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STRESSED_MIRROR POLISHING:

A TECHNIQUE FOR PRODUCING NON-AXISYMMETRIC MIRRORS

by

Jacob Lubliner and Jerry Nelson

Abstract

The theoretical basis is developed for a technique'to fabricate
non—-axisymmetric mirrors. Stresses are applied to a mirror blank which

Woﬁldﬁhavephe effect of elastically deforming a desired surface into a

sphere} ‘A sphere is then polished into the blank, and uponjrelease of

the applied stress, the spherical surface deforms into the desired one.

+The. method can.bevapplied iteratively,.so arbitrary accuracy should be .

possible. Calculations of the stresses and deformations are carried

" out in detail for an off-axis section of a paraboloid. For a very gen-

eral class of surfaces, it is sufficient to only impose appropriate

stresses at the edge of the blank plus a uniform pressure on the back.



1. Introduction

The fabri_cation of high-éuality non-axisymmetric opticél surfaces has
traditionally been Vastly more difficult thah producing axisymmetric surfaces.
Among the axisymmetrlc ﬁurfaces, the sphere is the éasiést to fabricate,
with commonly desired surfaces such as parab0101ds and hyperb0101ds béing
substantialiy more difficult. Even with the advances in computer-controlled
polishing, made by some of the large optical firms, ndn-axisymmetgic sugfaces
are a chéllenging"task, one very much more difficult than polishing spheres.

. The University of California is currently designing a 10-meter optical

ground-based telescopel, and-one of the designs being considered is based on

2,34 e

a segmented primary mirror of either parabolic or hyperbolic shape
primary is expected to.be about f/2. The segments are hexagonal in outline, .

l.4m in diameter ahd 10 cm thick. - These mirror segments must be off-axis

~ sections of a paraboloid, and the entire set of 60 must be made to conform

to a single paraboloidal surface. Because of the great difficulty in making
even a single off-axis paraboloid by traditional methods, fhe construction of
a matéhed_set of 60 mirro;svappears quite formidaﬁle. Our desire to.produce
ﬁhesg‘mirrofs aécurately, qulckly, and economically was the impetus for
developing the techniqﬁe described in- this paper.

In general, the idea is to épply an appropriaté:set;of forces

to a mirror blank such that after a sphere has beeh ground and polished into
the blank, the forcés can be removed and the polished spherical surface will
deform'elaﬁtically intb the desired non-axisymmetric surface. So long as

the material behaves elastically, with no hysteresis, and the desired surface
‘ls smooth, there will exist a force function capable of producing th¢ desired

deformatlon. Thus, in principle, one can reduce the dxfflculty of polishing



‘nqn—éxisymﬁetric_mirrors to thé muph’simpler task Qf polishing,spﬁeté$; Wev
ishow in this paéer_how féf'circu}ar mirrors of uniform thickneSs; é_?éry
vgeneral ciass of surfaces can be created by an exﬁremely siméle fofCefdis-
triﬁution. :(In a éomﬁanion Paper5 we déécribe{the fabriéétioﬁdof an'off—
"éxié ééétion of .a paraboloid using thi; technique.)

Histdrically,'this general idea was firét used by Bernard'Schmidt'in
making an axisymme;ric'cofrécting'lens for a Schmidt telgscope; and the’theéryl
and method for this technique is described by Everhart6. An interesting véri-
ant of Ehe idea'we’dévelOp in this -article is described by LeMaitre7,‘where'
variations in platefthickness are deliberétely introduced to attempt to
.achieVé"; setbof desirqd deflections under externél,loads. A'related>idéa,
‘that of bending.a given mirfor into another shape by the use of a warping
hé%néésyto adjust astigmatism has been described by Leonard8 and Al§aré29.

‘In thesé’applications,‘no polishing dﬁring warping was.attempted; rather, the
warping hgfness was a bermanentkpart of the desired mirrorl- 3

"It’is.well knan that any continuous function defined in a region of
thebxfy plane'cah be represented by a double power series in x .and y. If
'the'region’is_a circle of radius a abéut the origin, then it is convenieﬁt
to use polar coordinates (D}S),zwhere-p =r/a, r = VQE:;EZ and

: N T :
6 = "tan " (y/x). . It can be shown that the series then takes . the form

X z (0. cosnd + B sinne)pm “ (1.1)
=0 n=0, mn mn _ o

m—-n even

éy méané of elastic pla?e theory it can further be shown that the
proper applicatibn of bending moments and shearing forces around the
periphery of a flat p;ate} plus a uniform or linearly ﬁary;ng pressure on the
backlof the plate (as ﬁight be ‘exerted 5y‘én elastic support pad),.will deflect
the plate into any surface given by a functlon described by\(l l), with the

restrlctlon that for m>6 the only non-vanishing coefficients a and 8
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are Lnose.with m=nand m=n + 2. Even wiﬁh-this'restriction, equation (1.1)
still‘deSCribes.all commonly produced optical surfaces.
Thé:material should behave elastically for this procedure, so some

materials may not be suitable for this technique; but at least one

material, gléss, is known to have nearly ideal elastic propertieslP
4 .

If the material résponds lgiearly to the imposed.fprces,_thélresﬁlting
deflections are indepeﬁdent of fhe‘internal stresses of the original blaﬁk
and of‘changes in the‘internally generated stresses caused by grinding and
‘pol?Shing. |

‘An atfractive featﬁre of the technique.is the ability to produce the

desired surface iteratively. If the applied forces are only approximately

i

correct, due to approximétiohs in the theory, incomplete kanledge of the

blank's elastic propértieé, or systematic errors in the application of the
desired forces, tﬁe surface produced will not métch the desired one.
Measurements of the errors in the fabricated surface can then be ﬁsedth
calculate corrective forces, whichvwhen reapplied élong with the original
set of forces can be used as the basiS‘fbr a second spherical polish aﬁd
test cycle and so on. Thus if'the,results'of a single.polish confain
errors of order eoiand the desired deflection is of order d{ one can ex-

pect the error after n'polish cycles to be!
A, (==
e (d y'a

If €o/d <1 the techhique-converges to produce the desired surface. -

‘In practice, Eo/d is of order lO—2 and accurate convergence to the desired

surface is achieved in 2 or 3 polishings. Appreciable.changes in the

thickness of the blank from the grinding andvpoliShing will of coursé

affect the deflections caused by the applied forces, but in a predictable

- fashion. In practice these changes are small and do not strongly affect

the convergence of polishing iterations.



Sinééiihi$ techhiqﬁe'wa$ ﬁotivéﬁgd by thézﬁ.ﬂcfiféiéécoﬁe project &e
use:ééféigﬁgles:héreiseétioﬁS'of a ﬁirrér with a 40—méter radius of curva-
vturépéﬁdf%é;assume a pdraboloidal’sufface. We“pegin‘the development of
f.,thévthébrf‘witﬁ'a dérivatiénbof'thé equations describingithe suffaces
" dinvolved. The followingvsection"disétsses the déflections of circular
3_blateslgpd“ésﬁablishes the force Syétém needed to obtain the desired

,deflectiéns. Seétion 4 dichsses>the stresses imposed on the plate'and
">,th§s esté?}isﬁeéAwhat sﬁrfaces:afe actually poésiblg without breakingvor
'qfﬁérwiée_éxcegdiﬁg‘the elasticvlimit‘bf the mitror blénk{ The derivatidﬁ'

_of the results'used'in Sections 3 and 4 is shown in an appendix.



2. Geométrz

In this section we will deriye the expression fpr the deflection repre-
senfing the differencé between a sphere and an off-axis éectipn of a parabo-
loid. 1In a global carteéian cbordinate-system (X,Y,2), a parabolqid of revo-
v lution about the Z-axis, with a focal length £ = k/2 (so that‘k is the radius

of curvaturevét the verte#), is_described by |

- 2 '
X +Y ‘
7= - o (2.1)

'Let P denote a point on the paraboloid located at a distance R from
. . 2 . '
the Z-axis; the coordinates of P are (R, 0, R /2k). We wish to transform

equation (2.1) into a local coordinate ‘system (%, y, z) whose origin is at

P, such that the x-y plane is tangent to the paraboloid. We may, for

convenience, let y Y. fThe inclination of the x-y plane with respect to
. -1 :

the X-Y plane is ¢ = tan €, where € = R/k. The geometry is illustrated

in Figure 1. -

For convenience, we denote cos¢ and sing by c and s. Then the coordinate

systems (X,Y,Z) and (x,y,z) are related by

X=R+ cx - sz,
'Y=YI
2, : :
Z = (R /2k) + cz + sX.
“ With these expressions>inserted in equation (2.1), thiSvequation becomes
. R . ‘
R _ 1 2,2
i % + ¢cz + sg = 2kI(R + cx - sz) + vy ],

Expanding and rearranging, we can write this in the form of a quadratic

equation in z:
cszz - 2(k + czsx)z + c(02x2 + y2) =0

where R is eliminated by means of the identities sR + ck = k/c .



and cR = sk. When the quadratic equation is solved for z, then the solution

" which satisfies the condition that z = O when x = y = O is

z =Lk + Zox - A2 + 2c%skx - cZsHyh). (2.2)
cs oo .
We expand the right-hand side of this equation in a power series,
obtaiﬁiﬁg | ‘ A | . ‘
S N o2 _:?32_ (22 + v2) +'°3S§(c2x2 o y?) 562 + v9)
- ' 8k :

. (2.3)

/2 2 v
where r = x +y . If the radius of the plate is a, then the largest
neglected term is of order £°a®/k" = R%aS/k’.
Now consider a sphere of radius £, centered at an arbitrary point with

local coordinates (xo,O,zo); this is described explicitly by

o 22 o 2
z'=z A R AR R

—

or, in a power-series expansion,

. 3 2 '
. b 4 X 2 X . :
z=(z - A% -x) - 2+ 2gx+ I~ 4 yd
.o o 2 3 2% 3 :
, 22 48"
2 5

X Xr 2 X r 6
o + L + o¢ (e} r_,
223 823 25 | £5 _ (2.4)

The goal of £his study is to ppoduce, By means of applied loads, elastié
displacements w eqqal to tﬁe'difference between the right-hand sides of
equations (2.3) and (2.4). However, the constant and linear terms iﬁ
equation (2.4) represent rigid-body displacements and are therefore of no
interest. Consequently we let X = 0 and z = 2 (that is, we consider only
tangent spheres at P), and equation (2.4) simplifies to

2 6,5 |



)

If zpar and zSph denote z as given by equat;ons-(2.3) and (2.5) respgctlvelyt.

and if.w is defined as 2z -

Z , then the power-series expansion for w
sph par . ~ o :

takes the following form when transformed into the dimensionless polar

coordinates (p,H):

= Q 2 + o 2 28+ 3 os@’% 3 30 + o
W= G0P GgoP cO82Y  + Ay P © 33P €039+ 0yeP

+ a420400526 + neglected terms. . (2.6)

The coefficients amﬁ are given in terms of a, k, % and € as follows:

q20 = %; (% _.; + €2 + %e“ + %as + ..., . .» ‘focus

Oyy = %Eez(l - %gz + %§€“+;,_,,),' : o ~astigmatism

Qg = (a3/2k2)e (1 - %%ez + %%ﬁ& +.000), o coma

Gy = _(a3/ekdet (1 - 3e? + 6e* +..... ),

0‘40 = (a4/8k3)[(%03 - 3e* (1 - 4¢’ t..0 1, sphericél aberfa;ion
Oga = —(a4/4k3)€2(l‘fA5€é + 'i..). p

"Note that in each coefficient amn, the leading term is of Order-(am/km_l)en.

Since both R and a are small compared to k, it can be seen that the largest -

of the neglected terms of (2.6) are those whose

coefficients are a60' a53 and d44, of order a6/k5, (as/k4)€3.and

4 3 4 '
(a” /k7)e , respectively. For mirror segments with a = 0.7m, k = 40 m
and R <5 m, these quantities are no greater than about a millimicron and

-

therefore completely negligible.

The sphere radius may be chosen so as té minimize the rms value of the
deflection described by equation (2.6). A closevapproximation to this
radius can be shown to be

2
£ =2 (1 +

o 52). (2.7)
o]
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where lo = 2k/(c-+'c3)3 with this value of £, and with the values of a

and k as above, the values of the coefficients a

against,the'off4axis_distanCé'R in Figure 2. .

20’

cees @

42

are plotted



W

3. Plate Bending

The determinatien of tbe forces necessary to produce a given deflection
pattern in a glass plate cobsbitutes a straight—fdr@ard problem in elastic
plate theory, since glass is nearly-éerfectly linearly elastic at
eufficiently low stressesr The deflection w of a uniform, linearly and

() _ .
isotropically elastic, thin plate is governed by the partial differential

. equation

V' = q,

where q is the transverse load per unib area (measured as positive in the
same direcfion as the deflection); V4 is rhe'bperator (9%/3x% + 32/3y2)2
(where:x end y- are eartesian coordinatee in the plene of the plate); and D =
Eh3/12(1.-vz),»where h is the.plate thickness while E and v are respectiyely,
the Young's'mbaulus and‘Poisson's.ratiO'of the glass. |
The desired deflection giveb by equation (2.6) may be produced by
a epmbination of.bending homents and shearing ferces around the edge and
uniform transveree loading (see Fig} 3). ‘Since a uniform'transverse‘load
proauces no tilting moﬁent, the edge‘moment and shear dietributions must

be in moment equilibrium. It is possible to eliminate this constraint,

.and‘permit arbitrary moment and shear distribution around the edge, by permitting

 the transverse loading to vary linearly over the plate surface, that is,

}q = d, + qlx4-q2y . , | : . (3.1)

This kind of loading may be achieved by supporting the plate on a rubber

'pad which in turn rests on a flat rlgld base. If the rubber pad behaves like

ll
a Winkler foundation - then the pressure it w1ll exert at. every point will
be proportlonal to the dlsplacement of the plate at that p01nt Since the

rubber is con31derab1y softer than the glass, the bendlng
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’

displécemgnts of thé-plate will be qegligiblé compared to its rigid-body _v
displaCements.  Conséqheﬁt1y a transversé éfesshre of the forﬁ (3.1). mayv
bevreasonébly expected. |
| For loédings given by equation i3.1) theregxisté_a theory of moderately »
thick plates, due to Lovelz, whichAis more exact than the classical (thinf
pléte)‘thébry.' The theories are discussed in thé.Appendix. Id/ﬁhat follows,
Qe present thé equations resulting from.the Loﬁe theory whiéh'goverﬂ the
relation bgtween, oﬂ:the one hand,'deflection, aﬁd on the other hand, bending
mdment and §héafing force .around the circumference of a circular_piate of

radius a.

3.1 Deflections

" The most genéral top-surface deflection corresponding to an arbitrary
distribution'of bending moment and shearing force around the circumference,
together with a transVérse upward - loading on the bottom surface described

by (3.1) isxgiven'by the following equation:

@ " n ‘n+2 :
w(p,0) = ngO [(dnnvp: + un+2,n o) ) cos nb

+ (B pt+B n

42, .
nn n+2,n pA ) §1n nQ ]

p4 + > cos O + le p5 sin © . . . (3.2)

* %0 51 P

This is the same aS’equatiOn (1.1) with the restriction given there. The
last three terms in the expression are directly related to the transverse
loading:

. 5 !
= q2 /192D, B

.51

- q.a° - - 3.3
51 ° q2a5/192D R | (3.3)

'oz‘m = qoa /64D, o
The .remainder of the expression represehts the most general deflection of

a plate with no transverse loading. The terms with aOO' all' and Bll
- represent, of course, rigid-body displacement, and are governéd by the.

elastic properties of the pad rather than of ;he plate.
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' We note that equation (3;1) describes the most general C® surface
through flfth order, and a good’ many higher-order surfaces as well. I1f
only a uniform pressure is possible, then two of the fifth-order terms.
) cannot be produced, but all terms through fourth order are

(@gy s B
still controllable.

3.2 Bending Moment and Shearing Forces

The distribution of bending moment and shearing force can be repre-

sented by Fourier series:

'M(G) =M + % (M cos nd +# M sin nB),
: o n=l1 n - _ n
v({@) =V + f (V cos nf + V_ sin nB). ' | (3.4)
o n=l- "'n . n v

. ‘ v '
Equilibrium of transverse forces, moments about the y-axis and moments
about the x-axis requires

= - /2
v qoa/

o ©
M. +av, = -q a3/4
1 1 1
M + av, = -qza /4. ‘ (3.5)

1 %

3.3 Bending Moments in Terms of Deflections

The bending moment andvshearing force parameters, M-and V, can now be
expressed in terms of the deflection coefficients o and f. It is shown in
the Appendix that,rfor a pletevwith no transverse loading (q = 0), the relae
tion between the deflection and the appliedlmoment and shear predicted by.the
Love theory can bevreduced to the same form as that resoiting from rhinfplate
tﬁeory, provided the actual'deflection w is replaced by a modifiedvdeflection
W (where the superscript u staods forv"unloaded"), given by a series anala—

gous to (3. 2) with coefficients a . B (Note that a and B

40’ °‘51
zero). In order to define these coefficients in terms of the true ones, the
method described in the Appendix requires that we first remove the second-

order effect of the transverse loading and form intermediate, primed coeffi-

cients am;, er which are related to the true ones as follows:



%o = “§62+ 2(%)2a40',

O3 = Oy * %E§ (h)2“51 ;

a33 = O3 "E%V (252“51 ’

B3 - B.31 + %E%V(%)ZSSi ’ |

Bly = By + 1;\) %, . | L (5.6)

with all other primed coefficients equal to the true ones.. The coefficients"

with both subscripts equal must = then be modified as fdllows:

o 2 e o |
0Lnn = %t 5(1—v)(a) (n+ 0tn+2,n o 2
w2 2~v ho2, ... ., o (3.7)
Bn B -5 1d\))( (n+1) Bn+2,h .
_ and_for the others
u -t , u !
. o‘n+2,n - OLn+2,n ? Bn+2,n 7:Bn+2,n : : (3'5)

Having now found the unloaded deflection coefficients, we return to thin-plate
theory. A thin circular plate with no transverse loading,énd with the deflec-

tion given by

iy ® . u - n_  u +2,.
- : : cos nf -
v U0 *aEr 1O P+ %o ) cos
+ (B " + 80 *2) sin nd)

nn n+2,n P
has momén£ and sheai distributions MPKG), Vu(e) represented by Fourier series
analogous to (3.4{;’the coefficients are given by thin-plate theory as

u_ D u A ‘
M = fz—{(l~v).n,(nf,1)u + (n+1) [n+2 \)(n 2)] o

: n+2 n}
a

v, -=——aa3-{(1—__y) n (n-»l) oznn + n(n+l)(n-4 -vn) an+2 n}- L (3.'_9‘)



To obtain the barred coef

u
that o, O

u
oo’ %117 204 B

13

ficient M

u .
ll.have factors equal to zero.

u : '
’ Vn' we replace O's by B's. Note

In the presénce of transverse lgadihg.given-byv(3.1), only the

Fourier coefficients of index 0, 1 and 3 are changed.

_ u 2. 3+v . 3=V 2‘2
M0 N Mo ‘+ qoa L 16 80 (a) ]
= 2
vy qoé/
o4 u 3 5+v 9+v /h, 2
Moo= M+ qat e+ i Q)]
a 2 17+y . 9t h °
Vi o= V- qa gt 160 (E’ !
'/
- —u 3 54V 9+y h, 2
M= M+ qalTE e )
S _ T u_ 3.17+4v | 9+v h,2
Vi TV Ta [48 *ie0 @
- q ah
u 1
R A
‘w3 . 2
Vi V3 tgqh
2
'ﬁ _ 'ﬁ u 2ah_ .
3 7 73 8
_— —u 3 2
V3 = V3 - gaph

All other Fourier cqeffi

(3.9).

cients in (3.4) equal the

Note that equations (3.5) are identically satisfied.

The relations are

(3.10)

"unloaded" ones given by

- We note that if

less accuracy is needed, all the corrections of order h2 may be neglected in

the preceding equations.

theory, are given in the

The corresponding equations, representing thin-plate

Appendix.
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Equatlons (3.3), (3. 6) - (3 lO); evaluated sequentlally, yield the Fourler
coefficients of M(e) and’ V(G) in terms of the deflectlons coefficients. Note
that, in equaelon (3.9), nu and Vn (ﬁﬁq and V ) depend'simultaneeusly on .
y , ] o

ol and a ("

u . L , [ ‘
n Y1420 o and Bn+2,n)’ otherwise the\equathns are uncoupled. The

system of equations; together withb(S.S), can therefore also be used for_the
inverse problem, namely, the determination (to within a rigid-body displacement)
of the deflection produce& by a given distribution of behding'moment and shear- «

ing force. This may be necessary if an iteration procedure is used.

3.4 Discrete Force;épplication:3

In general, it is not pessible to produce an arbitrary distribution
of moment and shear around the edge with a finite number of controls. If
the desired deflection w ¢orresponds;to theoretical'momenf and shear

distribution M(e) -and V(G), these must in practice:be approx1mated by .

(1) (1)

physically reallzable distributions, say M (e)gand v (6). By solvlng

(1)

the inverse problem we can determlne the deflectlon, say w , that willf'

actually be produced. Next, we determine the theoretlcal -moment and shear

.1 ), if
. . . (2) ... (2) '
these dlstr;butlons are approx;mated in practice by M (6), and v (),

(2)

and if the corresponding deflection is w . then, if the proéedure is

'dlstrlbutlon necessary to produce the difference deflection w-w

continued, we have

W =w +v(2)+.
and MB = M(l) + M(z) + .
VB ; 1) + V(z) + ...

\
where B indicates the best approximation to the desired deflection w. If the
algorlthm for producing the actual moment and shear dlstrlbutlons from the

corresponding theoretical ones is stable, the convergence-of the iteration

should be very rapid.
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'In addition to the just-discussed iteratibn, we emphasize again ét_this
point the itérative polishing procedure discussed in Section 1. 1In general;
it can be ekpected that the surface produced by the first polishing under
stress will not be exactly the desired one. The difference ﬁay be the result
of many factors: variation in the plate properties E, h, V; aeQ?ation from
perfect linear élastiéity; failure.of the pad to conform toithéfWinkler model;
and so on. |

If the difference between the actual and the desired deflection is

itself giveh by equation {3.2), then it can in principle be removed by
additional moments and shears calculated by exactly the same procedure

as before, and upon iteration the error should converge to zero.

It may happen; however, that thé_defiection difference is given by

one or more'fermsvof the series (1.1) which do not obey the restriction

' :)
given there - for example, 0_,P . Such terms are not controllable by

60" .

the present techniQue, and it must be assumed that they are small.

For example, a deflectioﬁ'which varies as b6 will be produced (in a
uniform pléte) by a load that varies aé pz. Alternately, suppose thevplate
stiffness D varies from its nominal value D0 by something like AD = YDobz,
with.Y small. Let LA denote the nominal deflection with vy = 0, and Wy the
additional "uncontrollable" deflection due to Y # 0. Then the effect of the
non-uniformity may approximately be represented as that of an additional
load q = - AD Vawo; if we eqﬁate this to Dé V4wl, then a solution is

W, = O 96; where o, = (A more rigorous anélysisvproduces similar

X
1 60 9 %40°
results.) Consequently, the uncontrollable deflection terms will be very

small fractions of the desired deflection, provided the variations and uncer-

tainties which produce them are themselves small.
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4. Stress Analy51s

when the focal length (k/2)-and the plate dlmen51ons (a, h) are pre—
scrlbed, the parameters that determine the deflectlon requlred to produce‘
an off-axis paraboloid segment are the off—ax1s distance: R and the sphere
radius £. Since it is the deflectlon which, together w1th the elastlcb
propertlesvof the plate, produces stresses, 1t 1s 1mportant to examine . ‘ -
the bounds that must be obeyed by R and % 1n order that the stress does
not exceed‘a safe level throughout the plate.

In stress analysis it is notjnecessary to work with the same degree
of theoretical accuracy as in aeflectien analysis,.since a generous
safety‘factor is always_applied to the breaking stress in order to deriﬁe
the allowable stress. .Cdnsequently it ls sufficient to use thin-plate
theory wlthoutvthe Lqrevrefinement,vana furtherﬁore it is permissible
to omit relatiyely small terms from the expression (2.6) for the‘
deflectien. In particular, since %;k, and € (=’R/k) is small; Qe'
may drop all but the lowest-ordernterms‘in e'in the expressions for
Ogy v a22 and Y approximate %o hy %(a/k)2fk:+ e%k ;'2); and neéleet
d33'and a4é altogether. The‘approgimate expression for the deflection_

then takes the;simple.form

. ) 92 2 C : - ' .
weoy) = B RE YD)y Lo opkhorh G
2% 8k .

P

where r‘2.= (x+R_)2 + yZ, so that r' is (approximately) the distance . ' “
from a point (x, y) on the plate to the axis of the paraboloid._ The
local maximum tensile or compressive stress at (x, y) can then be shownf

(see Appendix) to be given by

| | L,
. _ _Eh k - % r'.2 4 1-v _ r' :
max(loc) ~ 2(1-wk "% | . 5% Tiae R - (4.2)
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The absoihte maximum stress in fhé plate is.obtéihed by maxiﬁizing tﬁe righF—
hand side of (4.2) as a function of r‘z; the'iocationrof thévétfesé_maximﬁm -
therefore‘coinéides with one of thé'locations of the extreme valﬁes of r' .
One such point.is (a, 0), that is, the point on_thevplate whicﬁ is'farthest
frdm the axis; here r'2 = (R‘+a)‘2<.' ‘ '_I"he_ other point is that which is neéresﬁ
to the axis: this is the verték of thevparaboloid;;that is (-ﬁ,.O), if it is“
contained in the plate (that iéliif R<a); ofhérwisé it is.(fa; 0), where

r'2 = (R - a)2. |

| Let Oall.aenote the maximum allowable tehsilg stress, and 1et’the.

diménsionless'quantity p be defined by

3 2(1—v)0all_k )
P Eh
The condltloq omax(loc) (o] all 1mp11e§
| k - % + (5142 * l“v._;'(fl)zr <
' X kT 20+ 'k =P
for every value of r'. We thus obtain the bounds
<<
jz'xynin--—- o jz'max o - - . (4.3)

- for the sphere radius £ with the off-axis distance R given,iwhere

3+v R+a, 2

lmin = k‘[l * S (% )" - pl
and .
e ' v . <
J'A = k(1 + p) : if R - a,
max 1+3v ,R-a - >
= k[l +p + 2(lJr\))(——-—) ] if R = a.
In order that the necessaiy_condition L- > L ., be satisfied, R must obey
, ‘ max = “min : _

f(R) <p,
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where

~_ 3+v  R+a, 2 e o<
f(R) = ZTI;;;(—E—J o if R-f a
: _ ! Rta, 2 _ : R-ah2 .'il >.' o _ S
~ o 371157{(3+v)(———9 - (l+3v)(—i—9 ] }f.3'* a. - S, o

The equation f(ﬁl'= p'determines.R é#, the largest. off—ax1s dlstance that may

be achleved without exceedlng the allowable stress anywhere 1n the plate.

For any R < R the double 1nequa11ty (4 3) defines the range of allowable

sphere radll, this range narrows to zero width as R attains R ax When 2

: .equals £ min °F lmax,‘the max1mum stress equals the allowable stress at the
'point furthest from or nearest tovthe axis, respectimely.v If, on the other
‘hand, the séhere radius 1shat the mldp01nt of its allowable range , that is, 1f

L T A | (4.4)

'then_the maximum stress-is-the'same at both extreme points, and constitutes
the smallest maximum stress that 1s .produced for a glven off—ax1s dlstance R;
1ts value is

o = Eh
‘max ~ 2(1-v)k

£(RY.. . (4.5)
vKuatlon (4. 5) 1s plotted in Flgure 4 for the mirror segments with a = 70 cm,”
h = 10 cm, k = 40 m, E —»9X105 kg/cm ,,and v = 0 25.

It should be: poxnted out that the 1east—max1mum-stress sphere radius
given by equatlon (4.4) is in generalzdlfferent (though not drastlcally)

from the one given by equation (2.7) which corresponds to the least rms

deflectlon.v : o v ' o ‘h | Co _ h
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"Agnendix: Plate Theory S - o : g ' E
In th1s appendix ‘we present ‘the theoretical ba51s for the equatlons‘
'glven in Sectlon 3 for the shearlng force and bendlng moments needed to

achleve the de31red deflectlons, as well as for those glven in Sectlon 4 for

the stresses.

_ | - . S T o L
‘We consider, first, the,classical;(Kirch hoff) theoryﬂof thin'plates,

~as expounded for example, in Reference 13. If D def Eh /12(1 - V ) denotes the

plate stlffness modulus, then the bendlng—moment tensor with cartesian com—ﬁ

ponents MaB (a,B = l,2)‘1s related to the.middle-plane'deflection w by

o MocB = .D[(1 - _\_)_)'w + V 5 V2w, - : | : :(A.l‘)

v 0B oB _
where w o Bw/Bx , W LB = 52 w/Bx BxB, etc.; GaB denotes the Kronecker..

delta;»and the summatlon conventlon is in effect. (We denote cartesian axes

X, Y, z by X)r Xy x3.) The bending-moment components'are the resultant

moments, about'en axis in ‘the plane (and.per unit‘length of said axie), of

the in-plane stress components OaB:

bh/2

MGB == X3 040 ax, .

Chy2 (A.2)

(Conventionally only the components Mll and M22 ére called bending moments,

while M12 is Calledz"twisting'moment";) ‘Since the in-plane stress components
are assumed to vary linearly through the thickness and to have zero resultant.

force, it follows that : - 7 , ' ' B , -
- v _ @
%08 -12 B 3/h .

and the local maximum of each stress component (occurring at %y = *h/2) is

given by

L

JoaBlmax 6’M Sl/h .
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'The local maximum tensile (or compressive) stress is determined by the local

maximum moment, which at each point equals the absolute value of the

numerically larger eigehvalue of the matrix [M B], namely,

M ) = max|—X %< ll //711 - 22 4 M2 i }
max ; 12

hence
0niax (loc)= 6Mmax ‘(loc)/h -

Further equilibrium considerations yield the shearing-force vector Q

with CartesianAcompohents Qa (OLV-= 1,2), which equal the force resultants (per

unit length) of the shear stresses O The relation between shearing

a3’

forceés and bending moments is -
0 = -M =-D V% . S “(n.3)
© 08,8 7 | o

Lastly, the transverse load q (per unit plate area) is in equilibrium with

the shearing forces if
q = -Q ~=DVw. o . (nr.4)

In polar éoordinates (r, 6),‘the_bending-mbment and shearing-force

components are

32w 1 9w, 1 5w

- 1 L oW L 1 9 W, . . A.5
MrrA D[8r2 * _v(r or 2 362)] S a)
2 2
Mgy = D(%%w; L 9w Swy - (A.5b)
- 2 382  or? : ‘
: _ 1 w1 Bw ’ ' . \
-Mra = D(1 - V) (;‘arae - ;;‘55) (A.5¢)
2 2. . ' -
Qr - ~D _é_a; (3—_ + _l.. éﬁ 4+ _.]L. M) ‘ ’ (A.Sd)
31‘2' r r r2 382 S
_ 1 9 ,3% 13w 1 3%
_QG, = P L trw Y ) (8. 5¢)
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A shearing force applied at the edge of the piate is ﬁotvgiven)
however, simply by the normal component Qn of_tﬁe shéaring-force'vector_Q,L'
becaﬁse an applied "tWisting'momenth Mn£ (where the subscript t denotes.
the tangential direction) also produces a net shearing force if it varies G

along the edge. The net shearing force at the edge is givenﬂby'the '

: . ' &
Kirchhoff relation (see Ref. 9):
where 9/3s denotes the tangehtial derivative along the edge. Along the
circumference of a circular plate of radius a, this is AP
v = (g -2 aMre) L o (3.6) -
' r r 96 o ' ' IR
_ r=a
The applied bending moment, on the'bther hand, is just M = Mrr i- .
: ’ , 'r=a
. With the deflection assumed 'in the foimv(3.2), substitution into equa-
tions (A.5a), (A.Sc), (A.5d), and (A.6) yields the edge bending moment,
edge shearing force and transverse load as )
S , P ' -
‘M(6) = M + X (M cosnb + M sinnf) ,
o n : n ,
n=1 : -
V(O)"= vV + b (V_ cosn® + V_ sinnf) ,
) n o n
n=1
qfr,G) = q + ql.rcose»+ qzrs§n6‘, .
wheré _ 4 .
: : D : : " p , e
= — N VvV = -— ——— .
Mo 2_[‘(_2 + ’)0‘20 + 4(3 + )040], Vo . 3(32a40),v
s Doz VoL, + 45 + Va1, V. = - 2203+ va. + 4017 + Va1
&1 a2 " 31 ” 7751 ! 1 a3 - 31 ] ~7751 ‘
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_.—._2 . . ) —___R ‘ ’ )
M, = 2[2(3 + v)831 + 4(5 + v)851]. v, = 3[2(3 + v)83l + 4(17’+ v)BSll,

1 1
a a
n>1l: M .—‘az{(l Vinm-o, + (n+ 1)+ 2-vin - 2)]an*2'n};,,
-~ _ D¢ _ o . . . - ‘ -
M= a2{(1 -Vin- DB+ (b + Dn+2-vin-218 ., }
. ’ D ) - 2 .
Vv =—[(1 -Vv)n"(n~-1a  + n{n+1)(n -4 - vn)a 1,
n a3 v ) nn v . n+2,n" -
7 =@ -wnfn - DB +nm+ - 4- b ;
n a3 S nn _ n+2,n].'
’ 4 _ : 5 _ .5
q = -64Dq4_0/a Cq = ?L_92D0L51/a » g, = 192D B5,/a".

These relétions are_equivalent fo eqqations (3,3);v(3;6)—(3;10) whéﬁ the
corrections of'érde; ’(h/a)2 aré néglected. |

| These cdrfections resﬁit from an application qf the_thebry of
moderately thick plates déQeloped by Loves and based on some results of‘
Micheil in ;he probiem of generalized plane‘stress. »fhe Love»theory.yields
a family of exact solutions éf the differential equations of three—
dimenéional elasticity, valid in a plate of uniform thickness h, éuch

that the transversé normal streés 033 vanishes everywhere (Consequgntly

there is no transverse loading) , while the shear stresses 013 and 023

vanish at Xy = th/2. In the Love formulation of the bending problem,

the displacements components ul, u2, u

3 are given in terms of functions

' - (3 ) T . . .
Xl(xl,xz) énd el(xl’XZ)’ of which Fhe latter 1s.harmon1c (that is,

v? Ol = 0) and the former is biharmonic (V“Xl = 0). In particular, the
transverse displacement ug is given by -
1 h2' 1.2
— —_ L —— — —
u; = g ((1 + v)xl + (4 > vx3)Gl].

,‘The deflections of the middle plane (x3 = 0),'wo,.and of the top and bottom

+ .
planes (-x3 = - go,wl, are given, respectively, by
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£

2
- . o By
"_’o = E[(l +.v)>_<1+ 4611,
1 v
= = + ’ - —
w, E[(1 \))'xl + (1 2)Ol]
= w - YEE.@
Y 8E
' E _2 E _2 “
0 = - = = = :
However, 1 Ty v v, =T 1 % Wy . Censequently,
w = w vhz. V2w
1) 1 8(1-V) 1°

.The in-plane stress components are related to wé by

o,
2 ' . h
{1 w woédB + (1- V)w B]x + [jIx

- L3172y
6(2 v)x3]V w }.

3 o,uB

1-v?

It is the second-term.in the curly brackets that_represents the Love
correction;wit.is seen te.ineiude a smell term that is cuhic in xj, in
contrast to thineélate'theory which is based en the assumption that the
'inéplane'stresses Qary‘linearly through the thickness. B

The dlsplacements predicted by the Love theory are exact if and only
if the stresses whlch are applied at the edges vary prec1sely in accord
,w1th equatlon (A.8).‘ Otherw1se these dlsplacenents are approrlmate.
ﬁowever, if the aetuel appiied stresses have the seme forcevand»COuple‘
resultants (per unlt length along the edge) as those’ requlred by the
theory, then the dlfference between the actual and theoretical deflectlons
is negligible everywhere exceptiin a zone near the edge whose width is of
the order of the plate thichness. This is the edge:effect, and is e
torollary of St. Venant's principle 8.9, 10.

As defined by equatlon (A 2), the bendlng—moment tensor correspondlng

to the stress dlstrlbutlon (A 8) is given by

_ 2 84V, 202 ‘
Wls = D[(1 - V) w + Ww 8 + —h“V wo,aB]

o,aB o af 40

(A7)

“(a.8)

W



3

25

~ Since, however, V“wo = 0, equation (A.l) remains valid if a fictitious de-

flection w is defined by

' 1 8+v 2,2 .
eVt T B Y,
or, in view of (A.7),
1 2-v 2.2 ‘ |

Moreover, since V2w = Vzwb==V2wl, equation (Aiﬁ).remains valid for the shearing

fdrcesm Conseqhently, in order to produce a top—supface-deflection wl such

- that V."w1 = 0, one needs only to derive the fictitious deflection w by

equation (A.8) and then to use the thin—blate theory in order to obtain the

shearing forces and bending moments to be applied at the'edge. This

algorithm was used in Section 3.

In the presence of a transverse load g on the face x3 = ~-h/2, Lovefs

_ method is to find a particular solution of the differential equation sétisfied

by 633 which obeys the following_bodndary conditions: on the plane Xy = -h/2,
033 = fq; or x, = h/2, 03} =‘0; and on both planes, 033’3 = 0 (in order that
0,4 and 623 vanish there). If q is given by (3.1), then 633vturns:out to

be biharmonic. From this O35 We can then determine additional terms for the

remaining stress components, displacements, bending moments, and shearing

forces. From the results given by Love, we obtain the following expressions

for the additiénél top-surface defleétion Wy additional edge bending ‘
moment M and additional edge shearing force V in the presence of a uniform

pressure q_:

q
9% 4 22 3+v . 4
wl. = EZB [r 2h ' r + ETETCT'h 1 .,
v = —qoa/2
34V 2 3-v 2
M 6 %2 T e Lo



26
‘In the case of a linearly Varying pressure qlxl, the correspondlng results in
polar coordlnates, after some trlgonometrlc transformatlons, are - SRR , J

q. 2.3

1 5 hr » | _ 3tV 4 :
. W = - - -
vy Toop (¥~ cos® 1=y [(3-V)cos® cos3@. Sy P rcose} 4 - L
o 174y 2 9-v 3 .
v .= ql( a8 2 cosB + Iga-h cose 33 h cos38) ’ : o
- . +V 2 9-v
eM‘Axf_ 1 ( 18 @ cosb + Iga-h cosB + 3—-h cos36) .

If.the pressure is given by qzxz,.we may>USe the.same results with'ql rep}éced
by qz, cosb by 51n8 and cos36 by —sin36 Inleach of these expressions, the
leadlng term is just that glven by thln—plate theory, while the remalnlng .
terms represent the Love correctlon which . in Sectlon 3 was called the._ -
second;order effect of the transverse loading.

A superpos1tlon of all the precedlno results yleids the equatlons“that
‘appear in’ Sectlon 3. The rlgld-body-dlsplacement terms appearlng in the

expressions for wl are, of course, ignored.
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Figure Captions

Figure 1:

Figure 2:

Figufe 3:

Figure 4:

leagram def1n1ng the global (X,Y Z) and local coordlnates (x,y,2z

r,0,z) of the mirror segment on the parab0101d

Coefficients describing the deflections needed to transform a 
sphere into a éarabola as defined by equation 2,6.‘ A paraboloid
with k = 40 m and segmenes with a = 0.7 m is assumed and the
coefficienes aé.a funcfiqn’of off axis distance are shown. The

best fitting sphere is assumed.. The rms deflection is also shown.

Diagram showing the application of shear force (V) and couple (M)

at the edge of the plate, and a uniform pressure (q) on the back
of the plate. These are the types of extefnalvforces needed to
deflect a sphere ihto'an off exis paraboloid.

The ma#imum stress induced in a mirror segment'dﬁring bending is
shown‘ae a function of off axis distance. The lowesf stress

sphere is used, and a parab0101dal segment with k = 40 m, a = 0.70 m
and h = 0.10 m.. The material (Ceert) has E = 9 x 105 kg/cm2 and

= 0.25.
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