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will change in composition in response to abiotic stress, 
which may mean the loss of important individual species. 
This could alter feedbacks to the plant community and 
beyond. AM fungi will adapt to abiotic stress independent 
of their host plant. The adaptation of AM fungi to abiotic 
stress should allow the maintenance of the plant-AM fungal 
mutualism in the face of changing climates.
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Introduction

Abiotic stress is widespread. While abiotic stress is com-
mon in all environments, its effects are best documented in 
agricultural systems where abiotic stresses can cause losses 
in yield of food crops of up to 70 % (Mantri et al. 2011). 
Drought (Pardo 2010; Cramer et  al. 2011), temperature 
(Weis and Berry 1988), salinity (Munns and Tester 2008), 
pH (Yokota and Ojima 1995; Koyama et  al. 2001; Hins-
inger et al. 2003), and nutrient deficiency or excess all neg-
atively impact plant fitness. Arbuscular mycorrhizal (AM) 
fungi can often help alleviate the negative consequences of 
these stresses.

The arbuscular mycorrhizal symbiosis is an important 
relationship formed between the members of the phylum 
Glomeromycota and ~ 80 % of all land plants (Smith and 
Read 2008). AM fungi are obligate symbionts that colo-
nise plant roots. The fungi gain carbohydrates from the 
plant host, while the fungi improve plant nutrient and water 
uptake. The benefits to plant partners can vary depending 
on the AM fungal species, plant species, and abiotic con-
text (Hoeksema et al. 2010). AM fungal community com-
position and diversity are influenced by plant community 
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composition and diversity (Johnson et al. 2004; Hausmann 
and Hawkes 2009; De Deyn et al. 2011; Koch et al. 2012; 
López-García et al. 2014; Chagnon et al. 2015; Reininger 
et  al. 2015), biotic stress (Eom et  al. 2001; Gehring and 
Bennett 2009), and abiotic factors (Johnson et  al. 1992; 
Zobel and Öpik 2014; Antoninka et  al. 2015; Borriello 
et  al. 2015; Klabi et  al. 2015). In addition, these factors 
often interact to influence AM fungal community structure 
and diversity (e.g., Johnson et al. 1992; Klabi et al. 2015). 
Despite our awareness of the influence of these factors on 
AM fungal community structure and diversity, predomi-
nantly only the evolutionary influence of plant community 
composition on AM fungi has been explored (Kiers and 
Van Der Heijden 2006; Wyatt et al. 2014; but see Behm and 
Kiers 2014; Johnson 1993).

The AM symbiosis has been shown to reduce the nega-
tive effects of abiotic stresses. In this study, we define 
abiotic stress as a shift in any non-living factor within the 
environment away from the optimal condition or away 
from the condition to which most organisms in that envi-
ronment have become adapted. While abiotic stress is 
context dependent, there are a number of examples dem-
onstrating the impact of AM fungi in improving abiotic 
stress tolerance in plants. AM fungi improve plant fitness 
during drought (Smith and Read 2008) possibly due to the 
increased surface area for water absorption provided by 
AM hyphae (Auge 2001), increased access to small soil 
pores (Smith and Read 2008), or improved apoplastic water 
flow (Bárzana et al. 2012). Improved phosphorus nutrition 
is a common benefit of the AM symbiosis, and particularly 
during drought conditions, AM fungi improve P uptake 
from dry soil (Neumann and George 2004). AM fungal-
improved salinity tolerance (Al-Karaki 2000; Evelin et al. 
2009) has been hypothesised to be due to improved P nutri-
tion, improved ion homeostasis, maintaining photochemi-
cal capacity, and higher activity of antioxidant enzymes 
(Hajiboland et  al. 2009). Heavy metal toxicity for plants 
can be reduced by AM fungi, through hyphal ‘metal bind-
ing’ which reduces the bioavailability of elements, such 
as Cu, Pb, Co, Cd, and Zn (Audet and Charest 2007). AM 
fungi may also be more tolerant than plant roots of high 
temperatures (Bunn et  al. 2009), and induce higher enzy-
matic activity and secondary metabolite content in plants 
(Chen et al. 2013) leading to greater cold tolerance in host 
plants. As a result, AM fungi can clearly benefit host plants 
exposed to abiotic stress.

As mentioned above, less attention has been paid to the 
direct selective effects of abiotic stress on AM fungi them-
selves, independent from the effect on their host. Abiotic 
stress also impacts host plants, and therefore, abiotic stress 
will indirectly influence AM fungi via host plants, although 
this influence is likely to follow patterns similar to those 
identified for the influence of plants on AM fungi under 

ambient conditions (Kiers and Van Der Heijden 2006; 
Wyatt et al. 2014). As a result, in this study, we address the 
possible direct effects of abiotic stress on the fitness, diver-
sity, evolution, community composition, and symbiotic 
functioning of AM fungi. Studying the effects of abiotic 
stress on AM fungi separately from plants will help to pro-
vide a better understanding of the strengths and weaknesses 
of their ubiquitous relationship.

Like in all organisms, environmental variation causes 
selection for different traits in AM fungi. This leads to 
individuals differing in their symbiotic function based on 
the contrasting climates or soil conditions of the areas they 
originated from (Mena-Violante et al. 2006; Antunes et al. 
2011; Sochacki et al. 2013). It has been suggested that local 
adaptation to varying environmental conditions produce 
more important differences in AM fungi than the basic 
functional differences between coexisting AM fungal taxa 
(Sanders 2002). Adaptation to environmental conditions 
can even be seen in highly localised areas, for example, 
within a natural CO2 spring, where hypoxia has driven the 
selection of AM fungal species capable of surviving high 
concentrations of CO2 resulting in AM fungi with reduced 
extra-radical mycelia and enhanced uptake of oxygen from 
the roots of the plant (Maček et  al. 2011). Similarly, the 
ability of three AM fungal phylotypes from Yellowstone 
National Park to survive in geothermal soils is likely due 
to tolerance of low pH conditions (Appoloni et  al. 2008). 
Evolutionary responses to abiotic stress not only improve 
the ability of an AM fungus to survive, but may also benefit 
the host plants exposed to the same stress (Mena-Violante 
et al. 2006; Sochacki et al. 2013). This may not be equally 
true for all stresses, however. For example, increased nutri-
ent loads have been suggested to reduce the benefit AM 
fungi deliver to host plants (Johnson 1993; Antunes et  al. 
2012). Only in extreme cases are nutrients present in such 
excess as to directly damage plants (Scheirs and De Bruyn 
2004), but many changes in nutrient availability away from 
the level plants and fungi are adapted to can be considered 
an abiotic stress, and, in addition, nutrient availability can 
undermine the benefits that plants receive from the myc-
orrhizal symbiosis (Johnson 1993). The potential for AM 
fungi to adapt to novel conditions may be a particularly 
important characteristic for an organism with limited dis-
persal capabilities.

The benefits provided to plants by AM fungi will 
become even more important, due to increasing abiotic 
stresses caused by climate change (Hanson and Weltzin 
2000; Compant et  al. 2010). This is demonstrated by the 
knock-on effects on plant communities that can occur when 
AM fungal diversity or community composition is changed 
(van der Heijden et  al. 1998; Antoninka et  al. 2009; Sun 
et al. 2013). Knock-on effects occur if plants differ in their 
response to specific AM fungal species, or if they have 
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varying levels of general dependence on the symbiosis. 
In this case, a change in AM fungal community composi-
tion could, for example, make a species of plant dependent 
on the AM symbiosis (or a particular AM fungal species) 
less fit. It could then be out-competed by plant species less 
dependent on AM fungi (Mariotte et  al. 2013). Given the 
potential influence of AM fungi on plant responses to cli-
mate change, the direct effects of abiotic stress on the fungi 
themselves and the consequences for the symbiosis cannot 
be ignored.

In this study, we present two hypotheses for how abiotic 
stress influences the ecology and evolution of AM fungi 
(Table  1). The stress exclusion hypothesis addresses the 
ecological consequences for an AM fungal community of a 
relatively short-term abiotic stress, whereas the stress adap-
tation hypothesis examines the long-term evolutionary con-
sequences of selection by abiotic stress on AM fungi.

The stress exclusion hypothesis

We hypothesise that abiotic stress will reduce the diversity 
of AM fungi (Fig. 1). We know that abiotic stress directly 
affects plant fitness, and abiotic stress can also directly 
affect the fitness of AM fungi (Fitter et al. 2000; Staddon 
et al. 2004). AM fungal species vary greatly in functional 
(Munkvold et  al. 2004; Powell et  al. 2009), phenotypic, 
and genetic diversity (Klironomos et al. 2001; Treseder and 
Allen 2002; Antunes et al. 2011), and thus, we expect that 
an abiotic stress will affect individual AM fungal species 
differently, leading to variation in AM fungal fitness. As a 
result, abiotic stress in this system can act as an environ-
mental filtering process (Vellend 2010; HilleRisLambers 
et  al. 2012). Specifically, depending on the severity and 
duration of the stress, less-tolerant AM fungal species may 
be entirely excluded from the community. Thus, we expect 
abiotic stress to reduce AM fungal diversity and alter AM 
fungal community composition resulting in an AM fungal 
community with a higher proportion of species that are 
more phenotypically similar, because they are more toler-
ant of that specific abiotic stress.

Assumptions

We make four main assumptions in this hypothesis 
(Table 1):

First, we assume that AM fungal communities are 
diverse The diversity of undisturbed AM fungal commu-
nities is well established. Currently, there are around 240 
known species in the phylum Glomeromycota (Redecker 
et  al. 2013), but it is likely that there are many more 
unidentified species (Ohsowski et  al. 2014). AM fungal 
communities contain many species, and single plants 

may associate with as many as 20 different fungi (Fitter 
2005).

Second, we assume that abiotic stresses can affect AM 
fungi There are several examples where abiotic stress has 
been shown to directly influence AM fungi. Extra-radical 
hyphae (ERH) respond directly to temperature and mois-
ture (Allen and Kitajima 2013), and variation in tempera-
ture experienced by ERH can also influence intra-radical 
colonisation by AM fungi (Heinemeyer and Fitter 2004) 
and nutrient transfer to and growth of host plants (Bar-
rett et  al. 2014). However, prolonged warming can cause 
a reduction in respiration in the extra-radical mycelia 
(Heinemeyer et al. 2006). By contrast, exposure to winter-
like conditions (4 °C) for periods as short as 2 weeks have 
been shown to cause abnormal germination in Glomus 
intraradices spores (Juge et  al. 2002). These spores grew 
short, recurved hyphae that are associated with stressful 
conditions (Rayner and Coates 1987). Extended cold stor-
age (>90 days) maximised proper germination with longer 
ranged, straight hyphae (Juge et al. 2002). Freezing temper-
atures also have a negative effect on the extent of colonisa-
tion by AM fungi in plant roots (Klironomos et al. 2001). 
Drought has been shown to have both positive and nega-
tive effects on AM fungal colonisation of host plants (Auge 
2001; Klironomos et al. 2001), but in some cases, drought 
has caused a reduction in ERH or even led to the inability 
of AM fungi to colonise plant roots and, therefore, reduced 
the fungal fitness (Compant et  al. 2010; Neumann et  al. 
2010). On the other end of the scale, flooding has been 
shown to reduce AM fungal diversity (Deepika and Kotha-
masi 2014). Heavy metal pollution has been shown to spe-
cifically affect AM fungal ERH by inhibiting their growth 
(Del Val et al. 1999). Thus, there is extensive evidence that 
AM fungi are directly affected by abiotic stress (reviewed 
in Lenoir et al. 2016).

Third, not all AM fungal species respond to abiotic stress 
in the same way Not all plants respond to abiotic stress 
equally, so we should not be surprised that not all AM fungi 
respond to abiotic stress equally. AM fungi are functionally 
diverse (Munkvold et al. 2004; Powell et al. 2009), and vary 
both phenotypically and genetically in response to abiotic 
stress (Klironomos et  al. 2001; Treseder and Allen 2002; 
Antunes et  al. 2011), suggesting that abiotic stress likely 
influences each fungal species differently. This can be 
linked to differences in AM fungal communities between 
climatic zones. For example, communities from mesic 
sites are characterised by the presence of Gigasporaceae 
and Acaulosporaceae, while communities from semiarid 
sites are characterised by Glomeraceae and Paraglomaceae 
(Egerton-Warburton et  al. 2007). Rhizophagus irregula-
ris and Claroideoglomus etunicatum increased hyphal and 
arbuscular colonisation of host plant roots in response to 
elevated CO2 levels, while Acaulospora denticulata and 
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Scutellospora calospora showed no response to elevated 
CO2 (Klironomos et  al. 1998). Two other Glomus spe-
cies also showed increased density of ERH in response to 
elevated CO2 (Staddon et al. 2004). Warm conditions pro-
mote higher root colonisation rates by Ambispora leptoti-
cha than in either Claroideoglomus claroideum or Funneli-
formis mosseae, while under cold conditions, this pattern is 
reversed (Antunes et al. 2011). The response of AM fungi 
to freezing temperatures shows variation both between and 
within genera, with three Glomus species showing much 
greater tolerance to exposure to −5  °C for 4  weeks than 
either S. calospora or A. denticulata (Klironomos et  al. 
2001). Conversely, S. calospora and A. denticulata showed 
increased root colonisation in response to drought, while 
the root colonisation of the same three Glomus species was 
reduced (Klironomos et al. 2001). AM fungal species have 
also been shown to differ in their response to soil fertility 
and fertilisation. For example, Glomus species are more 
abundant in N-fertilised soil, whereas Scutellospora species 
are more abundant in P-fertilised soil (Treseder and Allen 
2002). P limitation appears to promote mutualistic pheno-
types in AM fungi, while N limitation promotes commen-
sal or even parasitic phenotypes (Johnson et  al. 2014). C. 
claroideum has been shown to have a higher tolerance of 
heavy metal toxicity than F. mosseae. C. claroideum does 
not show the inhibition in ERH growth that other Glomus 
species do (Del Val et  al. 1999). There is thus significant 
evidence for variation between AM fungi for response to 
abiotic stress.

AM fungal responses to abiotic stress can also be influ-
enced by phenotypic plasticity within AM fungal species 
(Behm and Kiers 2014). Phenotypic plasticity would be 

an added advantage for AM fungal species exposed to fre-
quent, but transient, abiotic stress, because it would allow 
fungi to maintain fitness but not lose genetic variation use-
ful in the absence of the stress. As a result, those AM fun-
gal species that persist in the face of an abiotic stress may 
be more plastic than those that do not.

Fourth, we assume that the response of AM fungi to abi-
otic stress is not controlled by or entirely dependent on 
the response of the host plant AM fungi are obligate sym-
bionts, and they depend on their hosts for carbohydrates. 
Given this close relationship, the response of the plant to 
the abiotic stress cannot be ignored, but it does not over-
ride the direct response of the fungi themselves. The ERH 
and spores of the fungi are exposed directly to the soil con-
ditions. Experiments involving compartmentalised ERH 
(Heinemeyer and Fitter 2004; Heinemeyer et al. 2006; Bar-
rett et al. 2014) show that AM fungi can respond directly 
to stresses applied to their ERH without any response from 
the plant.

Prediction

With these assumptions in mind, we make the following 
prediction.

Applying an abiotic stress to a soil system with a diverse 
AM fungal community will reduce the fitness of certain 
species of AM fungi, causing them to decrease in abun-
dance or be excluded from the community. This will result 
in a compositional change in the community.

We expect that some AM fungal species have a poorer 
tolerance to a given abiotic stress. For example, Glo-
mus spp. has a lower root colonisation under phosphorus 

Fig. 1   Representation of the prediction of the stress exclusion 
hypothesis. Thermometers showing a higher temperature represent a 
more intense abiotic stress, and thermometers showing a lower tem-
perature represent a less intense abiotic stress. The predictions of the 
stress exclusion hypothesis suggest that since different AM fungal 

species have varying responses to abiotic stress, species with a poorer 
tolerance to abiotic stress (such as species B in this figure) will be 
reduced in abundance or even excluded from the AM fungal commu-
nity
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fertilisation than S. calospora possibly due to an intoler-
ance of low root carbohydrate concentrations (Pearson 
et  al. 1994). Drought stress halved arbuscule and vesicle 
formation in Glomus fasciculatum and reduced total root 
colonisation by a third as compared with Glomus strain 
ZAC-19. Warming has been shown to have a greater effect 
on rare species of AM fungi than more common species 
in the community, causing a significant reduction in their 
abundance (Sun et  al. 2013) and possibly local extinction 
for those AM fungal species. Nitrogen and phosphorus 
fertilisation can significantly reduce the number of opera-
tional taxonomic units within an AM fungal community 
and shift community composition (Camenzind et al. 2014). 
Communities fertilised with N show a reduced richness of 
Diversisporales, while communities fertilised with P show 
a reduced richness of Glomerales while combined N and P 
fertilisation lead to losses of rare species (Camenzind et al. 
2014). Similarly, chronic N deposition has been shown to 
significantly reduce the amount of rare AM fungal taxa in 
a community (van Diepen et al. 2013). Short-term periods 
of drought can have a stimulatory effect on root colonisa-
tion and sporulation of AM fungi, but the lower spore pro-
duction and species richness of AM fungal communities 
from arid areas indicate the long-term negative impacts of 
drought (Auge 2001). Thus, there is evidence from multiple 
studies of abiotic stress influences on AM fungi to support 
our prediction (Supplementary Table 1).

At this stage, adaptive phenotypic plasticity may be 
responsible for the ability of certain species to tolerate an 
abiotic stress, such as can be seen in the response of F. 
mosseae to varying levels of moisture and heat (Stahl and 
Christensen 1991). Whether or not the tolerant phenotype 
persists if the abiotic stress abates will test the potential 
for reversibility in phenotypic plasticity (Behm and Kiers 
2014). Conversely, the reduction of certain species in the 
community could be due to non-adaptive phenotypic plas-
ticity producing phenotypes that are less able to tolerate 
the abiotic stress (Ghalambor et al. 2007). Either way, we 
expect that overall fungal abundance and/or species rich-
ness will likely decrease.

One potential modifier of the compositional changes 
that an abiotic stress will cause could be the dispersal of 
AM fungal propagules from other locations. AM fungi can 
be spread to new locations by birds (Nielsen et al. 2016), 
mammals (Fracchia et al. 2011), and possibly wind in drier 
habitats (Egan et al. 2014). It appears that the AM fungal 
species best suited to dispersal produce more spores and 
have higher colonisation potentials, but also are less com-
petitive and are not as persistent (Nielsen et al. 2016). This 
suggests that compositional changes caused by abiotic 
stress are unlikely to be reversed by dispersal. Environmen-
tal variables appear to be more important than dispersal in 
structuring mycorrhizal communities (Lekberg et al. 2007). 

However, a particularly extreme, but transient, abiotic 
stress (such as a flood, or volcanic activity) could provide 
the circumstances where dispersal would be more impor-
tant than adaptation for the reestablishment of the AM fun-
gal community. In this case, early successional species may 
have more of an advantage than stress-tolerant species, but 
this will be a rare exception rather than the rule.

Mycorrhizal stress adaptation hypothesis

After an abiotic stress has caused the reduction or exclu-
sion of AM fungal species that have a poorer tolerance to 
that stress, the community will be left with a higher pro-
portion of species that are better able to tolerate that given 
stress. If the stress is not transient, then the surviving AM 
fungal species exposed to abiotic stress will undergo selec-
tion and adaptation to that stress. Adaptation to an abiotic 
stress should improve the fitness of an AM fungal species 
(Fig.  2). This means that AM fungal communities from 
areas that repeatedly or continuously experience abiotic 
stress factors such as drought, salinity, heavy metal pollu-
tion, nutrient deposition, and extremes of temperature will 
contain species that are adapted specifically to their envi-
ronment and may benefit their hosts more under that abi-
otic stress condition than non-adapted AM fungal ecotypes 
(Appoloni et al. 2008; Maček et al. 2011).

Assumptions

We make seven assumptions in this hypothesis (Table 1):
First, we assume that AM fungi and plants are equally 

likely to interact under ambient or abiotic stress conditions 
The association between AM fungi and plants under abiotic 
stress is well documented. For example, the AM symbiosis 
is present in well-watered and drought conditions (Morte 
et  al. 2000; Porcel and Ruiz-Lozano 2004; Bárzana et  al. 
2012), and at high and low temperatures (Klironomos et al. 
2001; Bunn et  al. 2009). Total root colonisation may not 
remain constant during abiotic stress, but even relatively 
low levels of colonisation can support a mutualistic symbi-
osis (Sochacki et al. 2013). The degree of association may 
change due to abiotic stress; however, there is significant 
evidence to suggest that association (regardless of degree) 
will be maintained.

Second, we assume that AM fungi continue to conduct 
resource exchange with their host plants when they are 
exposed to an abiotic stress Here, we assume that during an 
abiotic stress, AM fungi will also continue to supply their 
host with nutrients. That is, they will maintain symbiotic 
function in addition to colonising their host plants.

There is a wealth of information on the ability of AM 
fungi to benefit plants during abiotic stress conditions 
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(Smith and Read 2008), including drought (Aroca and 
Ruiz-Lozano 2009; Auge 2001), nutrient deficiency (Smith 
and Read 2008), and salinity (Evelin et al. 2009). An abi-
otic stress, however, can reduce the benefit provided to 
plants by AM fungi (such as nutrient excess caused by fer-
tilisation (Johnson 1993) or shading that reduces potential 
carbon available for allocation to AM fungi (Zheng et  al. 
2015). This is particularly likely if the cost of supporting 
an AM fungal partner exceeds the benefit provided by the 
symbiosis (Johnson 1993, 2010; Johnson et al. 1997; Neu-
hauser and Fargione 2004), and may lead to reduced alloca-
tion to AM fungi by a plant partner (Zheng et al. 2015).

We know of no direct evidence for this assumption, but 
one could test the assumption in the following way: inocu-
late plants with a common AM fungal inoculum, and sub-
ject half of the plants to an abiotic stress, while the other 
half are grown under ambient conditions. Allow the plants 
to grow for multiple generations before isolating the AM 
fungi from the soil, and using them to inoculate new plants 
exposed to the abiotic stress or ambient conditions. Add 
radioactively labelled phosphorus to pots and compare the 
phosphorus uptake between plants in both conditions to 

determine whether exposure to abiotic stress has compro-
mised the nutrient delivery function of the AM fungal inoc-
ula. If this assumption is true, then nutrient uptake should 
still occur in plants inoculated with AM fungi previously 
exposed to abiotic stress.

Third, we assume that AM fungi can respond directly 
to the effects of abiotic stress Specifically, we assume that 
abiotic stress will cause selection within AM fungal spe-
cies, for improved stress tolerance. This can be seen in 
the response of AM fungi to long-term nutrient deficiency 
(Johnson et al. 2010; Antunes et al. 2012), drought (Davies 
et  al. 2002), and heavy metal pollution (Del Val et  al. 
1999). There is a range of mechanisms that AM fungi have 
developed to deal with abiotic stresses like these. Drought 
tolerance can be achieved by improved water uptake and 
protection from protein denaturation (Porcel et  al. 2006; 
Querejeta et  al. 2006). Heat shock can be mitigated in a 
similar fashion (Ocón et al. 2007). Salt tolerance has been 
hypothesised to result from upregulation of genes encoding 
chaperones or aquaporins (Estrada et al. 2013). Stress from 
pollutants like heavy metals can be mitigated by preventing 
oxidative damage (Lanfranco et al. 2005), and degradation 

Fig. 2   Representation of the three predictions of the mycorrhizal 
stress adaptation hypothesis using high temperature as an example 
abiotic stress. Selection has led to phenotypic changes within three 
generations in AM fungi in the previous studies (Angelard et  al. 
2014), and so three generations was used as the cutoff to represent 
changes due to selection in AM fungi. In the first prediction, stress-
adapted AM fungal species are expected to maintain a higher level of 
fitness when exposed to an abiotic stress than unadapted species [as 

represented by increases in spore number (a frequent proxy for AM 
fungal fitness) in the figure]. In the second prediction, plants host-
ing stress-adapted AM fungal partners are expected to be more tol-
erant of that stress than plants hosting no AM fungi. Finally, in the 
third prediction, plants hosting stress-adapted AM fungal partners are 
expected to be more tolerant to that stress than plants hosting una-
dapted AM fungal partners. The lack of tolerance in host plants is 
reflected by stunted growth and leaf spots in this figure
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(Song et  al. 2016), sequestration (González-Chávez et  al. 
2004), or transportation (Gonzalez-Guerrero et  al. 2005) 
of the pollutants themselves. Thus, abiotic stress appears to 
select for adapted AM fungal ecotypes.

Fourth, we assume that the host plants’ own evolutionary 
response will not be more important for maintaining the fit-
ness of an AM fungal species than adaptation by an AM 
fungal species itself If the abiotic stress in question is pre-
sent over the course of multiple plant generations, then it is 
likely that the plants will exhibit adaptations of their own 
(Hirt and Shinozaki 2004). Currently, there is evidence of 
the beneficial effects that the adaptations of a fungal sym-
biont can have on their host plants (Rodriguez et al. 2010; 
Redman et al. 2011; Southworth 2012). However, it is not 
known what, if any, effect the host plant’s own adaptations 
have on a fungal partner, plant adaptation to abiotic stress 
will likely be important to the AM fungi, but we expect 
AM fungal adaptation to be equally (or more) important for 
maintaining AM fungal fitness under abiotic stress.

Given that there is no direct evidence for this assump-
tion, we propose the following experiment: grow two gen-
otypes of a plant species, varying in adaptation to a par-
ticular abiotic stress with a common AM fungal inoculum 
under abiotic stress or ambient conditions. After multiple 
generations of plant growth, both selected and unselected 
AM fungi should be isolated and used to inoculate plants 
of the unadapted plant genotype and grown with and with-
out the stress. Comparing the fitness of the AM fungi in 
these conditions will reveal any effects that adaptation by 
the host plant had on the AM fungi. If this assumption is 
true, then there should be little difference in the fitness 
of the AM fungi with and without the abiotic stress. We 
expect that this experiment will show that AM fungi can-
not rely entirely on the adaptations of their host plant, and 
that adaptations of their own are needed to improve their 
fitness.

Host plant species are clearly important in structuring 
AM fungal communities (Eom et  al. 2000), but abiotic 
soil conditions are equally important (Johnson et al. 1992). 
Vice versa, AM fungal communities can be important 
in structuring the community of their hosts (van der Hei-
jden et al. 1998). The genetically variable nuclei that AM 
fungi have give them the potential to respond rapidly to 
changes in their host plant and their environment (Ange-
lard et al. 2014). In a changing environment, soil microbes 
may have a greater capacity to adapt than their hosts, given 
their shorter generation time (Lau and Lennon 2012). This 
shows that AM fungi, despite being obligate symbionts, can 
adapt independent of any one particular host plant species, 
and should not be considered as entirely dependent passen-
gers in the symbiosis.

Fifth, we assume that the adaptation of an AM fungus to 
an abiotic stress will improve the fitness of that AM fungus 

An improvement in fitness will be indicated by an increase 
in the combined parameters of percent root colonisation, 
extra-radical hyphal length, and spore number. The best 
evidence for this is nutrient excess which selects for AM 
fungal ecotypes with a higher fitness (often measured by a 
combination of root colonisation and extra-radical hyphae), 
although these ecotypes are also frequently less mutualistic 
(Johnson 1993; Johnson et  al. 1997; Neuhauser and Far-
gione 2004). As a result, there is evidence for adaptations 
to abiotic stress increasing AM fungal fitness.

Sixth, we assume that the adaptations gained by an AM 
fungal species will improve their fitness and maintain host 
plant associations independent of the specific host plant 
species they were associated with when initially exposed 
to the abiotic stress When an AM fungal species is first 
exposed to an abiotic stress, it will be associated with a 
host plant, but we assume that regardless of the initial host 
species, an AM fungus was associated with during a stress 
and that AM fungal species will still associate with mul-
tiple plant species within a community. When exposed to 
an abiotic stress, preadapted AM fungi may provide plants 
with better tolerance. For example, AM fungi isolated from 
arid soils promoted pepper growth under drought (Mena-
Violante et al. 2006). A study on the effects of AM fungi 
from 42 different soils on a novel host plant, Lotus cornicu-
latus L., showed that adaptation to the edaphic factors of 
an AM fungal site of origin was more important than host 
identity for promoting a mutualistic relationship (Lam-
bert et al. 1980). Thus, AM fungal adaptation to an abiotic 
stress will not be dependent upon the host plant, and it was 
in association with when the abiotic stress was applied.

Seventh, we assume that adaptation to a particular abi-
otic stress in AM fungi will not result in adaptation to all 
abiotic stresses Both plants and AM fungi are likely to be 
exposed to a wide variety of abiotic stresses, but the traits 
that confer tolerance to a stress in either organism are not 
likely to provide tolerance to all stresses. Tradeoffs in adap-
tation to different abiotic stresses have long been docu-
mented in all organisms, and therefore, we should expect 
there to be tradeoffs in adaptation to different abiotic 
stresses in AM fungi. For example, adaptation to nitrogen 
and water availability has been shown to appear in different 
AM fungal strains, but not the same strain (Martinez-Gar-
cia et al. 2015). While some adaptations, such as enhanced 
osmotic adjustment in roots (Porcel and Ruiz-Lozano 
2004), could be useful both during low-water and high-
salinity stresses, specific adaptations will not be applicable 
to all possible abiotic stresses. The same will likely be true 
for AM fungi.

There are relatively few tests in the literature applicable 
to this assumption (but see Martinez-Garcia et al. 2015), so 
we propose the following experiment to test this assump-
tion. Inoculate a number of plants with the same AM fungi 
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and grow them under one abiotic stress with all other con-
ditions being non-limiting. For example, plants and AM 
fungi grown under drought stress should also be grown 
with optimal temperature, salinity, soil chemistry, and nutri-
ents. After multiple generations of plant growth, isolate the 
AM fungi from the soil and use as inocula for a new set 
of plants. Grow replicated inoculated plants under differ-
ent abiotic stresses. Comparing the fitness of the AM fungi 
using a metric incorporating spore abundance, intra- and 
extra-radical hyphal growth, should show whether exposure 
to one abiotic stress has improved AM fungal tolerance to 
other abiotic stresses. If this assumption is true, then the fit-
ness of the AM fungi under novel abiotic stresses should be 
lower than that under the initial abiotic stress. Adaptation to 
a specific abiotic stress will improve the fitness of an AM 
fungus, but only under the initial abiotic stress.

Predictions

With these assumptions in mind, we make three main pre-
dictions in this hypothesis.

First, we predict that AM fungi that are adapted to a par-
ticular abiotic stress will have greater fitness when exposed 
to that stress than AM fungi that have not previously been 
exposed to that stress We expect adaptation to an abiotic 
stress should promote AM fungal fitness. Again, changes in 
fitness would be best measured using a metric combining 
spore abundance, intra- and extra-radical hyphal growth, 
as AM fungal species are represented at varying levels 
between these measures (Varela-Cervero et  al. 2015). For 
example, previous research suggests that drought-adapted 
AM fungi may have spores with a higher drought tolerance 
(Jacobson 1997) which would increase their fitness when 
exposed to drought. Adaptation to an abiotic stress will, 
therefore, improve AM fungal fitness.

The strength of selection can be limited by dispersal 
(reviewed in Räsänen and Hendry 2008), particularly in 
the case of microbes (Hanson et al. 2012). AM fungal dis-
persal is typically limited to belowground hyphal devel-
opment (Smith and Read 2008), but recent studies have 
shown that AM fungal spores can be dispersed by wind 
in arid environments (Egan et al. 2014), rodents (Mangan 
and Adler 2002; Fracchia et  al. 2011), and potentially by 
birds (Nielsen et al. 2016). However, the rate of dispersal 
by these mechanisms is low (Egan et al. 2014), suggesting 
that in many environments, dispersal is unlikely to greatly 
limit selection. However, in the case of extreme but tran-
sient stresses, this low level of dispersal could aid in restor-
ing genetic diversity when an abiotic stress was absent.

While adaptive phenotypic plasticity may have been 
responsible for a species’ survival of an abiotic stress, this 
does not preclude the possibility for adaptive evolution as 
well. An adaptive evolutionary response is likely to follow 

beneficial phenotypic plasticity if the new phenotype is not 
yet optimal, and because exclusion (or extinction) is made 
less likely (Ghalambor et al. 2007).

Second, we predict that plants associated with AM fungi 
preadapted to an abiotic stress will improve under that abi-
otic stress as compared to plants grown without any AM 
fungal partners Association with AM fungi is generally 
more beneficial to plants under abiotic stress (Smith and 
Read 2008), and preadapted AM fungi have been shown to 
benefit host plants. For example, AM fungi preadapted to 
drought improve drought tolerance in plants as compared 
with plants grown without AM fungi (Marulanda et  al. 
2007; Sochacki et al. 2013), even when plants not associ-
ated with AM fungi were supplied with extra phosphorus 
(Davies et al. 2002). As a result, we expect stress-adapted 
AM fungi to benefit host plants (Supplementary Table 1).

Third, we predict that fitness of plants associated with 
prestress-adapted AM fungi will improve when exposed to 
that abiotic stress as compared to plants associated with 
non-adapted AM fungi If adaptation by AM fungi improves 
fungal fitness, we might expect that benefit to also transfer 
to host plants, especially in comparison with plants asso-
ciated with AM fungi that have not undergone adaptation 
in response to the focal stress. For example, AM fungi 
from well-watered areas confer less drought tolerance for 
host plants than AM fungi from drought prone regions 
(Davies et al. 2002; Martinez-Garcia et al. 2015). AM fungi 
adapted to serpentine soils have been shown to improve 
plant growth and phosphorus uptake in serpentine soils as 
compared with AM fungi from other soils (Doubková et al. 
2012). AM fungal adaptations, therefore, likely maintain 
the fitness of both plants and AM fungi, and these adap-
tations are likely to become more important with climate 
changes. The widespread occurrence of abiotic stresses are 
already a big problem for agriculture (van Velthuizen et al. 
2007; Mantri et al. 2011), and thus, AM fungal adaptations 
could help maintain worldwide food security.

Implications

Natural plant communities are subjected to abiotic stresses 
that are associated with their environment, as are their 
associated AM fungi, and it is important to consider how 
the symbiosis will affect, and be effected by, these pres-
sures, especially if AM fungi that are adapted to abiotic 
stress may help alleviate the effects of abiotic stress in host 
plants.

Plant‑fungal community feedbacks

Some plants are more responsive to particular AM fun-
gal species than others (Hartnett and Wilson 1999), so 
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reductions in the abundance of key AM fungal species 
will in turn reduce the abundance of certain plant species. 
Dependence on a single AM fungal species within a com-
munity may become more common if species identity is 
important in providing tolerance to an extreme abiotic 
stress (Rodriguez and Redman 2008; Zabinski and Bunn 
2014). It could also be possible for the loss of a plant spe-
cies to feed back to AM fungal species leading to losses of 
other important AM fungi from communities. Thus, the loss 
of one partner in the mycorrhizal symbiosis has the poten-
tial to cause the loss of other partner species. High levels of 
co-dependence in plants and AM fungi will be particularly 
important during abiotic stress, as the loss or reduction of 
either partner may intensify the negative effects of an abi-
otic stress.

AM fungi can alter competition between plant species 
(Mariotte et  al. 2013; Lin et  al. 2015). The level of myc-
orrhizal dependence of plant species in a community can 
influence how AM fungi alter competitive interactions 
(Urcelay and Díaz 2003). The right AM fungi can improve 
the ability of competing plant species to coexist (Klabi 
et  al. 2014), so a reduction in AM fungal abundance or 
diversity could alter competitive outcomes between plants 
leading to a change in plant community composition and 
diversity (Cahill et  al. 2008). Plant species that are less 
dependent on the mycorrhizal symbiosis will have a com-
petitive advantage when AM fungal abundance is reduced 
(Scheublin et  al. 2007), allowing them to become more 
dominant in the community. Thus, abiotic stress may both 
directly impact plant and AM fungal communities, but may 
also indirectly impact both communities via altered feed-
backs between partners.

AM fungal adaptation influences on plants

AM fungal adaptations to abiotic stress will improve AM 
fungal fitness, and these adaptations could have variable 
effects on the host plant. Adaptations by AM fungal spe-
cies to abiotic stress have been hypothesised to have posi-
tive (e.g., Martinez-Garcia et al. 2015; Mena-Violante et al. 
2006) or negative (e.g., Johnson 1993; Neuhauser and Far-
gione 2004) consequences for the maintenance of the mutu-
alistic symbiosis (Kiers and van der Heijden 2006; John-
son et  al. 1997). Under abiotic stress, nutrient exchange 
may not be the only mycorrhizal function that influences 
plant fitness. An AM fungal species may also be considered 
mutualistic if it provides tolerance to abiotic stress. Abiotic 
stresses that affect plants by means other than limiting their 
access to nutrients could promote a mutualistic relationship 
based on factors other than resource exchange. For exam-
ple, AM fungi adapted to sites with high concentrations 
of heavy metals may alleviate plant toxicity by preventing 
heavy metals from accessing sensitive areas in plant roots, 

or by excreting metal chelators (Schützendübel and Polle 
2002; Miransari 2011; Seguel et  al. 2013). Thus, adapta-
tions by AM fungi could result in novel benefits for host 
plants.

However, changes in AM fungal community composi-
tion associated with abiotic stress could alter the functional 
composition of AM fungal communities as well (Fin-
lay 2008; Feddermann et  al. 2010). AM fungi have been 
hypothesised, like plants, to fall into three life-history cat-
egories: competitors, ruderals, and stress-tolerant species 
(Chagnon et al. 2013). We can imagine that if an ambient 
community begins with equal proportions of AM fungi of 
each type of life-history, that an abiotic stress, in accord-
ance with the stress exclusion hypothesis, is likely to shift 
the proportion of functional types strongly in favour of 
stress-tolerant species. In this case, the community may 
lose more ruderal species, or those best able to colonise 
new hosts in an environment or disperse to new patches, 
and competitive species. Thus, abiotic stress could limit the 
range of functions (particularly types of associations with 
host plants) as well as the abundance of functions within an 
AM fungal community.

Placing abiotic stress in the broader context of selective 
forces on AM fungi

While AM fungal adaptations are likely to influence plants, 
the reverse, which host plant plays an important role in 
structuring AM fungal communities (e.g., Eom et al. 2000; 
Johnson et  al. 2004), is also true. Host plant specificity 
for AM fungal species has partially been credited for this 
role; however, plants can also affect the abiotic proper-
ties of their soil (e.g., Bezemer et  al. 2006). As a result, 
plants could indirectly alter their AM fungal community by 
changing soil abiotic properties. In addition, many of the 
adaptations to abiotic stress of plants will also alter soil 
abiotic properties which could directly or indirectly impact 
AM fungi. In particular, in very low nutrient environments, 
plants exude organic acids to release bound nutrients (Lam-
bers et al. 2015), and plants can also increase water avail-
ability near the soil surface by growing deep tap roots. As 
a result, AM fungal associations with plants are likely par-
tially due to specificity and partially due to the abiotic envi-
ronment created by a host plant.

In addition, to the selective pressures created by abiotic 
stress and plants, AM fungi also face biotic stress pres-
sures. Very little is known about the direct influence of 
biotic stress on AM fungal adaptation, despite the pres-
ence of fungal grazers, such as Collembola and nematodes. 
Greater information is available on the influence on AM 
fungi of biotic stresses on their host plants. Plant herbivory 
has a range of effects on AM fungi including both increas-
ing and reducing root colonisation, and reduction in species 
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diversity (Eom et  al. 2001; Gehring and Bennett 2009). 
Adaptations by AM fungi that improve their host plant’s 
defence response may increase both partners’ fitness, but 
this has rarely been explored in an evolutionary context 
(but see Bennett et  al. 2006; Rasmann et  al. 2011). As a 
result, there is scope for increasing our understanding of 
the importance of abiotic stress in relation to plant host and 
biotic stress for driving selection on AM fungi.

Climate change

With the advance of climate change, plants will be exposed 
to more extreme abiotic stresses (Fitzpatrick et  al. 2008; 
Lindner et al. 2010; Benito et al. 2014). Increased abiotic 
stress will likely affect the geographic ranges of plants, 
and could increase the impact on AM fungi due to their 
reduced ability to migrate in response to a changing envi-
ronment (Fitter et  al. 2000). The diversity and abundance 
of AM fungi and plants are correlated, so we expect that 
a change in one partner will lead to a change in diversity 
or abundance of the other partner. This correlation will be 
particularly important given the potential for AM fungi to 
mediate the response of plants to climate change (Mohan 
et al. 2014), so any changes in the AM fungal community, 
particularly if they lead to changes in AM fungal function, 
are sure to have repercussions for plants. Even under ambi-
ent conditions, changes in the composition of an AM fun-
gal community can affect the composition of a plant com-
munity (van der Heijden et al. 1998; Pellissier et al. 2013). 
Climate changes will likely alter the diversity of both plants 
and AM fungi and the dominant species in both commu-
nities could change. If abiotic stress caused by climate 
changes reduces AM fungal abundance, it is likely that 
non-mycotrophic plants will benefit more than mycotrophic 
plants, as some non-mycotrophic plants, such as Salsola 
kali, can be suppressed by AM fungi (Antoninka et  al. 
2009). The presence of non-mycotrophic plants can make 
it difficult for arid sites to be recolonised by mycotrophic 
plants. For example, plants like garlic mustard can suppress 
AM fungi in the soil and make it harder for mycotrophic 
plants to associate with them (Roberts and Anderson 2001; 
Koch et  al. 2011; Lankau et  al. 2014). Unlike non-myco-
trophic plants, mycotrophic plants may require AM fungi 
to survive abiotic stress conditions (Allen and Allen 1988; 
Olsson and Tyler 2004; Lambers et al. 2015). In this way, 
climate changes could cause a sequence of positive feed-
backs that further reduce AM fungal abundance and diver-
sity and increase impacts on plant communities.

With the potential for both the expansion and reduction 
in ranges of certain plants, a shift in dominance toward C4 
plants, and changes in AM fungal community composi-
tion, it is clear that climate changes will significantly alter 

natural plant and soil systems. Climate changes could lead 
to an increased abundance of C4 plants due to their greater 
ability to take advantage of elevated levels of CO2 (Bloom 
et al. 2012; Morgan et al. 2011; Pendall et al. 2011). This 
could have a positive effect on AM fungal abundance, 
because C4 plants have been shown to be more responsive 
to AM fungi (Hetrick et al. 1990; Bennett et al. 2013). In 
addition to higher responses to AM fungi, elevated levels of 
CO2 can also stimulate AM fungal colonisation in C4 more 
than in C3 plants (Monz et al. 1994). Elevated atmospheric 
CO2, warming, and decreased precipitation are inter-related 
consequences of climate changes, but they do not all affect 
AM fungi and plants in the same way. Thus, we cannot 
accurately predict effects of climate changes, but it is pos-
sible that elevated CO2 levels could promote C4 plants and 
AM fungi (Morgan et al. 2011).

The loss of important AM fungal species could have par-
ticularly strong consequences for agricultural systems in 
the face of climate change. Agricultural soil generally has 
AM fungal communities with low diversity due to intensive 
farming techniques (Alguacil et  al. 2008; Verbruggen and 
Kiers 2010). Climate change is likely to intensify existing 
abiotic stresses and broaden the geographical range over 
which they affect both agricultural and natural soil systems 
(Lane and Jarvis 2007; Allen et al. 2010). This means that 
we can expect agricultural systems to be exposed to abiotic 
stresses like heat and drought more frequently, particularly 
in tropical regions (Mendelsohn and Dinar 1999). Reduc-
tions in AM fungal diversity and abundance with intensive 
farming practices may limit the evolutionary potential of 
AM fungi and the ability of the AM fungi in agricultural 
soil to adapt to abiotic stresses.

Invasive species

While climate change can reduce the range of some plant 
species, the range of other species is increasing, particu-
larly invasive species (Dukes and Mooney 1999; Bradley 
et al. 2009; Diez et al. 2012; Vicente et al. 2013). We can-
not make precise predictions about how an AM fungal com-
munity would react to an invasive species in the context 
of abiotic stress, but it is likely that further compositional 
changes would be induced. Reductions in diversity of AM 
fungi in response to invasive species have been observed 
previously (Hawkes et al. 2006; Mummey and Rillig 2006; 
Vogelsang and Bever 2009; Shannon et al. 2014). The influ-
ence of abiotic stress on invasive species will depend on the 
prevailing conditions of the area they originated from, and 
their ability to rapidly adapt to a new environment that may 
also be changing. Invasive species have been noted for their 
ability to adapt to new environments (Prentis et al. 2008), 
but it is hard to predict how they interact with AM fungi. 



636	 Oecologia (2016) 182:625–641

1 3

Many invasive plants do not form mycorrhizas (Pringle 
et al. 2009), while some do and are assisted by them (Mar-
ler et al. 1999; Reinhart and Callaway 2006; Nuñez et al. 
2009). However, the reduction in density and diversity of 
AM fungi often associated with plant invasions (Mummey 
and Rillig 2006; Vogelsang and Bever 2009) could limit 
the ability of AM fungi in those systems to adapt to abi-
otic stresses. Any reduction in diversity or abundance of 
AM fungi will reduce the genetic variation within the AM 
fungal community, and this will limit their evolutionary 
potential (England et al. 2003). In addition, any reduction 
in the abundance, diversity, and evolutionary potential of 
AM fungi will have consequences for the survival of both 
above- and belowground communities, especially during an 
abiotic stress.

Possible utilisation of adapted AM fungi

Adaptation to a particular abiotic stress could be taken 
advantage of, for example, in creating commercial AM 
fungal inocula. Adaptation by AM fungi creates opportuni-
ties for suppliers to produce inocula that improve the stress 
tolerance of a crop. Inoculating field soils with AM fungi 
has been shown to be effective for improving the yield of 
various crops under relatively benign conditions (Bagyaraj 
and Manjunath 1980; Pellegrino et  al. 2011; Ortas 2012; 
Ceballos et al. 2013) and under abiotic stress (Gholamho-
seini et al. 2013). Creating an AM fungal inoculum that is 
tailored to an abiotic stress could be a sustainable strategy 
to help farmers in regions where agriculture is restricted 
by an abiotic stress. Similarly, restoration efforts could be 
aided by not only inoculating with an AM fungal inoculate 
prior to reintroduction to the field (Richter and Stutz 2002), 
but by inoculating with AM fungi with abiotic stress toler-
ance needed for the restored environment. Ecotypes such as 
these could be used as an alternative to ecotypes from AM 
fungal banks that do not control the abiotic stresses from 
the source of their inocula. Another avenue in restoration 
using stress-adapted AM fungi could be in the phytoreme-
diation of soils polluted by heavy metals like Cu, Zn, Pb, 
Co, and Cd. This involves the use of metal-accumulating 
plants to reduce the level of heavy metals in soils contami-
nated by nearby mines or the overuse of sewage sludge 
(Suchkova et al. 2010). This is cheaper and more environ-
mentally friendly than other methods like the use of chemi-
cals (Chen et al. 2000). Using AM fungi that have adapted 
to heavy metal toxicity can further improve phytoremedia-
tion by helping the plants survive, for example, Cu or Zn 
pollution (Orłowska et al. 2005; Meier et al. 2011, 2015).

While mycorrhizae are ubiquitous in nature, there are 
opportunities for their addition to both agricultural and nat-
ural systems, particularly when the AM fungal community 
of an area is degraded or unadapted.

Stress‑adapted AM fungi in non‑stressed conditions

What happens to AM fungal fitness when a long-term abi-
otic stress ends? An example could be when long-term 
droughts, as in Southern California, end. When an AM 
fungus becomes well adapted to an abiotic stress, it will 
likely become a dominant ecotype in the community. In the 
hypoxic soils found in CO2 springs, two AM fungal phy-
lotypes were found exclusively in hypoxic soil and were 
significantly more abundant in the community than other 
phylotypes found outside the CO2 springs (Maček et  al. 
2011). If the CO2 springs were to disappear from that site 
would these adapted ecotypes lose their competitive advan-
tage? We predict these “adapted” ecotypes would likely be 
reduced in abundance in the community as other ecotypes 
perhaps better suited to the “new” environment outcompete 
them. If the stress periodically returns, they may still per-
sist in the community (Fitter et al. 2000), but perhaps not 
as abundant as before the loss of the stress. AM fungi have 
demonstrated a remarkable ability to adapt to extreme envi-
ronments, but such a degree of adaptation could diminish 
their ability to survive outside those environments.

Conclusions

We conclude that AM fungi are important for improving 
plant tolerance to abiotic stress, but also respond to abiotic 
stress independently of their host plant. Abiotic stresses 
affect the abundance and community composition of AM 
fungi. Changes in the diversity of AM fungi will feed back 
into the plant community and cause corresponding changes 
in diversity and dominant plant species, and these feed-
backs will become stronger with climate changes, agricul-
ture, and plant invasions. AM fungi are capable of adapting 
to the abiotic environment which may or may not improve 
their mutualistic function. The impact of the ecological 
and evolutionary responses of AM fungi to abiotic stresses 
is likely to become even more important for both natural 
and agricultural systems in the face of climate changes and 
biotic stresses, such as invasion by non-native species.
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