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ABSTRACT 

True stress-strain curves, developed from contact-resistance measurements be

tween two OFHC copper specimens loaded and unloaded in vacuum, showed that the cold-

welded junctions exhibited an amount of ductility generally characteristic of the specimen 

material. Junction ductility was greater when the experiment was kept vibration free. 

Deliberate vibration introduced during the loading cycle lowered the junction ductility. 

The contact-resistance-against-load data also seemed to indicate that impulsive forces 

could increase the a rea  of contact under fixed load to a point where the contact a rea  might 

revert  to an elastic condition. 
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SUMMARY 

Continuous x, y-recordings were made of the contact resistance against the load for 

two oxygen-free high-conductivity (OFHC) copper specimens (hemisphere against cylinder) 

compressively loaded and then unloaded in an ultrahigh vacuum of 10-zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl1  torr  (1.33x10-’ 

N/m2). Data were  obtained under two conditions, very low environmental vibration o r  

deliberate vibration during the loading cycle. These data showed that adhesion occurred 

in both cases (coefficients of adhesion, 0. 11and 0. 19, respectively), in spite of the fact 

that the specimens were not rigorously cleaned. True stress-strain curves were con

structed from data for the contact resistance against the decreasing load for each condi

tion. The general shape of each of the true stress-strain curves was compared with the 

true stress-strain curve characteristic of the specimen material, and both curves were 

similar. This similarity suggested that the cold-welded junctions established between 

the two specimens were formed from the specimen material (copper). Therefore, the 

observed adhesion was primarily metallic and not a result of adhesion between surface 

films. The true stress-strain curves showed that specimen vibration reduced the ductility 

of the junctions, presumably because of extreme work hardening caused by the impulsive 

forces. 

The true stress-strain curves also showed that elastic behavior of the cold-welded 

junctions occurred as the load was reduced from its maximum value and that considerable 

plastic deformation of the junctions had occurred when the load was reduced to zero. 

The data on contact resistance against load for the vibrated contact seemed to indi

cate that impulsive forces (vibrations) could increase the a rea  of contact under fixed load 

to the point where the contact a rea  might revert  to an elastic condition. 
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INTRODUCT10N 

The nature of the interface between two metallic surfaces in physical contact is im

portant in the operation of sliding systems because it will determine the friction and wear 

characteristics of the system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf the surfaces are prevented from coming into intimate 

physical contact by the presence of an intervening film (a lubricant or contamination), the 

friction and wear will be relativel;. low 2s long as the film remains in place. In the ab

sence of intervening films, the two surfaces will establish asperity contact and cold weld

ing may occur, which creates metallic junctions between the two bodies in contact. When 

sliding begins, a frictional force arises because these welded junctions must be sheared 

before relative motion can occur (ref. 1). 

Adhesion experiments have been made (refs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 to 7) that showed cold welding at the 

interface between various materials. In these experiments, the two chosen materials 

were loaded compressively against each other. After unloading, a force was applied in 

the opposite direction to break the materials apart. The ratio of the breaking force to the 

loading force defines a dimensionless coefficient of adhesion that serves to indicate the 

relative adhesion between the various metallic couples under different experimental con

ditions. 

Most of the adhesion experiments are designed to evaluate the possibility of adhesion 

between couples of various metals and alloys under relatively heavy loads at different 

temperatures, in air o r  vacuum. Some experiments, however, have dealt with the phe

nomena of adhesion on a smaller scale by using smaller specimens and much lighter loads 

(ref. 5). While these methods may establish a qualitative measure of the adhesion between 

various materials, they do not reveal much information about the mechanical properties 

(e. g. , ductility, brittle fracture, and creep) of the junctions formed. Furthermore, these 

experiments reveal little about the behavior at the interface during loading and unloading. 

Large- scale tensile- testing procedures cannot be conveniently applied to cold-welded 

metallic junctions on the asperity level (microjunctions) because of their microscopic 

nature (extremely small cross-sectional area and length). If these cold-welded junctions 

could be subjected to tensile testing, judgements on the nature of the junctions formed 

might be made by comparing junction characteristics (e. g. , ductility) to those normally 

associated with the specimen material. Evidence of marked ductility would also show 

that metallic cold welding between specimens actually occurs rather than adhesion between 

surface films. 

The objectives of the present experiments is to show that (1)metallic cold-welded 

junctions are established between two ductile specimens in simple contact, (2) the cold-

welded junctions possess the characteristics of the specimen material (e. g. , ductility), 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) the ductility of the junctions is affected by specimen vibration. 

These objectives were achieved by (1) measurement of the electrical contact resist
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ance between two oxygen-free high-conductivity (OFHC) copper specimens during loading 

and unloading in a vacuum of tor r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1 . 3 3 ~ 1 0 - ’N/m2), (2) use of the data obtained 

during unloading to construct true stress-strain curves, and (3) comparison of the experi

mental true stress-strain curve to that for the specimen material. 

SYMBOLS 

AC 
actual contact area between two speciments, mm

2 

*r reference contact area, mm
2 

a radius of contact area, c m  

b pressure coefficient of resistance, 

I? instantaneous length of specimen 

initial length of specimen 

AP 
change in pressure,  kg/cm 2 

RC 
total contact resistance, mS2 

2 
c m  /kg 

RO resistance at pressure of 1 atm, m a  

Rr 
contact resistance of reference contact area, m a  

W load, g 

Y shape factor defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa! = ya  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP = a/y, where a! and /3 a r e  major and 

minor axis, respectively, of an ellipse 

E true strain, dimensionless 

P resistivity of specimen material, ohm-cm 

/ true s t ress ,  N/m 
2 

‘TC 
true stress in contact area, kg/mm 

2 

SPECIMENS 

Copper was chosen as the experimental material to fulfill the objectives because it 

is (1) a very ductile material, (2) easily work hardened, and (3) easily cold welded in a 

vacuum. 

The specimen configuration consisted of a hemispherically tipped rod (9. 5- mm diam. 

by 17.6 mm long) that was loaded against the periphery of a cylinder (50. 8-mm diam. by 
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25.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmm long). The wall thickness of the cylinder in the contact area was 6.35 milli

meters. For these experiments, both specimens were fabricated from commercial OFHC 

copper and machined to a finish of 8 root mean squares. 

APPARATUS 

Vacuum System 

A schematic diagram of the vacuum system used is shown in figure 1. The vacuum 

chamber is pumped by a 400-liter-per-second (0.4-m 
3
/sec) sputter-ion pump and a 

liquid-nitrogen-cooled titanium sublimation pump. Cryopumping is also available in this 

chamber and consists of a 20-turn coil of 6. 35-millimeter outside diameter stainless-

steel tubing through which liquid helium can be circulated. This coil is surrounded by a 

circular tank that can be filled with liquid nitrogen. The vacuum chamber pressure is 

measured with a triggered discharge gage. 

The vacuum chamber is connected to a rough-pumping manifold by an all-metal, 

bakable, ultrahigh-vacuum valve. The rough-pumping system consists of a set  of three 

sorption pumps, each connected to the roughing manifold by its own vacuum valve. Rough

ing pressure is measured by a conventional absolute pressure gage (calibrated in mm Hg) 

and a thermocouple gage. 

Discharge 
r Cryopump 

I assembly 

Dry n i t ro -
L iqu id n i t rogen 

gen in 
Liquid he l i um

1 
400-l i ter-per-. 
second (0.4-m3/sec) 
ion pump 

Sublimation -L iqu id n i t rogen 

1
v1 %-inch (6.35-cm) all-metal, bakable valve 

v2, v3, v4 11-inch (3.81-cm) Elastomer seal valve
2 

Sorption pumps 

Figure 1. - Block diagram of u l t rah igh  vacuum system. 
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Atmospheric pressure is attained by bleeding, into the roughing manifold, nitrogen 

gas that is first dried by passing through a copper coil immersed in liquid nitrogen. 

Bakeout of the vacuum chamber is accomplished by the lowering of an oven enclo

sure. Bakeout of the 400-liter-per-second (0.4-m 3/sec) ion pump, the titanium sub

limation pump, and associated piping is accomplished by an oven that is permanently in

stalled to enclose these items. Bakeout temperatures a r e  typically 400 K for the vacu

um chamber and 400 K for the 400-liter-per-second (0.4-m 3/sec) ion and sublimation 

pumps. 

Load System 

The specimen loading system is shown schematically in figure 2(a) and photograph

ically in figure 2(b). The specimens are compressively loaded by pressurizing a bellows, 

located inside the vacuum chamber, with air obtained from a motor-driven air-pressure 

regulator. The force developed by the pressurized bellows is transmitted through a can

d 

,-Air pressure l ine  

load, W /// 

iemispherical 

L S p e c i m e n  I 

arm I 
I 
I 

Cylindrical ,’ Specimen Fulcrum 
jpecimen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ load, W12 ( f lexural  pivots) 

- insu lat ing block 

CD-9861-17  

(a) Schematic diagram of specimen loading system. (b) Apparatus for  measuring static and dynamic contact resistance 
under  various loads. 

Figure 2. - Test apparatus for stress-strain behavior experiments. 
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tilever beam to an a r m  that holds the stationary specimen in an insulated block. One end 

of the specimen a r m  is mounted on two flexural pivots that act  as a simple, reliable 

fulcrum. The form of the loading configuration is a second-class lever with the load ap

plied at the midpoint between the fulcrum and the specimen. 

The load-unload cycle, which requires about 20 minutes, is automatically controlled 

by pressure-sensitive switches. The rate of loading and unloading is approximately 

52 grams per minute. Several pounds per square inch are required before the specimens 

make contact. This arrangement makes available a tensile force (between zero and the 

pressure required for  initial specimen contact) for  fracturing the cold-welded junction 

formed between the specimens. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA pressure transducer converts the bellows air pres

sure  to an electrical signal that is used to drive the x-axis of an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, y-recorder. 

This loading system allows very smooth compressive loading and unloading of the 

specimens to permit the interaction of two surfaces to be observed free from the effects 

of impulsive forces caused by incremental loading. 

Contact- Resi sta nce Measurement 

Contact-resistance measurements were made with a commercial four-terminal 

milliohmmeter. It uses a relatively small alternating test current (40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHz square wave, 

100 mA rms) and a synchronous demodulator, which makes it sensitive only to the test 

frequency. The instrument is sufficiently sensitive to operate with only 10 microwatts 

of power applied to the specimens, which reduces the specimen heating. The alternating-

current method of resistance measurement also eliminates any er rors  due to thermal 

To alternat ing c u r r e n t  
output of mi l l iohmmeter 

To voltage input  
of mil l iohmmeter 

CD-9860-17 

Figure 3. - Schematic diagram of contact-resistance-measuring c i rcu i t .  
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voltages in the measuring circuit. The input and output leads of the milliohmmeter are 

magnetically shielded to reduce further stray pickup. The direct-current output of the 

milliohmmeter was connected to the y-axis of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, y-recorder. 

A schematic diagram of the contact-resistance-measuring circuit is shown in fig

ure  3. One current and one voltage lead are secured to the hemispherically tipped speci

men by means of a setscrew. The remaining current and voltage leads are connected 

separately to opposite sides of a copper cup containing gallium. The cylindrical speci

men is mounted on one end of an OFHC copper spindle (see fig. 2). A ring machined into 

the remaining end of the copper spindle and partly immersed in the gallium completes 

the electrical circuit to the cylindrical specimen. 

Procedure 

After the machining, the specimens were washed in a strong detergent solution, 

rinsed in tap water, briefly dipped into a 20-percent solution of nitric acid (JXN03), 

rinsed again in tap water, and submerged in absolute alcohol. The specimens were 

rinsed several times in acetone prior to insertion into the vacuum chamber. After  the 

test specimens were installed, the vacuum chamber was evacuated and baked out at 

400 K for 15 hours. The vacuum system was allowed to cool down to room temperature 

before the experiments were  begun. 

The first experiments were conducted under relatively vibration-free conditions. 

The experiment w a s  initiated by actuation of the loading device, which then increased the 

air pressure in the bellows to compressively load the specimens against each other. The 
4

bellows pressure increased to 15 psi ( 1 0 . 4 ~ 1 0  N/m 
2
), whereupon the pressure-sensitive 

switch reversed the pressure-regulator drive. The air pressure in the bellows then de

creased to zero where the regulator drive was automatically shutoff. During the loading 

and unloading cycle, the x, y-recorder produced a plot of contract resistance against load. 

In the second type of experiments, external vibrations were deliberately introduced 

at random during the loading time to determine if  vibrations (which could conceivably 

cause extreme work hardening of the junction) had any effect on the shape of the curve of 

contact resistance against load during unloading. 

New contact areas were used for each experiment. 
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THEOREilCAL CONS JDERATfONS 

Mechanica l  Behavior of Contact Area zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADuring Loading and Unloading 

All machined surfaces are very rough on a microscopic scale. Even the best polish

ing techniques available today do not produce a smooth surface. The true surface micro-

geometry is seldom known with any great accuracy, but it generally has a peak and valley 

appearance (refs. 8 and 9). When two surfaces approach each other, the tips of the high

est peaks are the points at which the physical contact between the two surfaces occurs. 

Since this initial, actual area of contact is very small, the pressure in the contact area is 

extremely large even under light loads, and the asperities a r e  plastically deformed. The 

deformation continues until the area of actual contact and the yield strength of the mate

rial in the contact spots are sufficient to support the load. The s t resses  in the asperities 

are taken up by the bulk of the material supporting them. At some point (under moderate 

load), the stresses will lie in the elastic range. The end result of these two objects in 

contact is an actual area of contact consisting of plastically deformed material that is 

supported by a much greater area consisting of elastically deformed material. Since 

elastic deformations are completely reversible, those parts of the specimen that were 

deformed elastically only will regain their original configuration when the load is removed 

i f  there is no adhesion (cold welding) between the specimens. 

Elastic Recovery of Specimens w i th  Adhesion 

The process of elastic recovery can be restrained by the establishment of metallic 

junctions (adhesion) between the two specimens (cold welding)(ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4). The attempt of the 

specimens to recover elastically s t resses  the cold-welded metallic junctions between the 

two specimens as the applied load is reduced. As the load is reduced gradually, the cold-

welded junctions are subjected to a gradually increasing tensile stress, If the total work 

stored in the elastic deformation of the specimens is not sufficient to fracture all the 

cold-welded metallic junctions, the specimens will remain adhered to each other. A 

negative load (tension) can then be gradually applied to the specimens to further s t ress  

the cold-welded metallic junctions until they fracture. This entire procedure has all the 

characteristics of a tensile test of the cold-welded metallic junctions. The problem of 

developing a true stress-strain curve for these junctions is now resolved to one of meas

uring the area of contact between the two specimens as the load is increased and then re

duced. Once the contact area is known, true stress and strain values at any load can be 

calculated relative to a reference point. 
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Contact-Resistance Measurements and Their Relation to Stress and Strain 

Experimental determinations of the actual area of contact between two metallic sur

faces under load have utilized several methods, one of which is the measurement of inter

facial contact resistance (refs. 1, 6, and 10). Contact-resistance measurements have 

been used in the past for the study of the phenomenon of adhesion between two lightly 

loaded specimens (refs. 5 and 11). However, these experiments do not reveal much in

formation about the type or nature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the junctions formed. 

The relation between the contact resistance and the radius of the contact area is de

fined by (ref. 10) 

Rc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=-e- (1)
2a 

The accuracy of contact-radius calculations derived from contact-resistance meas

urements is dependent on several conditions: (1)the contact area must be essentially 

metallic (Ohm's law must be obeyed), (2) the contact area must be at only one point, and 

(3) the contact area must be essentially circular. The first condition can be satisfied by 

using clean surfaces and the second and third conditions can be approached by choosing a 

suitable contact configuration. The magnitude of the e r ro r s  generated by deviating from 

these ideal conditions is treated in reference 10. 

If the contact resistance and resistivity of the material a r e  known, the radius of a 

single contact area can be calculated. This basic formula can also be used for an ellip

tical contact area provided that a shape factor y is introduced into the calculations 

(ref. 10). This shape factor relates the constriction resistance of a circular contact 

a r ea  to the constriction resistance of an elliptical contact area. The total contact re

sistance is then defined by 

Rc f(y)
2a 

The value of f(y) for various ellipses can be found in reference 10. If the shape factor 

is near 1, assuming a circular contact a rea  will introduce no great error .  This as

sumption, which is made in this report, greatly simplifies the calculations. 

A circular contact area is related to the contact resistance by 

AC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=.(e) (3) 

If the contact resistance at a particular load is measured, true s t r e s s  in the con

tact a rea  may be calculated by 
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aTC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=-  
W 

(4) 
A, 

The true stress in the contact a rea  can be related to the contact resistance when 

equations (3) and (4) are combined 

'TC = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4w(:) c 
2 

True strain can be related to area if the constancy of volume relation (ref. 12) is 

assumed to give 

E = I n -  
Ar 

A 

A particular point Ar (the reference area) is chosen s o  that the strain at any point 

can be calculated relative to the reference point. The true strain can be related to con

tact resistance by combining equations (6) and (3) 

E = 2 In- 
RC 

(7) 
Rr 

Thus, equations (5) and (7) can be used to develop a true stress-strain curve for the 

cold-welded junctions between two specimens from a ser ies  of measurements of contact 

resistance against load during unloading. The developed true stress-strain curve will 

show whether or not actual metallic junctions a r e  formed. If the true stress-strain curve 

displays the characteristics of true stress- strain curves obtained from large- scale ten

sile testing of the specimen materials, metallic junctions have been established. 

The values of true s t ress ,  true strain, and contact areas calculated from contact-

resistance measurements a r e  somewhat uncertain because of the practical difficulties 

encountered in defining the area of actual contact. All calculations referred to in the 

discussion a r e  made with the assumption that the conditions under which equation (1)is 

valid have been satisfied. The values obtained from the calculations cannot be considered 

absolute. However, they are useful as a means for comparing the data between the two 

types of experiments. Judgments on the type and nature of the adhesion between the two 

specimens does not require absolute values and can be made on the basis of the shape of 

the flow curve alone. Cold-welded metallic junctions should display the characteristics 

of the specimen materials (e. g., ductility), whereas adhesion between surface films or  

metallic junctions containing large amounts of impurities should display characteristics 

different from those of the specimen materials. 
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RESULTS AND DISCUSSION 

Behavior zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Vibration-Free Contact Pai r  

The actual x, y-recorder graphs obtained from the experiments are shown as fig

ures  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and 5. No discrete points are in these data because the dependent and independent 

variables a re  plotted continuously on an x, y-recorder. Arrows were placed on the 

tracings to show the direction of the trace during the loading and unloading of the speci

1.0- -Open 
contact, 
42 grams 

.9 

.8 -

G . 7 

oi ,-l-Gradual decrease i n  area of 
c -.-\--- / contact; some plasticity;+-.m 

.f . 6 - I/--- / material ductile 

e 
.d.
3 \ I \ :
.-2 
u . 5 

.4 - load 

.3 

2
'-70 

I I I I I I I I 

I I -I 
2.5 5.0 10.0 

Time, min 

Figure 4. - Actual tracing of contact resistance against load characteristics for oxygen-free high-conductivity copper-copper contact in vacuum 
in low-vibration environment. Resistance measured with ac milliohmmeter; full-scale contact voltage drop, 100 microvolts; full-scale 
contact power dissipation 10 microwatts; hemispherical specimen radius, 0.187 inch (4.75 mm); cylindrical specimen diameter, 2 inches 
(50.8 mm); vacuum, t o r r  ( 1 . 3 3 ~ 1 0 - ~NlmZl; rate of loading and unloading, 52 grams per minute; peripheral contact. 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 shows the actual plot of contact resistance (y-axis) against load zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x-axis) for 

an  OFHC copper-OFHC copper contact pair in a vacuum of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10- l ’  torr  (1.33~10-’ N/m 
2
) 

in a relatively low-vibration environment. As the load was increased, the contact re

sistance decreased smoothly to a value of 0. 278 milliohms at the maximum load of 

364 grams. The smoothness of the trace testifies to the success of the vibration reduc

tion efforts. The contact area at this point, calculated by use of equation (1)and a value 

of 1.71X10-6 ohm-centimeter (ref. 13) for the resistivity of copper, is roughly 3x10-
3 

square millimeter. The compressive stress in the calculated contact area at this point 

is about 120 kilograms per  square millimeter. This value is quite high in comparison 

with the usual values of yield stresses generally given for highly work-hardened copper 

(30 kg/mm 
2 , ref. 1). However, asperities are thought to be able to withstand local 

stresses up to 10 times their normal yield stress (ref. 8), so this value of s t r e s s  in the 

contact a rea  would not be unusual. 

A value of contact resistance is still shown as the load passes through the zero load 

point in figure 4. The contact resistance goes to infinity (open contact) only after the ap

plication of a tensile force of 42 grams. This result shows that adhesion has occurred 

between the two OFHC copper specimens in simple contact, in spite of the fact that no ef

fort  was expended to secure uncontaminated surfaces. This occurrence is not unusual 

because adhesion between two copper specimens has also been observed by the author of 

reference 3 under similar conditions. 

The graph of figure 4 also shows that, as the specimens a r e  unloaded, the contact 

resistance changes smoothly and does not show any abrupt incremental changes until just 

prior to fracture. This observation suggests that the cold-welded junctions between the 

specimens a r e  not ruptured immediately by the release of the elastic s t resses  in  the 

specimens, because the rupture of a junction would cause sharp discontinuities in the 

t race as a result of incremental increases in contact resistance. However, the extremely 

small resistance changes due to the rupturing of minute junctions might be beyond the 

sensitivity of the milliohmmeter. 

A true stress-strain curve was developed from the unloading data of figure 4. The 

points at which the calculations were made a r e  noted by the letters A to Q in figure 4. 

The values of stress and s t ra in  of these points were calculated by use of equations (5) and 

(7) and point A as a reference. The calculated values were plotted, and the resulting 

curve is shown in figure 6. Point A was chosen as the zero reference point in figure 6 

because the elastic recovery forces of the specimen material were assumed to begin to 

s t r e s s  the cold-welded junctions in tension as soon as the external load was reduced. If 
this assumption is correct,  the curve of figure 6 should be similar in appearance to the 

curve of figure 7. 

A comparison of figure 6 (the true stress-strain curve for the cold-welded junctions) 

and figure 7 (a typical true stress-strain curve for polycrystalline copper obtained by 
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Figure 6. - True stress-strain curve developed f rom load-
resistance measurements displayed in f igure 4. Material, 
oxygen-free h igh  -conductivi ty copper against itself; 
vibration-free conditions; rate of unloading, 52 grams 
per minute. 

tensile testing) reveals that the general shapes of the curves are similar, which validates 

the use of point A as a zero reference point. Both curves show corresponding regions of 

elasticity (nearly coincidental with the ordinate) and extended plasticity. This similarity 

suggests that the junctions are formed from the parent material and a r e  not a product of 

surface contaminants, which leads to the conclusion that truly metallic junctions have 

been established by adhesion between the specimens (cold-welding) - surface contamina

tion notwithstanding. 

Note that the portion of the true stress-strain curve for the cold-welded junctions, 

which apparently represents elastic behavior (point A to point B in fig. 6), is generated 

as soon as the load is reduced from its maximum value and not around the zero external 

load point. At  the zero external load point, the curve of figure 6 shows that considerable 

plastic deformation of the cold-welded junctions has occurred. 
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Figure 7. - T r u e  stress-strain cu rve  for polycrystal l ine copper (ref.  14). 

Behavior of Contact Pai r  w i th  Vibrat ion 

Figure 5 shows the contact-resistance-against-load data for OFHC copper specimens 

that were deliberately subjected to vibration at random times during the compressive 

loading cycle only. The effect of the vibrations can be seen on the graph as sharp fluctua

tions in contact resistance succeeded by an instantaneous decrease in contact resistance. 

The lower value of contact resistance indicates an increase in the actual area of contact. 

This increase is not the result of a change in the resistivity of the material by work 

hardening because work hardening causes an increase in resistivity (ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13), which is in 

direct opposition to the observed data. The additional area of actual contact caused by 

the vibrations is obviously in excess of that required to support the static load. The static 

load has remained essentially constant during the period of vibration, so the result of the 

increased area of contact is a decrease of stress in the contact area. The lowered 

stresses will  be below the value required for continued plastic deformation. In fact, a 

greater s t ress  will now be required for plastic deformation because of work hardening, 

so it is conceivable that the lowered s t ress  might be in the elastic range of the material 

immediately after the vibration has increased the area of contact. 

The slope of the trace in figure 5 succeeding the fluctuations caused by the vibra

tions seem to point to elastic behavior. The slope of the trace is near zero (nearly con

stant contact resistance), which means that the change in the contact area is very small 

(for a given increment of load). The resulting strain must also be very small because 

strain is related to changes in area  by equation (6). Since small strains are a character

istic of elastic behavior for metals, those portions of the trace having nearly zero slope 
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might represent elastic behavior of the material. 

The experiment represented by figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 was loaded to a maximum load of 390 grams. 

The contact resistance at maximum load prior to specimen vibration was 0. 241 milli

ohms, which corresponded to a calculated actual contact area of about 4 ~ 1 0 - ~square 

millimeter. The stress in this area at maximum load was about 98 kilograms per square 

millimeter. The specimens were also vibrated at maximum load, whereupon the con

tact resistance decreased to 0. 2 milliohm, which corresponded to a calculated actual 

square millimeter. Since the load remained the same, thecontact area of 5 . 7 5 ~ 1 0 - ~   

stress in the contact area decreased to 6 7 . 7  kilograms per square millimeter because of  

the increased contact area.  

The decreasing load portion of the trace in figure 5 has two outstanding dissimilar

ities to that in figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4: (1)the slope of the trace in figure 5 increases more slowly as 

the cold-welded junctions approach the point of fracture, and (2) the contact resistance 

increases abruptly (fracture point) after having changed little from its value at maximum 

load. This behavior is unlike that displayed in figure 4, which shows relatively large 

changes in slope and contact resistance between maximum load and the fracture point. 

A tensile force of about 75 grams was required to separate the specimens subjected 

to vibration during loading. The coefficient of adhesion for these specimens is 0. 19, 

lZo r YTofracture 
100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt-- / 

Increasing 
tensi le load 

VI-
- _  - - _ _ - -1

VI load l i n e  1 
60 Decreasing

VI 
compressive 
load 

Maximum 
,,rElastic region applied 

1used as zero reference load l i n e  I
I I ! l + l 

0 . 4  .8  1.2 1.6 2.0 
Calculated t r u e  strain, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ,  mm2/mm2 

Figure 8. - T r u e  stress-strain curve developed f rom load-
resistance measurements displayed in f igure 5. Material, 
oxygen-free high-conductivi ty copper against itself; 
contact-vibration conditions; rate of unloading, 52 grams 
per minute. 
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TABLE I. - EXPERIMENTAL AND CALCULATED VALUES OBTAINED FROM VIBRATION- FREE 

AND VIBRATED STATIONARY OXYGEN- FREE HIGH-CONDUCTIVITY COPPER CONTACT 

PAIRS IN VACUUM O F  TORR (1.33~10-’ N/m2) 
~ 

~ 

Specimen con- Maximum Calculated strain 2oeff icient Contact resistance hlculated ac- Calculated 

dition during load, prior to  fracture, of at rnaximum load, tual area of stress at 

tes t  w, i7 2 
adhesion mS2 contact, maximum 

mm /mm 
AC , load, 

2mm 

Vibration-free I 360 1. 56 0.00300 120 

Vibration dur- 389 1.05 00396 b98. 2 

ing loading 

:ycle I a,C0.200 
C

0.00575 ‘67.7 
~ 

%pecimens vibrated at maximum load. 

bValue prior to vibration. 

‘Value after vibration. 

which is about twice that of the specimens maintained in a vibration-free environment. 

The appearance of the trace in figure 5 is suggestive of a rather brittle material (little 

contact-resistance change, abrupt fracture) in contrast to the trace of figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, which is 

suggestive of a ductile material (large contact-resistance change, deliberate fracture). 

The brittle behavior of the junctions is thought30 result f rom the extreme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwork hardening 

of the junctions by the vibration forces. 

Stress and strain calculations at the points indicated (1  to 12) in figure 5 were made 

relative to point 1 (for the same reason discussed in the section Behavior of Vibration-

Free Contact Pair), and the results a r e  plotted in figure 8. This curve is similar to that 

of figure 6, and the same conclusions apply. However, the calculated strain just prior to 

fracture is significantly less, which shows that the junctions do not have the amount of 

I ductility that the undisturbed junctions had. 

A summary of the important experimental and calculated values for the two experi

mental conditions is given in table I. 

CONCLUDING REMARKS 

Electrical contact-resistance measurements can be employed to show the mechanical 

behavior of the contact region between two metallic specimens in physical contact during 

loading and unloading. Although the basic data itself exposes the mechanical behavior of 
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the contact area, it is better displayed by means of true stress-strain curves that can be 

constructed from the data for contact resistance against load. The calculated values used 

to construct the true stress-strain curves cannot be considered absolute because of the 

practical difficulties encountered in defining the geometry of the actual contact area. 

However, the general shape of these curves developed from the basic data is quite useful. 

A similarity exists between each constructed t rue stress-strain curve and the char

acteristic true stress-strain curve for the specimen material (polycrystalline copper). 

This similarity shows that the cold-welded junctions formed between the two specimens 

under both vibration-free and vibrated conditions are formed from the specimen material. 

It can be concluded that actual metallic adhesion between the oxygen-free high-conductivity 

(OFHC) copper specimens in simple contact occurs in spite of relatively unclean surfaces, 

but the coefficient of adhesion is relatively low (vibration-free contact, 0. 11; vibrated 

contact, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 19). 

A comparison of the true stress-strain curves for the vibration-free and vibrated 

conditions showed that the cold-welded junctions formed by the vibration-free contact 

pair had more ductility (larger strain before fracture) than those formed by the vibrated 

contact pair (smaller strain before fracture). This decreased ductility is thought to be 

caused by the extreme work hardening of the junction by the vibrational forces. 

Both true stress-strain curves also show that elastic deformation of the junctions 

occurs immediately on reduction of the load from its maximum value. When the load is 

reduced to zero, both true stress-strain curves show that considerable plastic deforma

tion of the cold-welded junctions has occurred. 

When the specimens were vibrated during the loading cycle, an instantaneous-in

crease in contact a rea  occurred. The flat slope of the curve of contact resistance against 

load immediately following the vibration suggests that the contact area has increased to a 

value where the s t resses  in the contact region might now be below the yield s t ress  of the 

material. Contact area deformation might now be elastic again for a time succeeding the 

vibration, rather than continued plastic. The reason for this behavior is that the contact 

area has become through vibration more than that required to support the static load. 

When this information is applied to static electrical contacts (e. g. , relays), it sug

gests that the contacts, which close with some impact and vibration, probably deform 

only elastically after a few closures; the impact and vibration will have enlarged the con

tact area to more than that required to support the load. 

Lewis Research Center, 

National Aeronautics and Space Administration, 

Cleveland, Ohio, May 24, 1968, 

129-03- 13-02-22. 
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