛

⎝
⎜

⎞

⎠
⎟

G

t

N t

N
t t p t

( )
e

( )
e ( ) d ( )

t t

t
t t t

W T
( ;0)d

0

b

0

( , )d

t

t

t

0

(17)

In this geometry of uniaxial stretching, σW and σT should be both
equal to 0, which gives the value of p to be substituted into the
final expression for the tensile stress. After a little algebra we
obtain

∫

σ λ λ
λ

ρ
λ

λ

λ

λ

= −

+
′

′
−

′
′

β

β

− ∫ ′ ′

− ∫ ″ ′ ″
′

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

t G t
t

G
N t

N

t

t

t

t
t

( , ) e ( )
1

( )

( )
e

( )

( )

( )

( )
d

t t

t
t t t

L
( ;0)d

2

0

b

0

( , )d
2 2

t

t

t

0

(18)

Calculation of this dynamic stress for a given imposed
deformation λ(t) goes in two steps: first we must solve the
integral eq 4 to determine Nb(t) and then compute the time-

integrals in eq 18. In the following sections we will discuss in
detail how a transient network responds to several practically
relevant deformation modes: step strain, ramp deformation, and
a loading−unloading cycle.

■ STRESS RELAXATION

In this section, we discuss how the stress in a transient network
relaxes in a “standard experiment” when a uniaxial stepwise
deformation λL = λ is applied at t = 0. This is the simplest case of
application of our theory. As seen in eq 16, with λ(t) = λ(t′) the
second term vanishes exactly, which means the chains recross-
linked after t = 0 do not contribute to the relaxation stress, as
these chains remain in their force-free reference state with λ(t) =
λ. From eq 18, we can directly find the tensile stress along the
stretching direction, which relaxes as a simple exponential:

σ λ
λ

= −β λ− ⎜ ⎟
⎛

⎝

⎞

⎠
Ge

1t
L

( )
2 (19)

where the inverse τ = 1/β (λ) is the characteristic relaxation time
of the tensile stress.50,51 The explicit form of β(λ) = β0 exp [κ
⟨r(λ)⟩] with the orientational average of the end-to-end chain
length from eq 14 is given by
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which increases monotonically with the stretching ratio λ (and
also on uniaxial compression, λ < 1). At small strain ε = λ− 1≪1,

we obtain ω≈c Nexp(3/ )s0 0 , a constant for a given network.

Fo r l a r g e λ , t h e oppos i t e l im i t i ng c a s e g i ve s
ω λ≈c Nexp(3 /2 )s0 0 , that is, the rate of breaking increases

exponentially. In this case, most of the chains align along the
stretching direction and directly transmit the deformation to a
shift in the thermal activation law.
Most standard stress-relaxation experiments are conducted in

the linear stress−strain regime, effectively measuring the shear
modulus G*(t) . Figure 3 shows two examples of analysis of
experimental data in two chemically different vitrimer networks,

Figure 3. (a) Relaxation of the normalized effective shear modulus G* for different temperatures in two vitrimer networks. Solid lines are the simple
exponential curves, and the dots are experimental data: (a) from Leibler et al.,17 where the fitting givesWb ≈ 1. 4 × 10−19 J = 34 kBTroom. (b) A different
polylactide vitrimer from Hillmyer et al.41 gives a much stronger bonding: Wb ≈ 2. 6 × 10−19 J = 64 kBTroom.
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assuming that in both cases the authors did maintain the linear
stress−strain regime. Both plots show that the simple
exponential relaxation is a valid model, and since data at different
temperatures was collectedwe can fit the Arrhenius law in eq
20 and obtain the activation energies Wb for the trans-
esterification reaction in these two materials (the values are
listed in the figure caption).
So far we worked under assumption that the activation energy

for the cross-link breaking, Wb, is a fixed parameter of the
material. This is a good assumption in the case when the cross-
links are held by, e.g. hydrogen bonds, or in the case of vitrimers
(where the covalent bond is “weakened” by an appropriate
catalyst). However, there are many cases where the physical
bonds would not have a single characteristic binding energy: the
simple example is the SIS telechelic block copolymer network
where the glassy polystyrene micelles must have a distribution of
sizes, shapes, and therefore strength of chain confinement. The
way to account for such a distribution is to perform the quenched
average of the relaxation function (19) with an (assumed
Gaussian) probability distribution:

∫ ω

π

⟨ * ⟩ = −

×
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− − * Δ
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where W* is the average binding energy and Δ measures the
spread of the distribution. The earlier case of the single binding
energy isΔ→0. The integral of the double exponential is difficult
to calculate analytically (although good interpolations are
possible), but the numerical plot of the quenched-averaged
relaxation function ⟨G*(t)⟩W in Figure 4a shows that the
relaxation law becomes the stretched exponential exp [−(βt)0.2]
when there is a sufficiently widespread of theWb values:Δ≥W*,
while remaining the simple exponential for the narrow
distribution, as expected. Also note that this characteristic
stretched exponential only sets in at long relaxation times, while
the short-time remains simple exponential, with the crossover
between the two regimes starting at times (ω0e

κr0)t ∼ 1.
The relaxation data in Figure 4b are from the physically cross-

linked SIS elastomer of Hotta et al.15where the long-time tails are
reliably following the exp [−(βt)0.2] law, supporting the concept
of a broad distribution of cross-linking strengths in such a
physically linked network. Note that there is a systematic
discrepancy of the simple stretched-exponential relaxation law in

the data at very short times in Figure 4b: this is not a relevant
issue in our discussion as neither the theory nor the experiment
are “designed” to describe very short times. In experiment, there
are difficulties in simultaneous long- and short-time detection
and the inability to impose and instantaneous strain step. In
theory, we do not consider time-dependent transient effects of
stress propagation through the sample; also the creep process we
describe only starts after a characteristic time 1/β, which was
∼10−17 s in the fitted curves. The important point is that the
relaxation law fits the time and temperature dependent data over
the whole of the true relaxation process.
There are very few papers where the stress relaxation in

transient networks is experimentally studied at increasing
magnitude of the step strain λ, with the work of Serero et al.5

being one of the few. The data points in Figure 5 are from this

paper. Although the stretched exponential G* = Ge−(βt)
0.8

was
used, the results would be qualitatively the same with what we get
in above case of a simple exponential, in the sense that there is a
characteristic relaxation rate β(λ) that we calculate and the
experiment measures. We find that the experimental values for
β(λ) fit very well with the full high-strain expression in eq 20,
using the single fitting parameter κr0≈ 1.7. For an ideal Gaussian
chain κ ≈r N3/ s0 , implying a perhaps too low length of the

network strand, but there are certainly many corrections to this

Figure 4. (a) Double log−log plots of eq 22, in scaled nondimensional variables, for several values of variance (width)Δ of the quenched distribution of
energy barriersWb. The dashed line has a slope of 0.2, giving the long-time relaxation limit of ⟨G*⟩W∝ exp[−(βt)0.2] after the crossover from the linear-
exponential regime at early times. (b) Relaxation of the effective shear modulusG*(t) for different temperatures in the transient network of SIS. Here the
solid lines are the stretched exponential curves exp[−(βt)0.2] resulting from our model with a broad distribution of activation energiesWb, and the dots
are experimental data from Hotta et al.15 Clearly the stretched exponential fits the long-time relaxation, with only two parameters: G and β(T) .

Figure 5. Relaxation time 1/β(λ) in the nonlinear regime, plotted as a
function of the strain ε = λ−1. The solid line is the theoretical result of eq
20, and the dots are experimental data from Serero et al.5 The single
fitted parameter here is κr0 ≈ 1.7. The deviation from the theory at high
strain is certainly due to the sample tearing.
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naive estimate expected, and the order of magnitude of this
parameter is meaningful.

■ STRAIN RAMP

The other commonly used testing method in rheology is the
linear ramp of imposed strain. Many standard instruments, such
as Instron, operate in this mode, and very often one finds the
stress−strain curves in the literature are reported after measuring
the strain as a function of time during a strain ramp. Here we
analyze how the dynamics of cross-link distribution shows itself
in such an experiment. We remain in the uniaxial stretching
geometry and let the longitudinal extensional strain increase
linearly with time, λ = 1 + γt,̇ where γ ̇ is a constant strain rate. We
already know the dynamic strain−stress relationship in the
uniaxial geometry, which is eq 18, so all we need is to identify the
important nondimensional parameters that control the outcome.
Let us measure the time in units of 1/β0, and similarly for the
strain rate, γ/̇β0, and consider two cases: fast recross-linking, ρ =
10 β0, and slow recross-linking, ρ = 0.1 β0 (meaning that the
diffusion time tdiff is long in the second case). Then, measuring
the stress in units of raw rubber modulus G, we can numerically
integrate eq 18 and plot the results in Figure 6.
We see that initially the stress increases linearly with

elongation ratio λ (or strain λ − 1), and the slope is exactly the
shear modulus G. There is always a point of “stress overshoot”
(the yield point36) for every γ,̇ although at very fast rates of
deformation this point moves far to the right in the plots. Past
this yield point the stress begins to monotonically decrease with
strain, with a power-law numerically found close to λ−2.

The phenomenon of “stress overshoot” is encountered often
in rheological studies of disordered materials, and the detailed
mechanisms vary for different systems. In entangled polymer
solutions and polymer melts, the Doi−Edwards−Marrucci−
Grizzutti model predicts the existence of stress overshoot,52,53

which originates from the contraction of stretched chains and
reptation of polymer chains in the tubes. Later, the idea of
”constraint release” was proposed and developed42,43,54−56 to
produce an even more pronounced stress overshoot and yielding
instability. One also finds stress overshoot in metallic glass,57−59

where the softening and fluidization is prompted by the nonaffine
shear-induced cage breakup. One finds a lot of conceptual
similarity in all these physical situations, where the conditions are
reached to break the microscopic constraints that normally
produce an elastic contribution.
To test the predictions of our theory, we carried out strain−

ramp experiments on two very different transient networks: the
classical vitrimer and the physically cross-linked SIS elastomer,
Figure 7. We used the custom-built mechanical testing gear
described elsewhere,60 which in this situation has been set to
impose a constant controlled rate of uniaxial extension on the
sample, while continuously monitoring its tensile stress and
changes in shape. In order to find the stress overshoot within the
comfortable range of strain rates and stress values, we had to
maintain the temperature close to the vitrification point, as
defined for both materials in the original paper,15,17 respectively.
In full agreement with theoretical curves in Figure 6, the
experiment on both materials shows a clear yielding instability
and the continuous decrease of stress past it, when the rate of

Figure 6. Strain−stress relations of a transient network under a linear ramp deformation for different strain rates, with plot a showing the case of fast
recross-linking, ρ = 10 β0, and plot b showing the slow re-cross-linking, ρ = 0.1 β0.

Figure 7. Strain−stress relations of a transient network under a linear ramp deformation for different strain rates, with plot a showing the data for the
vitrimer of Leibler et al.,17 at constant temperature T = 130 °C and plot b showing the data for the physically cross-linked SIS network of Hotta et al.,15 at
constant temperature T = 80 °C. In both cases, the temperature is chosen at the approximate level of “vitrification transition”; the rates of strain are
labeled on the plots.
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stretching is sufficiently low. The vitrimer network was not able
to survive without fracturing at higher strain rates, while the SIS
(with its generally more robust composite microstructure and
longer chain strands) shows the high-rate curves also in
agreement with Figure 6.
Self-healing materials attract much attention due to their

potential applications in mimicking biological tissues, advanced
materials with reversible performance, and in the general context
of reusing recycled plastic components. One of the aspects of
self-healing is the reproducibility of repeated stretching cycles.
Both the stretching and the return to the original imposed length
are assumed to proceed as a linear ramp with the strain rate γ.̇
The dynamic tensile stress response is still given by eq 18, and
Figure 8 illustrates the response over a sequence of deformation

cycles, taking a constant rate of loading that corresponds to the
“0.1” curve in Figure 6a reaching just before the yield instability
point, followed by a constant rate of unloading−compression.
Several rates of unloading are presented to illustrate the
dynamics of the process, but in each case the tensile stress
passes the zero point and turns into compression when the
length of the sample is forced to shorten. The negative
(compression) stress reaches the maximum magnitude when
the stress returns to zero, at which point we hold the shape
constant for a period of relaxation. In fact, this stress relaxation
under an effective compression step is not different from the one
studied in Figure 3 and eq 19: it is a simple exponential relaxation
over a characteristic time β0t ≈ 1 for all three unloading curves−
only the amplitude of stress changes at different rates.
In Figure 8, we see that the compression stress is larger for the

same stretching ratio if the unloading rate is higher, which is
because fewer stretched chains are able to relax or disconnect
from the stretched cross-links. Obviously, more elastic energy is
relaxed or dissipated with a lower unloading rate, due to relatively
quick breakage and reformation of new cross-links. However, in
such a loading−unloading experiment, a significant practical
factor might be the Euler buckling of the elastomer sample on
compression.61,62 The bucking instability occurs when a
compression force on a rod of length L exceeds the critical
value fc = π

2 B/L2, where B is the bending modulus. Assuming the
rectangular cross-section of the sample with the width W and

thickness H, this modulus is B = 3GWH3/12 and the critical
stress is σc = fc/WH. We then find the critical compression stress

at which the sample would buckle: σ π= G H L( / )c
1

4

2 2. So for a

typical sample in a shape of flat strip, withH/L≪ 1, the negative
(compression) values of stress in Figure 8 are not achievable.
Instead, the sample would buckle very soon on entering the
compression region, and the “recovery” we observed in these
plots will not be possible. Nevertheless, the concept of self-
healing remains valid: on applying a required set of constraints
(in shape or stress), the transient network can be brought into
any desired reference state.

■ DISCUSSION

In this work, we have derived the dynamic constitutive relation of
a transient network, in which cross-links can be broken by local
tensile force on the polymer strand connecting them−and re-
established in the assumed zero-stress configuration with a
certain rate. To achieve this, we had to combine the microscopic
kinetic description of cross-links with the macroscopic rubber-
elastic energy function describing the deviation from the
dynamically changing reference state. The incompressibility
constraint is accounted for via the pressure acting as Lagrange
multiplier, ensuring the boundary condition constraints are
satisfied.
After the general analysis, we specifically focus on the case of

uniaxial deformation and the main eq 18 is the constitutive
relation for that case. There are two particular applications we
consider: the relaxation of stress after a static imposed strain, and
the response to a dynamic strain imposed as a constant-rate ramp
(in the latter case, also the cyclic loading−unloading
deformation). In both cases we compare the detailed theoretical
predictions with experimental results: obtained from the
literature in the case of stress relaxation, and our own in the
case of dynamic loading. We deliberately compare very different
kinds of transient network: the SIS triblock copolymer physically
bonded via phase-separated glassy micelles (in Figure 4b for
stress relaxation and in Figure 7b for the stress overshoot and
yielding on ramp deformation), the perfluoroalkyl-modified
poly(ethylene oxide) telechelic hydrogel of Serrero et al.,5 which
is also physically bonded by phase-separated micelles (Figure 5),
and two kinds of vitrimer networks where the covalent bonds can
be reconfigured by the transesterification reaction (Figure 3 for
stress relaxation and Figure 7a for the stress overshoot and
yielding on ramp deformation). There are many important
effects traditionally discussed in context of physcally bonded
polymer networks: the loop/bridge ratio,63 entanglements and
constraint release,64,65 filler effects of block copolymers with a
glassy micelles,66 dangling loops, etc. It is perhaps surprising that
our theory, purely based on the breakable cross-link dynamics,
achieves such a good (essentially quantitative) agreement with a
variety of experiments on very different kinds of networks.
The most important conclusion about the stress relaxation is

that it proceeds in a simple exponential manner. This is in
marked contrast to stress relaxation in ordinary rubbers, which
always has a very long-time tail (either power-law or even
logarithmic). In “neat” transient networks (where the energy
barrier for cross-link breaking has a well-defined value) the
relaxation is strictly simple exponential, which allows us to
determine the energy barriers (Figure 3). In “heterogeneous”
transient networks where the energy barrier for cross-link
breaking is distributed over a wide range of values around amean,

Figure 8. Strain−stress relation for several loading−unloading cycles, in
all cases with loading rate γ/̇β0 = 0.1 and several unloading (negative
ramp) rates labeled on the plot; ρ = 10 β0. Once the (imposed) sample
length returns to its original value, it is held fixed for the period of stress
relaxation. The fact that the next loading cycle follows exactly the same
curve indicates the full recovery of the sample reference state.
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the long-time stress relaxation follows a stretched-exponential
law ∼exp[−(βt)0.2]; see Figure 4b.
It is difficult to find the literature data on how the chracteristic

stress relaxation time depends on the amplitude of strain, in a
highly nonlinear manner. The data of Serrero et al.5 fits very well
to the basic prediction of our theory given by the analytical eq 20,
again suggesting that perhaps the cross-link break/reconnect
dynamics is the dominant factor.
The key finding in the case of linear deformation ramp is the

stress overshoot (yielding point) after which the network flows
plastically. This yield point strongly depends on the applied
strain rate. Again, we compare our predictions with experiments
on the single-mode covalently bonded vitrimer network and on
the polydisperse physically constrained SIS network, both
showing good agreement. It is true that entanglement/constraint
release models also predict the similar stress overshoot.43,55,56

However, our theory and concepts are not worse in this
comparisonwhile offering several other verifiable predictions
discussed here. Finally, we examine the ability of transient
networks to “self-heal”, or recover the initial reference state when
external forces are applied to keep it in that state for a sufficient
length of relaxation time (which itself is a function of activation
rate of cross-link breaking).
Several approximations are made in this work to keep the

transparency of the theory. Apart from the already mentioned
factors traditional in polymer rheology, we have omitted the
nonaffine movements of the system, which can be important
when the chains between the cross-links are short, or when the
movement of entanglement is not negligible. The neo-Hookean
model of rubber elasticity which we used is only strictly valid for
deformations that do not reach the full extension of network
strands. Although it is frequently and successfully used up to
extensions of 100% and more, strictly speaking, a different elastic
model should be used when dealing with large deformations
when the chain inextensibility is tested. In spite of these
limitations, we believe this work provide a clear and predictive
picture of dynamics and relaxation in generic transient networks
and offer insights for handling and processing such materials in
practice.
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