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ABSTRACT

Steady-~state harmonic stress waves in an isotropic elastic plate excited
on one face by a circular transducer are analyzed theoretically. It is assumed
that the transmitting transducer transforms an electrical voltage into a
uniform normal stress at the top face of the plate. To solve the boundary
value problem, first the radiation into a half- space 1is considered. This
introduces longitudinal (P) and shear (S) waves into the plate. Then,
reflections are considered successively at the bottom and top faces of the

1
plate. Each reflection produces both P and S waves for each incident P or S
wave.

A separate circular receiving transducer, also located at the top face
of the plate, is considered. It is assumed that the receiving transducer
produces an electrical voltage proportional to the average spatially
integrated normal stress over its face due to an incident wave.

The asymptotic behavior of the frequency response at a receiving point
due to a multiply reflected wave is given. It is found that a receiving point
observes an incident wave asymptotically as a plane wave which propogates and

‘reflects in the direction of the multiply reflected ray constructed
geometrically wusing Snell's law. The far field condition, for which the
asymptotic solution is valid, is also discussed. This condition suggests that
although the thickness of the plate may be small, the waves which reflect

sufficiently many times do satisfy the far field condition.
A numerical procedure is given to evaluate the frequency response at a
receiving point due to a multiply reflected wave in the near field. Its

stability and convergence are discussed. Also, exponential decay is introduced



iv

to account for material attenuation.

Calculations are done for aluminum plates. It is found that the
numerical procedure becomes unstable for h/)s1 {1.46 where h is the thickness of
the plate and )\1 is the P wavelength.

Parametrized plots which determine the particular wave whose frequency
response has maximum magnitude compared with other multiply reflected waves
are given for a range of values of dimensionless parameters. The effects of

changes in the values of the parameters are discussed.



1 _INTRODUCTION

An ultrasonic testing (UT) parameter called the stress wave factor (SWE)
was recently introduced by Vary et al. (1,21 for nondestructive evaluation
(NDE) of materials. In the SWF configuration, separate transmitting and
receiving transducers are coupled to the same face of the test structure and
the number of oscillations exceeding a preselected voltage threshold (or some
modifications thereof {31) in the output signal, due to an input pulse having
a broadband frequency spectrum, is defined as the stress wave factor. Williams
and Lampert [3] indicated a correlation between the SWF and the attenuation in
carbon fiber composites by showing that as the residual strength decreases due
to impact damage, the SWF decreases and the through- transmission ultrasonic
attenuation increases. Williams et al. have also shown that the initial
through- transmission longitudinal attenuation can be correlated with the
compression fatigue life (4] and the flexural fatigue life [S] of carbon fiber
composites.

Unlike conventional pulse- echo testing [4] where nonoverlapping
reflected wave echoes are analyzed, the SWF is also valid for the analysis of
overlapping echoes.

Although the SWF has been generally used to characterize microstructural
defect states of materials, it may also be used to detect cracks and

delaminations by coupling separate transmitting and receiving transducers to

the same face of the test structure. The output in such a SWF configuration
may be significantly affected by cracks oriented perpendicular to the faces of
the structure, which are otherwise difficult to detect by most NDE methods.

An important step in any quantitative ultrasonic NDE procedure is the



analysis of the stress wave transmission chracteristics of the test structure
through which the transmitting and receiving transducers communicate. The
ultrasonic input- output characteristics of the SWF configuration containing
thick isotropic elastic plates are studied in (7] theoretically and
experimentally. It is assumed that the transmitting transducer transforms an
electrical voltage into a uniform normal stress on the plate and vice versa
for the receiving transducer. The asymptotic value of the normal stress is
calculated for an isotropic elastic half- space subjected to a uniform
harmonic normal stress applied to a circular region at its surface, using the
results of Miller and Pursey [8]. The top surface of the plate is assumed to
coincide with the surface of the half- space and the bottom surface of the
plate is assumed to be at a depth within the half- space equal to the plate
thickness. Then the radiated stress waves are traced within the plate by
considering reflections at its top and bottom faces. Reflection coefficients
for plane waves are used assuming that the thickhess of the plate is so large
that the bottom face of the plate is in the far field of the transmitting
transducer and the asymptotic spherical waves are nearly plane at the point af
reflection.

The purpose of this étudy is to extend the analysis for thick plates
given in (71 to plates of any thicknesses; in particular, to plates whose
thicknesses are smaller than the far field distance of the transmitting
transducer.

One way to address the boundary conditions which are imposed by the
transmitting transducer at the top face and the boundary conditions at the
stress- free bottom face is to expand the radially propagating plate waves

which are derived by the nonlinear Rayleigh- Lamb frequency spectrum [91. Such



an approach would be especially useful at low frequencies where the thickness
of the plate is of the order of the longitudinal wavelength because a small
number of radially propagating waves would be excited.

Another way to approach the problem, which is more practical at high
frequencies where the thickness of the plate is much larger than the
longitudinal wavelength, is to consider the radiation from the transmitting
transducer into a half- space and then to introduce succesive multiply
reflected waves at the bottom and top faces of the plate. Each multiply
reflected wave whose potential is expressed in integral form is called a
generalized ray. This method is often called the generalized ray theory and is
discussed in [10]. Transient waves generated by a variety of internal and
surface forces in a plate have been analyzed by Pao and Gajewski [101, and

Ceranoglu and Pao [11) using this approach.



2 STRESS WAVES IN THE PLATE

2.1 Governing Egquations and Boundary Conditions

Consider an isotropic elastic plate of thickness h, bounded by the z=0
and z=h planes and exrtending infinitely in the x and y directions as shown in
Fig. 1 (a). As done in (71, it is assumed that the transmitting transducer
transforms an electrical voltage into a uniform normal stress on the plate.
The cartesian coordinates x,y,z; the cylindrical coordinates r,&,z; and the
spherical coordinates R,©,% are shown in Fig. 1 (b).

Then, the boundary conditions on the top face of the plate, including
those imposed by the transmitting transducer, for steady-state conditions can

be written as

at z=0
-1
e ! t for 0¢r<a 1
ci'zz = (1)
0 for r’>a
i
(=4 = O =
rz z¥ 0
where 0'“, drz' dz% are the components of the stress tensor in the cylindrical

coordinates [12], w is radian frequency, t is time, ia\f—_-, and al is the
radius of the transmitting transducer. The amplitude of dzz is taken as the
unity since only the frequency response of the plate is of interest. Because
the bottom face of the plate is stress- free, the boundary conditions there

can be stated as



at z=h :

o = o = O = 0 (2)

Because of the circularity of the excitation, there is axial symmetry
about the =z axis and so the displacement component in the # direction
vanishes. Then, the theory of wave propogation suggests that the following

uncoupled wave equations are satisfied within an isotropie elastic solid [12]

2 1 3%
QP = 2 ——Z (3)
c:1 at
2 1 82‘«1’
O 9 = — (4)
c 2 atz
2

where 02 is the laplacian operator and for cylindrical coordinates with axial

symmetry is given by

2 82 1 3 82
v/ = 3 - —— > (S)
3r r 9r 3z

® and ¥ are uncoupled longitudinal (P) and shear (S) wave potentials; and ey
and CZ are the P and S wave velocities, respectively. The components of the
displacement and stress fields can be found from the potentials and the

relations are summarized in Table 1.

The complete solution requires finding the wave potentials which satisfy



either eqn. (3) or eqn. (4 such that the superpositions of the stresses
generated from these potentials via the relations given in Table 1 satisfy the
boundary conditions at z=0 and z=h as given by eqns. (1) and 2),

respectively.

2.2 Half-space Solution

At the first stage of the solution, the boundary conditions at z=h are
ignored. Then the problem reduces to that of radiation into a half- space.
Using Hankel transform techniques, Miller and Pursey [8] solved this problem
for the boundary conditions given in eqn. (1). That solution is reviewed in

{131 with the notation used in this study and is given by

2Ta ] r z
1
o = E (§) J (2mE—) exp(Z'ni-—-Jl-gz) ds (6)
P = ¥x P 0
1 Yo N ~
1 1
and
2'"31 % r z 2 2
o, = E_(S) J (2M5—) exp(2Mi— Jk2-52) ds (7)
s ° > s 0
1 Yo > ~,

where CDP and GJS are the P and S wave potentials which satisfy eqns. (3) and

(4), respectively. The shear modulus of the plate material is n; >\1 is the P

wavelength and is given by >\1=2nc1/¢-0; £ is a dimensionless integration

variable introduced in the Hankel transform; JO denotes a Bessel function of

the first kind and of order zero; k=cilc2; Ep(g) and Es(g) are called the

excitation functions for the P and S waves, respectively, and are given by



(Zgz-kz) ai
Ep(g) =z ———J (2TME—) (8)

G(E) b

1

1-§Z 31
Es(g) = =-2i — J1(2'n§—) (9

G(35) >\1

where

G(5) = (Zgz—kz)2 + 4§2 \[1—§2 JkZ-SZ (10)

and J1 is a Bessel function of the first kind and of order one.

The potentials given in eqns. (4) and (7) and the potentials which are
introduced below all have a steady- state harmonic time dependence, indicated
by exp(-itt); this harmonic time dependence function is dropped from the
expressions for convenience.

The excitation functions in eqns. (8) and (9) have a pole at §=§R where

the denominator function, G(), given in eqn. (10) vanishes when §R=chc1

where CR is the Rayleigh wave velocity. gR is the so- called Rayleigh pole.

2.3 Reflected Waves

The superpositions of the stresses generated from the potentials CDP and
05 satisfy the boundary conditions at z=0 only. So, in the so- called first
stage the boundary conditions at z=h are violated. In the second stage, new
waves which are called reflected waves are introduced so that the boundary
conditions at z=h are then satisfied. This requires introducing a set of P and
S waves for each P and each S wave initiated in the first stage, which is due
to mode conversion ([14]1. These new waves are called the PP and PS, and SP and

d thei ti
58S waves an their potentials are denoted by mPP and QPS , and QSP and mss,



respectively. In particular the potentials CDPP and QPS are introduced to

cancel the stresses dzz and 0'):z at z=h generated from the potential CDP,
corresponding to the reflection of the P wave at the stress- free plane
boundary at z=h.

The superpositions of the stresses generated from the potentials
introduced in the first and second stages satisfy the boundary conditions at
z=h only. In the third stage, additional reflected waves are introduced so
that the boundary conditions at z=0 are then satisfied. Again, this requires
introducing a set of P and 8 waves for each P and each § wave introduced in
the second stage and they are called the PPP and PPS, and PSP and PSS,
for a ‘total of eight. In particular the potentials of the SPP and SPS waves,

@ and @ , respectively, are introduced at z=0 to cancel the stresses crzz

SPP SPS

and dtz generated from the potential @__, corresponding to the reflection of

SP
the SP wave at a stress- free plane boundary at z=0.

The superpositions of the stresses generated from the potentials
introduced in the first, second and third stages satisfy the boundary
conditions at z=0 only. The procedure of adding new reflected waves at each
successive stage can be continued as above. At each stage, a new set of P and
S waves for each P and each S wave introduced at the previous stage is added.
This process is represented in Fig. 2 as a binary tree. At each stage, the
boundary conditions at one face are satisfied and the boundary conditions at
the other face are destroyed. However, as shown below, the waves introduced
for increasingly large numbers of stages, namely the waves with very large
numbers of reflections, vanish. Thus, the superpositions of all the stresses
generated from the wave potentials from the first stage to infinity satisfy

the boundary conditions at both z=0 and z=h simultaneously. Also, again as



shown below, the waves with increasingly higher numbers of reflections are
observed at a receiving point with increasingly larger time delays; and thus
considering a finite number of waves is sufficient for the exact analysis of a
transient response up to a fixed time.

In studying the wave propogation in 3 multi- layered elastic medium,
Spencer ([141 analyzed multiple reflections and transmissions of axially
symmetric waves at plane boundaries. Following the analysis given in (141, in
general the potential of a particular wave which has a unique chain of P's and

S's can be shown to be (131

Z'ﬂ’a.1 0 r h 5
o ., = E(5) Q¢§) J (2m§—) exp(2Mil—((p-m ) 1-%§
ni3 N J(; 0 N N 1
1 i 1
z
+(s—m2) \]kz-gz))+m—— b2—§2]} ds (11)
>\1

where mn denotes the particular wave potential and is called the j-th wave

3
~.
potential at the n-th stage. The unique chain for the particular wave
potential is found by converting the decimal integer j to the corresponding n
bit binary number and then assigning P's for 0's and S's for 1's in the binary
number. n can take values from ! to ®, and j can take values from 0 to "1,
For example, the chain for the wave whose potential is represented by °°4/5 can
be found as follows. First, 3j=5 is converted to the n=4 bit binary number
0101, and then P's for 0's and S's for 1's are assigned in the binary number,
which results in the PSPS wave.

E(S) in eqn. (11) is called the excitation function and is equal to

Ep(g) or Es(i) if cbn is constructed from the half-space solution ¢ or @

13 P S
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(that is, if the chain for mn/j started with 3 P or an S wave), respectively.
Q(5) is called the product of the reflection coefficients and is given below.
The numbers p and s represent the total number of P's and S's in the chain,
respectively, and n=p+s. m1 is equal to 1 if the last reflection occurs at z=0

(that is, if n is odd) and if ¢'n is a P wave potential (that is if the chain

/3

ends with P). Otherwise m1 is zero. m, is equal to 1 if n is odd and if ¢nl:i

is an S wave potential (that is, if the chain ends with S). Otherwise m2 is

zero. m is equal to +1 or -1 if the last reflection occurs at z=0 or z=h (that

is, if n is odd or even), respectively. b is equal to 1 or k if ¢n is a P or

13
S wave potential (that is, if the chain ends with P or S, or equivalently if j

is even or odd), respectively.

The product of reflection coefficients is given by

J'1 -i :i2 3'3
Q(s) = EGPP(g)]_ E—-g- Ops(g)l ELSQSP(§)J
b} Fo+3
4 5 é
CQSS(é)J (-1) (12)
where jl, jz, j3’ and j4 are the total number of P to P, Pto S, S to P, and S
to S reflections, respectively; and 3‘5 and j6 are the total number of P to S
and S to P reflections only at z=h, respectively. QPP' GPS' QSP' and GSS are

the P to P, P to S, S to P, and S to S reflection coefficients, respectively,

and are given by



QPP(S) = QSS(S)
Gps(g)

Qsp(g)
31. Igr Jqr I 3g and j

[

11

4€2 Ji—gz \ﬂcz-gz - (2§2—lcz)2

(13)
G(5)
4z 1--%2 (k2-2§2)
= (14)
G(g)
~as Jx2os? (k%o
= (15)
G(5)
can be found from the specific wave chain. For

example for the PPSSPS wave, they are 1, 2, 1, 1, 1, and 0, respectively. Also

for this particular wave E(£)=E

=0 and m_=0; m=-~1 and b=k.

2

E,(5); p=3 and s=3; m1

So, as discussed above the superpositions of the stresses generated from

the potentials

introduced in the first stage as the half- space solution and

all the possible reflected wave potentials introduced in the successive stages

satisfy the boundary conditions at both z=0 and z=h as given by eqgns. (1)

(2), respectively.

and
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3 _FREQUENCY RESPONSE OF THE PLATE

In general, a receiving transducer located on the plate observes a
physical quantity such as stress, strain, or displacement generated from
incident wave potentials. In this study, the SWF configuration is considered
and it is assumed that a circular receiving transducer, which is separate from
the transmitting transducer, is located at the top face of the plate. As in
L7, it is assumed that the receiving transducer produces an electrical
voltage proportional to the normal stress, dzz’ generated from an incident
wave potential averaged over its contact area. The receiving transducer
therefore observes only the reflected waves at z=h which are introduced at the
even numbered stages.

It should be noted that the existence of the receiving transducer is not
taken into consideration in Sec. 2, where stress waves in the plate are
studied. Then, the question arises as to whether or not the receiving
transducer affects the waves in the plate at the point of reception. The waves
in the plate are affected by the presence of the receiving transducer after
they reach the receiving transducer. Thus, incident waves on the receiving
transducer are not affected, but waves that reflect at the receiving
transducer contact area and continue to travel are affected because stress-
free boundary conditions are not satisfied on the receiving transducer contact
area. In this study, only the incident waves on the receiving transducer are
considered and thus the results in Sec. 2 are used.

Since a steady-state harmonic excitation having the magnitude of wunity
is considered and the plate is assumed to be linear and time invariant, the

quantity observed by the receiving transducer may be called the frequency
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response of the plate, or simply the frequency response. The quantity observed

at a2 point on the receiving transducer contact area is called the frequency

response at a point and is given by

n=, j=J
H = H . n=2,4,6,...; J=2"-1 (16)
n/ij
n=2,3j=90
where Hn/J' is the frequency response at a point due to the j-th wave at the n-~

th stage. After dropping the steady- state term exp(-iwt), Hnlj is equal to
the normal stress 0’zz generated from the wave potential onlj by the relations

given in Table 1 and evaluated at the receiving point at z=0. It is given by

£13]
a [ r h
1 I
Hn/j = 20— f E(E) Q(5) V<(5) Jo(2ﬂ§——-) expl2mi—(p- 1—§2
b
y "0 ™4 1
+s k2-§2) ds (17)

where V(§) is called the response function and is equal to the response

functions for the P wave V _(5), or for the S wave VS(§) if the potential mn

P /3

is a P or 5 wave potential, respectively, and where

Vp(g) 2§2—k2 (18)

V_(£) —2iz? Jk?.5? (19)
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Only even values of n must be considered in eqn. (17} and all subsequent
equations in this paper.
The frequency response of the plate, H, or the frequency response of the

plate due to the j-th wave at the n-th stage, H ., can be found by averaging

n/j

H or Hnlj' respectively, over the contact area of the receiving transducer.

For a receiving transducer of radius 32, it can be shown that [13]

2 £+az
H ., = H ., r X(r) dr (20)
n/j ma 2 e —a n/ij
2 2
where
-1 trz<zzz+2322-r2)-<z2-a22)21“2
X(r) = tan (21)
2 2 2
r -az +2

and ¢ is the distance between the transmitting and receiving transducer axes.
The integrals in eqns. (17) and (20) cannot be evaluated analytically in
closed form. Thus they are evaluated approximately as discussed in the

following sections.
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4 ASYMPTOTIC EVALUATION

The integral in eqn. (17) can be evaluated asymptotically by the method

f stationary phase [15]. Accordingly, the following can be derived [13]

a E(s 3 Q58 _ ) V(5 ) ig(s )
2 g g e 0 (22)

H LR u2mMi—
n/j

>\ N "
1 l (r/>\1) §0 Ig (§0)l

where §o is the stationary peoint and which is defined explicitly below. g($)

is the phase function and is given by

r'—‘ T
1-§2 + S Jk2—§2) + 2M—% (23)

h
g(s) = 2m— (p
>\1 xl

I | denotes the "magnitude of" and g"“() is the second derivative of g() and

is given by

ng -h p s
g"(8) = — = — + (24)
ds 2 > (1-£23312 (2 52,372

The first derivative of the phase function vanishes at the stationary

point, requiring that the stationary point satisfies the following nonlinear

equation

RE s& T
0 0 (25)
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For the interpretation of the equations above, the multiply reflected
ray corresponding to the PSSP wave is constructed geometrically between the
origin O and a receiving peoint M in Fig. 3 () as an example. A P ray
emanating from the origin at an angle 61 reflects as an S ray at N1 , then as

an S ray at N2 and finally as a P ray at N3 and then propagates to M.

Reflection angles are determined by Snell's law [12] and thus all the P and S

rays have reflection angles of 61 and ez, respectively, and are related by

sin el = k sin & (26)

Using the ray geometry and eqn. (24), it can be shown that

§0 = sin & = k sin & (27)

For unmixed waves, namely for either p=0 or q=0, §0 in eqn. (25) can be
evaluated by substituting eqn. (27) into eqn. (25 and using trigonometric
functions. Otherwise, numerical techniques such as the method of bisection

[14] can be used.
Further, it can be shown that the total distances travelled by the waves

as P and S rays, R1 and R,_, respectively, are given by

2
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ph
R1 = —— (28)
2
1-§o
skh
= — (29)
Rz 2
2 2
k -§°

and the corresponding time delay is given by

R R g(s )
1 2 0
+ — oz —— (30)

Ci Cz w

p.s

Notice that the waves with common p and s, simply the waves with p,s,
have the same time delay and the time delay appears as the linearity constant
in the phase function which linearly depends on frequency. For example the
waves with p=3, s=1 are the PPPS, PPSP, PSPP, and SPPP waves. The frequency
response at a point due to the waves with p,s, which is denoted by ﬁp,s , can
be found simply by the superposition of the corresponding frequency responses.
The frequency response of the plate due to the waves with p,s, H , is then

1

the average Hp 5 over the contact area of the receiving transducer and can be
!

found similarly by egn. (20).

Also, it can be shown that the reflaction coefficients given by eqns.
(13), (19), and (15) are equal to the corresponding reflection coefficients
for plane waves [12] when they are evaluated at the stationary point given by
eqn. (27). This suggests that a receiving point observes an incident wave
asymptotically as a plane wave propogating and reflecting at the bottom and

top faces of the plate in the ray directions as constructed above.
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The denominator function in eqn. (22) indicates geometrical attenuation
for a given combination of r,h,p, and s. It can be visualized by considering a
hypothetical multi- layered half-space as shown in Fig. 3 (b). It is assumed
that the layers which are identical to the original plate under study and are
bonded together in a hypothetical way such that an incident wave in one layer
produces no reflected waves but produces transmitted longitudinal and shear
waves in the next layer and the transmission coefficients are the same as the
reflection coefficients as if the incident wave reflects at a stress- free
plane boundary. At the n-th layer in such a medium, only the waves introduced
at the n-th stage in the binary tree in Fig. 2 could exsist. The top layer can
be thought of as the original plate and each subsequent layer can be thought

of as the image of the layer immediately above it. A receiving point M in the

original plate and the images of it MZ' Mq, Mé, ... are shown in Fig. 3 (b)

The PSSP ray between the origin and Mq is also shown. So, the geometrical
attenuation in eqn. (22) can be observed as due to the spreading of the waves
with the distance from the source, and wave mode conversions during
transmissions at the boundaries of layers. It can be shown that for unmixed
waves, eqn.(22) represents a spherical wave whose magnitude is a function of

directivity and decreases with the reflection coefficient Q P(§O)=Q (£ ) each

P Ss o

time it passes a layer, and the results obtained in [7] can be recovered.

As observed from Fig. 3 (b) qualitatively, although some image points
may be in the near field of the source, at sufficiently large distances from
the source there are always image points in the far field. The value of the
frequency response at a point as given in eqn. (22) is approximately valid for
points in the far field.

It should be noted here that in the limit as r approaches zero,
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J @ms _a, )/ Jrgo approaches Ta

L 021™1 1/(>\1Jnh), and thus eqn. (22) is finite for

r=0. Also, it can be shown that in the limit as n goes to infinity, Hn/j in

eqn. (22) goes to zero.

4.1 Near Field and Far Field

The analogy to the acoustics problem considered in [71 is extended to
obtain a condition for the asymptotic evaluation in eqn. (22) to be a valid
approximation to eqn. (17). The pertinent acoustics problem is that of a rigid
piston vibrating in a rigid baffle. The exact formulation in integral form and
the asymptotic solution for this problem are given in [17]. They are similar
to eqn. (17 and (22), respectively, for unmixed waves.

The exact solution for the radiation pressure along the piston axis can
be obtained and is given in [181. The amplitude of the pressure along the azxis
{(z axis in Fig. 1 (a)) fluctuates near the piston and eventually monotonically
approaches the asymptotic solution. The near field and far field distances
defined for such a problem are reviewed in ([7]. The condition for the

asymptotic solution to be valid is stated as

2
ZX
0la. > KF(alxa,Ea) (31)

where z is the distance between the origin and the receiving point on the
piston axis; >\o is the wavelength in the acoustic medium; a is the radius of

the piston; and KF is the far field distance constant which depends on the

dimensionless parameters, a/x_., and an acceptable error, Ea' Ea is defined as

0

the error between the asymptotic pressure amplitude Pas and the exact pressure
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amplitude P relative to P
ex ex

E. = (P_. - P Y | P (32)
a as ex ex

Calculated values of KF for a range of its independent variables are

given in Table 2. Notice that for fixed error, KF becomes constant for a/)xo

much larger than 1. Also the error decreases with increasing KF for fixed

!/
a>«o.

The condition for eqn. (22) to be valid for unmixed waves can be stated

by analogy to the acoustics problem. z>\0/32 in eqn. (31) is replaced by

2 2 .
Rl>\1/a1 or R2>\2/a1 and the value of KF for specific values of all>\1 or al/>\Z

and Ea is taken from Table 2. X\, is the S wavelength and is equal to X, /k.

2 1

For mired waves, the analogy may be extended in a way, which also

covers the condition for unmixed waves as special cases. Let the condition be

2
(R1>\1+ Fl2>\2)la1 > KF(allXav,Ea) (33)

where >\av is the average wavelength defined by

PN = (
av (p>\1+ s>\2)/(p+s) 34)
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S _NUMERICAL EVALUATION

The integral in eqn. (17) can also be evaluated by numerical methods
f16]. The integral is in the complex £ -plane because the integrand has
singularities at the branch points $=1 and £ =k, and at the Rayleigh pole §=§H
on the integration path from 0 to ® [19]. The pole is of order n=p+s because
all the reflection functions given by eqns. (13), (14), and (159 have the
Rayleigh pole of order 1 as well as the excitation functions given by eqns.
(4} and (7). The introduction of appropriate branch cuts and indentations of
the integration path on the real axis near the singular points is discussed in
[8]1. Consistent with the branch cuts introduced, the principal values of E
and kz-gz should be considered. Thus the eaxponential function in the
integrand in eqn. (17) is purely oscillatory for 0¢£<1; the part associated
with 1-§2 monotonically decays, and the part associated with sz—gz is
oscillatory for 1<(£ <(k; and monotonically decays for £ k.

The integration interval from £=0 to ® is divided into subintervals and
as indicated in Table 3, either the trapezoidal rule or Gauss quadrature [14]
is used for each subinterval. The integration is stopped at some large value

-

of 6=§k, " where §k)k, which is justified by the fact that the integrand is
exponentially decaying for £>k. The trapezoidal rule is chosen because it is
the simplest method which works well for oscillatory integrands [16]. The
Gauss quadrature is chosen in the vicinity of the singular points because it
does not require the evaluation of the integrand at the end points of the
interval, thus avoiding evaluations at the singular points.

The convergence and stability of the procedures above depend on the

exponential decay for £ k. As shown below, if the decay is not sufficiently
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rapid, the effect of the Rayleigh pole is observed as an instability.

Increasing h/>~1, P, or s increases the rate of the exponential decay, thus

improving the convergence and stability; however, increasing p or s also
increases the power of the pole, thus promoting instability. Thus, there is a
compromise associated with increasing p or s in order to achieve a dominance
of the exponential decay over the algebraic instability. For a given set of o)

and s, there is a minimumn h/>\1, (h/)xi)min, below which the procedure above

gives unstable results. By examining the ezponential decay and using the fact

that Jé‘z-i Y Jéz-kz for £k, it can be shown that for the cases with fixed
n=p+s the case with p=0, s=n gives the largest (hlxl)min
The integration over the receiving transducer contact areaz as given in

eqn. (20) can also be performed numerically using the trapezoidal rule.
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6 EFFECT OF LOSSES

So far, it has been assumed that the plate material is perfectly elastic
and all energy is conserved during wave propogation as only geometrical
attenuation due to spreading and wave mode conversions is present. Howaver,
wave propogation in real materials is never entirely conservative as a certain
amount of energy loss always occurs during propagation and reflections. The
mechanisms of these losses are discussed in [20]. In this study, it is assumed
that attenuation is small and the effect of the attenuation can be introduced
by multiplying eqn. (17) by expt-(thR1+ cxz}'{z)] where o<1 and o<Z are the
frequency dependent attenuation constants for P and S waves, respectively
£2013. °<l and &, are material properties and have the units of nepers per

2

centimeter [64].
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7 _RESULTS AND DISCUSSIQONS

The frequency response of the plate in the SWF configuration is
formulated as the superposition of the frequency responses due to reflected
fields. The response of the plate to an arbitrary pulse is thus the the
superposition of the responses due to reflected fields to that same pulse,
simply reflections, and can be found by Fourier analysis {211.

The frequency responses due to the fields with common p,s have the same
phase which depends linearly on frequency; and thus the corresponding
reflections whose superposition is called the reflection with p,s have the
same time delay in the transient response. If the plate is sufficiently thick,
then the time difference between the time delays of the significant
reflections with different p,s may be so large that each significant
reflection can be observed in the output separately as in [7]. When the plate
becomes thinner, the reflections overlap and it is no longer possible to
obtain information about an individual reflection directly in the output.
However, it may be possible to do so by using homomorphic signal analysis
[13,221.

Information about one reflection is useful because it is a prerequisite
to analyzing the entire output quantitatively and also because it may be far
easier to interpret the changes in individual reflections due to defect states
of the plate. This is especially true if the reflection is in the far field,
where a receiving point observes the incident field as a plane wave. Although
the thickness of the plate may be small, reflections with large enough p or s
satisfy the far field condition given by eqn. (34). So, information in the far

field may be obtained from some portion of the output signal.
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s depends

1

The frequency response at a point due to the field with p,s Hp

on the dimensionless parameters p, s, k., °<1>\1, 0<2>\2, all>\1, h/>\1, and r/h. The

frequency response of the plate due to the field with p,s ﬁp s also depends
i

on the dimensionless parameters p, s, k, 0<1>\1, 0<2>\2, a1/>\1, hl>\1, £/h, and

aZ/aI. Unless otherwise stated, it is assumed that the plate material is

lossless, namely °<1=0<2=0, in the following calculations. Also, aluminum for

which k=2.02 is considered as the plate material.

The behavior of || H t, |1 ! i i
2,0 H6,0 . and !HS,II versus h/)\1 is plotted in

Figs. 4 (a), (b), and (c), respectively, for the values of 31/>\1 of 3 for all
cases and for r/h of 0, 0, and 2.5, respectively. The magnitudes calculated
using the asymptotic formula in eqn. (23) are indicated by the filled squares.
The magnitudes calculated by evaluating the integral in egn. (18) by the
numerical procedures described in Sec. 5 are indicated by solid curves.

The asymptotic magnitude in Fig. 4 (2) shows spherical wave behavior,

and thus it starts to “blow up” for small h/x_ , namely, near to the source.

1

The numerical magnitude has approximately the same value as the asymptotic
magnitude for large h/‘)\1 (for h/>\1)14.4 with the criterion given by eqn. (34)

and it is oscillatory for smaller h/)xl. The numerical magnitude also ‘'blows

up" at (h/X ~0.48 because of the effect of the Rayleigh pole as discussed

1 )min

in Sec. 5. Similar discussions can be given for Figs. 4 (b) and (c).
As discussed in Sec. § (h/)\l)min is controlled by p and s. For the cases

with fixed n=p+s, the case with p=0, s=n gives the Ilargest (h/)\l)min.
(hl)xl)min has been evaluated for the cases with increasing s and fixed p=0,
a 1l>\

1=3, r/(sh)=0.7. It increases with increasing s and gives a peak value at

aproximately 1.6 for s=10 and then decreases as suggested by the discussicons

on the stability of the numerical procedure in Sec. 5. The critical hl>\1 '
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(th/xn

; which is the largest (h/x among all the cases, is approximately

l)cr i)min
1.6. (h/>\1)cr limits the applicability of the formulations in this study. For

R/ ((hin

{ i)ct' expanding the plate modes derived by Rayleigh- Lamb frequency

spectrum, which is more suitable for low frequencies, may be used.

Some parametrized plots which determine the particular field whose
frequency response has the maximum magnitude compared with other reflected
fields are given in Figs. 5-8. These plots may also be used in the spectral
analysis of transient signals to estimate the particular reflection which has
the maximum magnitude compared with other reflactions at a particular
frequency. The reflection with the maximum magnitude is important because it
has the maximum signal to noise ratio in an experiment.

Since the transmitting and receiving transducers considered in this
study are longitudinal, the reflections with only P waves, namely with s=0,
will be dominant in the output [7,13]; and thus only the fields with s=0 are
considered. Again, k=2.02 is used, but the results can be generated for other
materials.

In Fig. S (a), a point receiver, namely azla =0; 2 lossless material,

1

namely N1x1=0; and a11>\1=1 are considered. The abscissa and the ordinate are

h/>~1 and E/al, respectively. Then all the parameters in this analysis exzcept p
are fizxed for each point in the (hl)x1 ,elal) plane.

Suppose the magnitude of the frequency response at a particular point
due to the field with p=pmax is maximum among all the possible fields with p=2
to &, pmax will be found to be the same for each point in a region bounded by

solid curves in Fig. 5 (a) (and is indicated in each region. For example,

Pmax=4 for h/>\1=6, 8I31=5.

In generating Figs. 5 8, discrete points where h/>\1 and Qla1 change from
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2 to 40 and 2 to 10, respectively, with increments of 1 have been considered.

Then I!T{p 0l (actually IHP 0! for a point receiver) has been calculated for
1 1

each point by changing p from 2 to a sufficiently large number, in increments
of 2. The asymptotic formula given by eqn. (23) has been used if the condition
given by eqn. (34) has been satisfied with the value of KF for Ea=5% in Table

2. The numerical procedure discussed in Sec. § has been used otherwise.

IHP ol may have diverged with increasing p at the beginning, but it has

finally converged to zero due to geometrical attenuation as discussed in Sec.
4. Thus, the sufficiently large number for p has been set by checking the

convergence and when HT{p 0I has become negligible (20 dB down) compared with
?

the maximum magnitude. The curves dividing the regions having the same pmax

have been then generated by linear interpolation.

Similar plots are given in Figs. 5 (b) and (¢) where only 310\1 as 3 and

S5, respectively, is changed. For the plots in Fig. é, again lossless material

but azlal=1 are considered, and a1/>\ is 1,3, and 5 for Figs. é (a), (b)), and

1
(c), respectively. In Fig.7? the conditions are the same as in Fig. § (b)
except °<1x1 is changed to 0.005 and 0.01 in Figs. 7 (a), and (b),
respectively. Similarly, the conditions in Fig. 8 are the same as in Fig. 6

(b) except 4><1>\1 is changed to 0.005 and 0.01 in Figs. 8 <(a) and b,
respectively.

There are several observations which can be made from these plots.

1. In the plots in Fig. 5, all the fields with p=pmax are in the far
field. pmax decreases with increasing h/)\1 and increases with increasing tla1
and ailxi. As all)\1 becomes larger or h/)\1 becomes smaller, changes in hl>\1 or
s‘!/a!.1 produce larger changes in pma .

X

In order to understand these and the following observations, consider
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the hypothetical multi- layered half space in Fig. 3 (b) again, and consider
only the P waves in the medium. Then the field with only P waves observed at
an image point Mp is the field with p,s=0 observed at the receiving point M in

the original plate as discussed in Sec. 4. Since the excitation with ail>\1 is

longitudinal in the z direction, the field with P waves only dies out at the
points located away from the source. As discussed in Sec. 4, in the far field
it is a spherical wave whose amplitude is 3 function of directivity and
decreases due to mode conversions each time it passes a layer. The polar

diagrams of the directivity function for several a1/>\1 are given in [71. It is

mainly controlled by the function f(w=1J (uY/ul where u=21% 0310‘1 and §O=sin

1

91. The properties of f(u) is discussed in [23]. For sufficiently large ail)\1 '

the directivity function has a main lobe where it has a2 maximum at 61=0 and

decreases to zero, and beyond which it has successive side lobes where it

reaches a maxzimum and decreases to zero with increasing ei. The maximums in

the side lobes decrease with increasing angle el- and they are much smaller

than the maximum at 61=0. The number of side lobes increases with increasing

31/>\1 and the main lobe is confined to a smaller angle. Thus, the decrease in

the directivity function with increasing angle becomes faster. For small

éx1 l>\1 , the directivity function has only a main lobe and it never becomes

Zero.
Now notice that an image point MP in Fig. 3 (b) is located at a larger

with increasing p. Then I H | tends to

distance R1 but at a smaller angle S p,0
!

1
decrease due to larger geometrical attenuation because of the larger distance
and larger number of mode conversions, but also it tends to increase due to

the directivity function because of the smaller angle with increasing p. So,

there is a compromise in the value of p .
max



29

As h/,\.1 increases or Ual decreases 61 becomes smaller for smaller p and
pmax tends to decrease because of the directivity function. As a.1/>\1 increases
the value of the directivity function for larger e1 , namely for smaller p,

becomes smaller and pmax tends to increase. For smaller h/\_,, changes in h/)\1

1

or t/e.1 produce larger changes in e1 and thus in the value of the directivity

function and pmax‘ Also, for larger a1/>~.1, changes in hl>\1 or Ua.1 which

accompany changes in 91 produce larger changes in the directivity function and

thus in ;
p’m

ax
Let the fields with p,5=0 be in the far field for p)pfal_. From the
condition given in eqn. (34) it can be shown that Pear increases with

increasing a /X, and decreasing h/\, or €/a_,. Also as discussed above p
11 1 1 max

increases with increasing a.1/>\1 and !/al, but with decreasing h/)sl. The

results show that always pm for the range of parameters considered in

ax)pfar

Fig. 5. Notice that for decreasing &¢/a_, p decreases and p increases.
i max far

Thus it is expected that for sufficiently small 2/a_, p {p . But this does
1 max far

not happen for tlalz 2.
It can also be shown that 01 for the fields with pmax' which is denoted

by (el)max' is in the main lobe of the directivity function for all the cases

considered in Fig. 5.

2. Similar observations as for Fig. 5 can be made for Fig. 6. The
conditions for Figs. 4 (3), (b), and (c¢) are the same as for Fig. § (@), ),
and (¢), respectively, except the receiver is such that azlal=1 instead of a
point receiver. It is observed from Figs. 5 and é that pmax tends to increase

for azlai=1 compared with a\zla1 =0.

For a /a1>0, the complex frequency response H is integrated over the

2 p,0

receiving transducer contact area to find ﬁp 0 and then Iﬁp ol. Suppose
! 1
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al 0I is the average of al 0| over the receiving transducer

contact area. Also, suppose that |H is the value of |H evaluated at

p.0'0 p.0'

the center of the receiving transducer. For I H | #®IH I ., which can
p,0 p,0 0
be justified for the fields with ©_  in the main lobe, I H i €IH | if
1 p.0 p,0 0
there is a change in the phase of H over the averaging area. It can be

p.0

shown that for smaller p the phase changes more over the receiving transducer
contact area by considering that the imaginary point in Mp in Fig. 3 (b) is
located at a smaller distance and at a larger angle from the source, and thus

IH ! decreases more compared with | H 1. So, p tends to increase for
p,0 p.,0 max

3. The conditions for Fig. 7 are the same as for Fig. 5 (b) except °<1x1

is 0.005S and 0.01 in Figs. 7 (a) and (b),respectively, instead of lossless

material. As observed from these plots, pmax decreases with increasing °<1>\1.

The plots with attenuation show irregularities for large hl)\1 and tlal, where

or decreasing €£/a as

pmax does not necessarily decrease with increasing h/x {

1

in lossless material. The regions with irregularities move towards smaller

hix i i i *®
L or Ual with inecreasing 1>\1.

As assumed in Sec. §, |Hp ! decreases exzponentially with the product of

the attenuation constant and the distance of the imaginary point Mp from the

origin in Fig. 3 (). Thus, IH with larger p decreases more with

PIOI

increasing & X\ _. So, p tends to become smaller with increasing &« _x_ .
11 max 11
Although (& ) for the field with p is in the main lobe of the
1 max max
directivity function for °<1>\1=0 in Fig. 5 (b), it may jump to the side lobes
for sufficiently large h/>\1 . £I>\1 » and <><1)\1 , and irreqularities appear as in
Fig. 7. While attenuation pushes Poax down, namely (el)max up, (el)max

approaches to the critical angles where the directivity function is exactly
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zero. Near these angles there are sharp changes in IHP ol and thus pmax jumps

to bigger or smaller values.
4. The conditions for Fig. 6 (b), 8 (a) and (b) are the same as for Fig.

5 (), 7 (3 and (b)), respectively, except azla1=1 instead of a point

receiver.

F a - . . . .
or 2/31 i, pmax decreases with increasing <><1>\1 again but the

irregularities appeared for a point receiver do not exsist any more. This is

because |Hp 0I is not exactly zero near the critical angles due to the

averaging over the receiving transducer contact area and there are no sharp
changes.

5. Overall, Figs. 5-8 suggest that larger h/)\l, smaller a.1/>\1 , and for

attenuating material larger azla increase the stability of the output in the

1
SWF configuration in terms of the reflection with the maximum magnitude. The

stability means small changes in parameters produce small changes in the

output.
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8 CONCLUSIONS AND RECOMMENDATIONS

Steady-state harmonic stress waves in an isotropic elastic plate excited
on one face by a circular transducer were analyzed theoretically. It was
assumed that the transmitting transducer transforms an electrical voltage into
a2 uniform normal stress at the top face of the plate. First, the radiation
into a half- space, which introduced longitudinal (P) and shear (5) waves into
the plate, and then their successive reflections at the bottom and top faces
of the plate were considered to satisfy the boundary conditions.

A separate circular receiving transducer, also located at the top face
of the plate, was considered. It was assumed that the receiving transducer
produced an electrical voltage proportional to the average spatially
integrated normal stress over its face due to an incident wave.

The frequency response at a receiving point due to a multiply reflected
wave was formulated in integral form and its asymptotic behavior was given.
The far field condition for the asymptotic solution to be valid was also
discussed. This condition suggested that although the thickness of the plate
may be small, the waves which reflect sufficiently many times satisfy the far
field condition.

A numerical procedure was given to evaluate the frequency response at a
receiving point due to a multiply reflected wave in the near field. Its
stability and convergence were discussed. Also, exponential decay was
introduced to account the material attenuation.

Calculations were done for aluminum plates. It was found that the
numerical procedure becomes unstable for h/>\1(1_6 where h is the thickness of

the plate and >\1 is the P wavelength.
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Parametrized plots which determine the particular wave whose frequency
response has maximum magnitude compared with other multiply reflected waves
were given for a range of values of dimensionless parameters in the analysis.
The effects of changes in the values of the parameters were discussed.

This study is part of an overall effort to develop quantitative analyses
of ultrasonic nondestructive evaluation parameters such as the stress wave
factor (8WF). The spectral analysis of the SWF signal should benefit from this
study. The parametrized plots given in this study or generated using the
results of this study may be used to estimate some parameters such ag the
material attenuation or the effective radius of the transmitting transducer
from the spectral analysis of the SWF signal in terms of individual
reflections.

Finally, stress wave transmission characteristics of plates in the SWF
configuration should be analyzed using the modal analysis (Rayleigh- Lamb
frequency spectrum) for small values of h/x where the numerical procedure

1

given in this study becomes unstable.
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TABLE 1 Disnplacnuunt:sa and str:.sscsa in Isotrooic Elastic Solid with Axial
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Svmmetrv and Zero Rotational Displacement (12].

From Lonagitudinal From Shear Wave
Wave Potential ob Potential w
30 82w
ur -_—
3dr 3r 3z
2
3o 3w b 3w
u — -
2
* 3z 3z e at?
2
u‘ 0 0
p N 320 320 33w
o — + 2p — 2p»
re c 12 atz arz ar az
PN 320 820 3 azw 1 82w
-4 * 2P —— ip — -
xE e.? at? az? 3z 3z e’ at
1 2
N 3% 2» 30 2n 3’w
o b —— —— —
i c12 atz 4 ar T 3r 3z
320 3 azo 1 32w
dr: 2p B oe— 2 -
3r 3¢ ar 3z c at
(- 4
rs 0 0
-4 0 0
¥
2 u .u ,u_  are the components of the displacement vector, and ¢ ., o ., o
T z X 4 zz
.9 ., are the comvonents of the stress tensor in the cylindrical
rz 44 ¥
coordinates.
b X\ and » are Lame' constants.

-5 1



39

TABLE 2 Calculated Values of K

for Analog Acoustics

Problem. F
KF
al.xo For Ea=5'lo For saaa-/.
0.2 11.4 18.2
0.4 6.2 10.0
1.0 3.8 5.8
2.0 3.2 s.0
3.0 3.2 4.8
4.0 3.0 4.8
S.o 3.0 .8
7.0 3.0 9.6
10.0 3.0 9.4
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TABLE 3 Subintervals and Corresponding Numerical Intagration
Methods Used to Evaluate the Integral in Egn. (18).

Subinterval Numerical
Integration
From To Method
0 1-¢ a Trapczoidalb
1-¢ 1 Gaussc
1 l+a "
1{+¢ k-¢ Trapezoidal
k-a k Causs
k E 4 R "
2§ R £ 1 =£ R“ o "
4 { 3 2 =4 144 ine Trapezoidal
£ 2% 2% ine )
;
k-1 e et ine "’
4 Kk ¢ o Neglected

a €1, typically €30.01.

b Number of steps is incraasad by powers of 2 and the
convergence is chacked. When the intagral converges
to a value with an acceptable error, typically to
within of 0.001, the integration is stopped.

e Typically 8 point Gauss-Lagendre quadrature is used.

d Typically, ;incﬂ'

e The integration is stopped at Sk when the integral
over the interval from ;k_l to ;k becomes negligibly
small, typicallvy smaller than 0.001.
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(a) (b}

Fig. 1 Schematics of (a) plate with axially symmetric excitation and

(b) coordinate svstems.

Boundary Conditions

Stage Waves Satisfied Only at
! P S z=0
2 p/\}s\ /P\ /3\ -
3 P/\S P S P S P S z=0
ANNNNNNANNNA

Fig. 2 Representation of introducing reflected waves at successive

stages as binarv tree.
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Fig. 3 Schematics of (a) plate and the PSSP ray and (b) hypothetical

multi-lavered half-space and the PSSP rav.
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Fig. S Parametrized plots for k=2.02. °<1>\1=0. s=0, a.z/al:o (point receiver)
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