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Abstract The stress and strain relationship in the gauge

region of six cruciform geometries is studied: the ISO

standard geometry with slits in arms, two geometries

with thinned gauge areas, two geometries with thinned

gauge areas and slits in arms, and one modified ISO

standard geometry with slits in arms and a thinned

gauge area. For all the geometries, finite element simu-

lations are performed under uniaxial loading to compare

the plastic strain, the von Mises stress distribution and

the in-plane stress evolution. Results show that less

plastic strain can be achieved in the gauge of the two

ISO standard geometries. For the remaining cruciform

geometries, a strong non-linear coupling between ap-

plied forces in arms and gauge stresses is generated. The evo-

lution of this non-linear coupling depends on the geom-

etry type, applied biaxial load ratio and the elastic-plas-

tic properties of the material. Geometry selection criteria are

proposed to reduce this non-linear coupling.

Keywords Cruciform . Biaxial stress . Finite elements .

Plastic strain . Stress concentration

Introduction

Sheet metals and alloys are subjected to biaxial stresses and

changing strain paths during their forming processes and under

service conditions. Under these conditions, the mechanical

properties can differ from those obtained under uniaxial stress

conditions. Several biaxial deformation devices have been de-

veloped to test materials, each of them having advantages and

disadvantages [1, 2]. Amongst these, biaxial deformation rigs

using cruciform shaped samples allow to deform materials

under different in-plane loading modes [2–5]. The cruciform

shape offers the possibility for applying any arbitrary load

ratio, thus providing access to a large portion of the 2-

dimensional stress space. It allows full-field in-situ strain mea-

surements on either side of the gauge region, in contrast to

Marciniak samples, punch test samples, and tubular samples,

whose internal sides are inaccessible for techniques such as

digital image correlation (DIC). Additionally, when the axes

of the device can operate independently, it allows to perform

non-proportional strain path changes [6–8]. It should be noted

that the eigenstress coordinate system cannot be changed dur-

ing non-proportional loadings, thus making it difficult to per-

form in-depth analysis of non-proportional strain path change

tests. Furthermore, when biaxial testing is performed in-situ

during neutron or X-ray diffraction, footprints of the micro-

structural evolution such as texture, inter and intra-granular

stresses and dislocation density can be followed [9–11]. The

cruciform geometry also has its drawbacks. One of the major

challenges is to develop a cruciform geometry that can achieve

significant amount of plastic deformation in the gauge section

while allowing analytical computation of the gauge stresses.

To that end, significant efforts have been directed towards

optimizing the cruciform geometry. Recently, an ISO standard

[12] for biaxial tensile testing was established. According to this
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standard, the cruciform design should have a uniform thickness

and slits in the arms, as shown in Fig. 1(a). The slit based design

was originally proposed in the work of Hayhurst [13], and later

adopted by Kelly [14], Makinde et al. [15, 16], and Kuwabara

and co-workers [2, 17, 18]. The purpose of the slits is two-fold:

(i) to reduce the stress heterogeneity within the square gauge

area so that the in-plane normal stress components can be com-

puted as the force divided by area along a given direction, and

(ii) to prevent shear loadings in the cruciform arms or machine

grips in case the machine is not perfectly aligned. This geometry

has been used in several studies [19–21] to perform non-

proportional strain path changes and determine yield surface

evolution. One of the main drawbacks of this design is that large

stress concentrations can develop at the slit-ends during uniaxial

or biaxial loading. Consequently, the amount of plastic strain

achieved in the gauge region is low. Another drawback was

revealed in the FE simulations performed by Hanabusa et al.

[22], who showed the presence of in-plane compressive stresses

normal to the uniaxial loading direction. Their influence on the

computation of stresses as force divided by area was not ad-

dressed. Not accounting for this may affect the prediction of

yield surface and its evolution for different material systems.

It is well known that the achievable amount of gauge plastic

strain can be increased by locally thinning the gauge section [3,

23]. Two such thinned geometries are presented in the

Figs. 1(b) and (c). The cruciform geometry in Fig. 1(b) was

proposed in the work of Baptista et al. [24]. They used an

optimization procedure to obtain (i) the shape of the intersection

of cruciform arms (henceforth known as cross-arms) and (ii) the

depth of thinned region, for a given thickness of the sheet ma-

terial. The gauge area was continuously thinned down using a

spline curve. In contrast, the geometry in Fig. 1(c) has a con-

stant thickness in the gauge region and a gradual thickness

reduction from the arms to the gauge region. Thinning of the

cruciform sample, however, does not facilitate fulfilling the

other requirements, i.e. a homogeneous stress distribution and

a correct analytical computation of the gauge stresses. Makinde

and co-workers [15, 16, 25] were the first to argue that comput-

ing gauge stresses as force divided by area may be erroneous

for some cruciform geometries because of the difficulty in ac-

curately determining the cross-sectional gauge areas. Based on

this argument, Green et al. [26] suggested the use of finite

element (FE) simulations to obtain the gauge stresses. They

proposed an iterative procedure tomatch the simulation predict-

ed forces in the arms and the gauge strains with experimental

data. Simulation predicted gauge stress vs strain plots were

obtained for different yield functions. The evolution of gauge

stresses as a function of the forces in the arms was however not

reported. Hoferlin et al. [27] demonstrated, for their cruciform

geometry, that a uniaxial load in one of the arms results in a

biaxial stress state in the gauge region. Furthermore, when load-

ing with in-plane force ratios between 0 and 0.36, the in-plane

stress component corresponding to the lower load is

significantly under predicted when computed as force divided

by area. For a geometry similar to the one in Fig. 1(c), Bonnand

et al. [28] proposed to relate the applied forces (F1 andF2) in the

arms and gauge stresses (S11 and S22) using a linear relationship:

S11 = aF1 − bF2 and S22 = − bF1 + aF2, with a and b as con-

stants. A similar relationship was already proposed in [27].

Claudio et al. [29] estimated the values of a and b from FE

simulations of elastic deformation under uniaxial tension and

used them to compute the stresses for all load ratios. Such a

linear coupling between forces and stresses is however only

valid in the elastic regime [27]. For plastically deforming ma-

terials, this coupling will be inherently non-linear.

Cruciform geometries combining slits and thinner gauge

areas have also been proposed. One such geometry was intro-

duced in the work of Zidane et al. [30], similar to the one

shown in Fig. 1(d). This geometry has four equal-length slits

per arm. It has a width that is twice the gauge thickness, and is

more than an order of magnitude higher than the ISO standard

geometry. Similar to the ISO standard geometry, there are no

notches in the arms but the cross-arm radius of curvature is

much higher. A two-step thickness reduction is introduced on

one side of the cruciform in the gauge region; first a square

zone with an abrupt thickness reduction is introduced, then a

second circular zone is added with a gradual thickness reduc-

tion. This specimenwas used to obtain forming limit curves for

aluminum alloy AA5086. Fracture always occurred at the cen-

ter of the sample independent of the loading conditions.

Leotoing et al. [8] used this geometry to developed a predictive

numerical model for the forming limit curve using FE simula-

tions. In contrast, Liu et al. [31] introduced slits with different

lengths in their cruciform geometry, circular notches at cross-

arms with smooth ends at the arms and a steep transition to the

gauge area (Fig. 1(e)). Deng et al. [32] proposed a modified slit

design (Fig. 1(f)), that conforms to the ISO standard specifica-

tions, in order to increase the amount of plastic deformation

prior to failure while keeping the gauge shape for the analytical

computation of the stresses. Similar to the works of Hayhurst

[13] and Kelly [14], the arm thickness is increased with respect

to the gauge region. Equi-spaced slits are drawn over the entire

length of the arms. A comparison of the plastic strain reached

in the gauge area and at the location of stress concentrations is

not reported. Furthermore, the role of cruciform geometry on

the coupling between force in the arms and gauge stresses has

not been discussed for any of the slit-thinned geometries.

�Fig. 1 Cruciform geometries: (a) ISO standard slit geometry [2, 17, 18] –

SLIT-I, (b) the elliptical cross-arm steeply thinned geometry with no slits

[24] – THIN-I, (c) the circular cross-arm gradually thinned geometry with

no slits [10, 28, 29] – THIN-II, (d) the two-step gradually thinned geom-

etry with slits [8, 30] – SLIT-THIN-I, (e) the uneven slit, circular notched

and sharply thinned geometry [31] – SLIT-THIN-II, (f) the modified ISO

standard slit geometry [32] – SLIT-THIN-III, and (g) the dog-bone ge-

ometry [10] – DB
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Understanding the non-linear coupling between forces and

stresses is important since they can significantly affect the inter-

(type II) and intra- (type III) granular stress state and micro-

structural evolution. In a recent work involving the authors [10],

in-situ neutron diffraction studies during biaxial strain path

changes were performed on 316 L stainless steel cruciform

samples having the geometry shown in Fig. 1(c). Duringmono-

tonic uniaxial tensile loading, the presence of significant in-

plane compressive stresses normal to the loading direction

was confirmed using DIC strain measurements and FE simula-

tions. Furthermore, in the plastic regime the evolution of dif-

fraction peak positions i.e. microscopic strains associated with

type I stresses (applied stresses), for different grain families as a

function of the stress was significantly different from that ob-

tained for dog-bone (DB) samples. Similar cruciform geometric

effects in DIC strains were also observed by [9] during in-situ x-

ray diffraction studies of biaxial deformation of their ferritic

sheet steel cruciform samples (not shown here).

In light of the above, the main objective of the present work

is to highlight the role of cruciform geometry on the gauge

stress evolution during elastic and plastic deformation under

monotonic uniaxial and biaxial tensile loading. FE simulations

are performed on six cruciform geometries shown in Fig. 1, i.e.

(i) the ISO standard slit geometry [2, 17, 18], (ii) the elliptical

cross-arm steeply thinned geometry without slits [24], (iii) the

circular cross-arm gradually thinned geometry without slits [10,

28, 29], (iv) the two-step gradually thinned geometry with slits

[8], (v) the uneven slit, circular notched and sharply thinned

geometry [31], and (vi) themodified ISO standard slit geometry

[32]. These are classified according to the presence of slits and/

or gauge thinning as SLIT-I, THIN-I, THIN-II, SLIT-THIN-I,

SLIT-THIN-II, SLIT-THIN-III, respectively. The results are

compared with those obtained for DB samples used in [10].

The remainder of this paper is divided as follows. Section 2

describes the experimental procedure and section 3 the FE sim-

ulation setup. Section 4 begins with the experimental validation

of the simulation framework using the THIN-II geometry. Then

the equivalent plastic strain and von Mises stress distributions

in the six cruciform geometries are plotted to study the stress

concentrations andmaximum achievable plastic strains for each

geometry. Next, the in-plane gauge stress evolution for the six

cruciform geometries is analyzed and compared with the

results of DB samples. The THIN-II geometry is then

studied for different biaxial load ratios and different mate-

rials. The results of these simulations are used to propose

geometry selection criteria in section 5. The main conclusions

of this study are presented in section 6.

Experimental Procedure

THIN-II and DB samples are deformed using a biaxial defor-

mation rig developed in collaboration with Zwick/Roell (Ulm,

Germany) [6, 10]. A detailed description of the machine is

presented in [10]; for brevity, only the relevant details of the

machine are recalled here. The biaxial testing rig is equipped

with independent arm control and allows to deform up to 50

kN along direction 1 and 100kN along direction 2. A two-

camera ARAMIS4M DIC system from GOM is installed on

the biaxial rig to measure the surface strains on the gauge

region of the samples. The error associated with the DIC mea-

surement for the THIN-II and DB samples is given using the

equation err(%) = x x strain(%) + y; where x and y are in the

range [0.014, 0.024] and [0.05, 0.09], respectively.

The test material is a warm rolled 10 mm thick sheet of

316 L stainless steel with composition (in %wt) 17.25Cr,

12.81Ni, 2.73Mo, 0.86Mn, 0.53Si and 0.02C. An electron

backscattering diffraction analysis of this steel reveals a mild

texture, but the uniaxial mechanical response in rolling and

transverse direction were the same as was reported in [10].

This implies that the macroscopic uniaxial mechanical re-

sponse of the material can be assumed to be independent of

the rolling direction. The isotropic elastic Young’s modulus

(Y) is 190 GPa and the Poisson’s ratio (ν) is 0.31. Figure 2

shows the true stress v/s true strain curve (in black) for this

steel obtained from uniaxial tests on DB samples (different

from the one shown in Fig. 1(g)) performed by Dr.

Niffenegger (see acknowledgements).

The THIN-II and DB samples are prepared from this steel.

The outer geometry of the THIN-II and DB samples is water

cut and the gauge section is mechanically ground in a sym-

metric manner to a thickness of 3 mm. Mechanical tests have

not been performed for the remaining geometries.

Fig. 2 True stress v/s true strain curve for uniaxial tensile loading of DB

samples from experiments (Exp) and simulations (Sim)
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Simulation Setup

ABAQUS/Standard software [33] is used to perform the FE

simulations for the six cruciform and DB geometries. In

order to improve the computational efficiency, only 1/8th

of the entire geometry is simulated with symmetric boundary

conditions on appropriate surfaces. Figure 3 shows the FE

mesh for all the geometries tested in this work. A structured

hexahedron mesh is employed with linear 8-node mesh ele-

ments (C3D8 in ABAQUS) for the THIN-II and DB geom-

etries as shown in Fig. 3(c), (g). A hexahedron mesh is also

used for the SLIT-I and SLIT-THIN-III geometries, except

near the slit-ends where a mixed hexahedron/tetragonal

mesh is used as shown in the inset of Fig. 3(a), (f). The

meshing procedure has been based on the simulations per-

formed by [22] for the SLIT-I geometry and [32] for the

SLIT-THIN-III geometry which show that the stress concen-

trations occur at the slit-ends (inset of Fig. 3(a), (b)). The

number of elements for the DB, SLIT-I, THIN-I, THIN-II,

SLIT-THIN-I, SLIT-THIN-II, SLIT-THIN-III, and DB ge-

ometries are 3333, 29,756, 23,966, 4626, 22,964, 17,408

and 11,336, respectively.

Fig. 3 The finite element

meshing for the 1/8th (a) SLIT-I,

(b) THIN-I, (c) THIN-II, (d)

SLIT-THIN-I, (e) SLIT-THIN-II,

(f) SLIT-THIN-III, and (g) DB

geometries. The red box in each

figure indicates the region

(1.9 mm × 1.9 mm) used to

determine the average strain and

stress. The black box in some of

the figures represents the surface

on which boundary conditions are

applied. The black arrows

represent the direction of

displacement/loading. In some of

the figures a zoomed-in picture is

provided of a region represented

by a blue box. The coordinate

system of all the geometries is

shown in 3(g)

Exp Mech (2017) 57:905–920 909



Isotropic elastic properties of 316L stainless steel were used

[10]. The plastic response is modeled using the ABAQUS ma-

terial model that is based on the VM yield criterion and the

associated flow rule. The built-in rate-independent combined

non-linear isotropic and kinematic hardening law with 5 back-

stresses is used. The stress v/s strain curve from the monotonic

tensile loading test on DB samples (black curve in Fig. 2) is

provided as an input to ABAQUS/Standard. To account for mi-

cro-plasticity, the initial yield point is taken at 135 MPa. The

ABAQUS/Standard algorithm uses this experimental curve to

fit the back-stress parameters; manual parameter fitting is not

required. Figure 2 also shows theVMstress v/s strain curve fitted

by ABAQUS FE simulation (red line). As can be seen, the fitted

and experimental curves have a good match. It should be noted

that since the present work does not deal with strain path chang-

es, using an isotropic hardening model instead of a combined

hardening model with 5 backstress parameters will not result in

significant differences in the predicted stress v/s strain curves.

Changing the number of backstress parameters, however, affects

the fitting procedure and in this case the combined hardening

model with 5 backstress terms provides the best fit.

The experiments on the THIN-II and DB samples are per-

formed under load control, therefore load control is also used to

simulate these geometries. The simulated forces are applied as

surface tractions on the inside of the holes in the arms of these

geometries using a linear ramp. This is illustrated in Figs. 3(c) and

(g). The SLIT-I and SLIT-THIN-III geometries are designed to be

deformed using clamps attached to the arms. These geometries

were deformed under displacement control. Therefore, a linearly

ramped displacement on the surface in contact with the clamps is

applied in the FE simulations. The remaining geometries have

also been deformed under displacement control, as illustrated in

Figs. 3(a), (b), (d), (e), and (f).

To facilitate comparison between the different geometries,

the strain values for all geometries reported in all the line plots

will be averaged on the surface of a 3.8 mm × 3.8 mm area at

the center of the gauge area (this becomes 1.9 mm × 1.9 mm

area for the 1/8th geometry as shown in the inset of Fig. 3(c)

for the THIN-II geometry) and the stresses will be averaged

along the thickness of the sample beneath this area. The aver-

aging procedure is motivated from the in-situ neutron diffrac-

tion experiments in the work of [10] where surface strains are

measured using DIC and the neutrons measurements are ob-

tained from the 3.8 mm × 3.8 mm × 3 mm volume.

Results

Experimental Validation of the FE Procedure

The following set of simulations are carried out for the THIN-

II and DB samples and compared with experimental data from

[10]: uniaxial tensile loading of DB sample to ~16.4 kN,

uniaxial tensile loading along axis 1 of the THIN-II to 50kN

and equibiaxial tensile loading of THIN-II (axis 1 and 2) to

50kN on each axis. Figure 4 shows a good match between the

two in-plane strain components E11 and E22 from the three

simulations and the experiments. Minor differences between

themmay be due to the tolerances in gauge thickness (range of

0.1 mm) associated with manufacturing the samples.

Plastic Deformation in the Cruciform Geometries

The predicted gauge stress and strain evolution for the six

geometries are compared. All the geometries are subjected to

uniaxial deformation along direction 1 whereas the arms along

direction 2 are kept free i.e. at zero force. The THIN-II cruci-

form simulations are performed under load control with a

linearly ramped force F1 = 100kN (2000 steps). All the re-

maining cruciform simulations are performed under displace-

ment control. A linearly ramped displacement is applied at the

end of the arm along direction 1. The simulations are stopped

when the equivalent plastic strain reaches 40% at the location

of the highest stress concentration in each geometry.

Figure 5 shows the contour plots for the distribution of equiv-

alent plastic strain andVM stress in and near the gauge region of

the six cruciform geometries. The highest stress concentration

occurs at the end of the second outermost slit for the SLIT-I,

center of the gauge area for the THIN-I, cross-arms for the

THIN-II, gauge area for the SLIT-THIN-I, the innermost slit

for the SLIT-THIN-II, and the outermost slit for SLIT-THIN-

III (shown in Figure 5). For the SLIT-I and SLIT-THIN-III ge-

ometries, the VM stress and the equivalent plastic strain are

Fig. 4 Comparison between simulated (sim) macroscopic strains and the

DIC strains for tensile loading on DB samples, and uniaxial (Uni) and

equibiaxial (Equi) loading on THIN-II samples
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Fig. 5 (a, c, e, g, i, k) Equivalent plastic strain and (b, d, f, h, j, l) VM stress distributions in the (a, b) SLIT-I, (c, d) THIN-I, (e, f) THIN-II, (g, h) SLIT-

THIN-I, (i, j) SLIT-THIN-II and (k,l) SLIT-THIN-III geometries when the equivalent plastic strain reaches 40% at the location of highest stress

concentrations. The in-set in (a, b, k, l) show the zoomed-in slit-ends where the highest stress concentrations occur for the SLIT-I and SLIT-THIN-III

geometries. The legends for (c, e, g, i, k) and (d, f, h, j, l) are the same as those shown in (a) and (b), respectively

Exp Mech (2017) 57:905–920 911



negligible in comparison with those at the location of the slit-

ends. For the SLIT-I and SLIT-THIN-III geometries, the location

of the slits and their small radius of curvature (0.1 mm) at the

slit-ends are responsible for the large difference in the stresses at

slit-ends and cruciform gauge area. Furthermore, for the SLIT-

THIN-III geometry, the effect of gauge area thinning by a factor

of 2.5 to increase the gauge strain is overshadowed by the stress

concentrations at the slit-end. For the SLIT-THIN-II geometry,

the combined effect of the larger radius of curvature at slit-end,

increased distance from the slit-end and gauge area, larger arm-

to-gauge thickness ratio of 3.33 and the notch in the arms, results

in higher gauge equivalent plastic strain in comparison to the

SLIT-I and SLIT-THIN-III geometries.

The THIN-II geometry, has the same arm-to-gauge thick-

ness ratio of 3.33 as the SLIT-THIN-II geometry. However,

the VM stress and equivalent plastic strain near the center of

the gauge region are comparable to those at the cross arms

(Figures 5(e), (f)). This indicates that the gradual thickness

reduction from 10 mm in the arms to 3 mm in the gauge

region, larger gauge area and the absence of slits play a role

in the improved gauge stress. Note that the cross-arms have a

variable thickness, which is greater than the gauge area but

lesser than the arms. For the THIN-I and SLIT-THIN-I geom-

etries, the maximum equivalent plastic strain and von Mises

stresses occur near the center of the specimen. These geome-

tries have an arm-to-gauge thickness ratio of 6.67 and 5.33,

respectively. For the THIN-I geometry, the region with the

highest stress concentration is smaller in comparison to the

SLIT-THIN-I geometry. This is a consequence of the sharp

thickness change in the gauge region of the THIN-I geometry.

From these results, we can conclude that a large arm-to-

gauge thickness ratio is necessary to obtain the highest stress

concentrations in the gauge area, irrespective of the presence

of slits or notches at cross-arms. Furthermore, for the slit ge-

ometries, the slit width should be comparable to the gauge

thickness to avoid high stress concentrations at the slit ends.

In addition, the cross-arms should be thicker than the gauge

area to reduce the stress concentrations.

Gauge Strain and Stress Evolution during Uniaxial

Deformation in Cruciform and DB Samples

In this section, the gauge stress and strain evolutions for the six

cruciform geometries and the DB are studied during uniaxial

loading. The results are shown up to the point where a maxi-

mum 40% equivalent plastic strain is reached at the locations

of the highest stress concentrations. Figure 6(a) shows the plot

of the predicted total gauge strain component E22 as a function

of E11 for all samples; the DB results are obtained from the

simulations performed in section Experimental Validation of

the FE Procedure. The ratio E22=E11
for the DB and cruciform

geometries in the elastic (limited to E11 = 0.1% as shown in

inset of Figure 6(a)) and plastic regimes are shown in Table 1.

In the elastic regime, for the SLIT-I and SLIT-THIN-III geom-

etries, E22=E11
is similar to the Poisson’s ratio, however, for the

remaining cruciform geometries, it is significantly different. At

the end of loading, the SLIT-I, SLIT-THIN-I and SLIT-THIN-

III geometries result in a ratio E22=E11
close to −0.5. Whereas,

this ratio is less than −0.5 for the THIN-I and THIN-II geom-

etries and more than −0.5 for the SLIT-THIN-II geometry.

These results indicate that the SLIT-I, THIN-I, THIN-II and

SLIT-THIN-I geometries must have a compressive stress com-

ponent in the direction 2 normal to the loading direction,

whereas SLIT-THIN-II must have a tensile stress component

along direction 2. The SLIT-THIN-III geometry should have

nearly the same stress state as the DB sample.

Figure 6(b) shows the in-plane stress component S22 as a

function of S11 for all the geometries. Simulations have re-

vealed that the out-of-plane stress component (S33) is negligi-

ble in comparison with the in-plane stress components. In the

elastic regime, the stress ratio Rð Þ S22=S11 is constant for all the

geometries and shown in Table 1. Clearly, S22 is negligibly

small for SLIT-I and SLIT-THIN-III but not for the remaining

cruciform geometries. Amongst the latter, the SLIT-THIN-II

geometry has a tensile stress component along direction 2

while the remaining have a compressive component; the ten-

sile component along direction 2 is counter-intuitive because

under uniaxial loading along direction 1, one would expect a

compressive component along the transverse direction 2.

Immediately following the on-set of plasticity, R decreases

for the SLIT-I and THIN-II geometries and increases for the

remaining geometries. Between S11 = 200 and 400 MPa, the

stress evolution becomes highly non-linear for the THIN-I,

THIN-II, SLIT-THIN-I and SLIT-THIN-II geometries. The

ratio R at the end of loading is also shown in table 1. These

results imply that the coupling between the forces in the arms

is weak in the SLIT-I and SLIT-THIN-III geometries, interme-

diate in the SLIT-THIN-I geometry and strong in the THIN-I,

THIN-II and SLIT-THIN-II geometries.

The SLIT-I and SLIT-THIN-III geometries are ideal for

decoupling the gauge stresses and having negligible transverse

stress components under uniaxial loading, however, due to the

high stress concentrations at the slit ends these are not suitable

to achieve more than a few percent plastic strain in the gauge

area. On the other hand, the remaining geometries are suitable

to achieve large gauge strains but suffer from a non-linear

coupled biaxial gauge stress state at the center of the sample.

Furthermore, for the same type of material, the stress evolution

in the elastic and plastic regime is significantly different.

Non-linear Gauge Stresses during General Biaxial

Loading

In this section, the non-linearity in the S22 v/s S11 evolution is

further analyzed for general biaxial loading for the THIN-II

geometry. The THIN-II geometry is analyzed because themodel
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predictions have been validated at two extremes of in-plane

tensile loading i.e. uniaxial and equibiaxial loading; thus, pro-

viding a higher confidence on the accuracy of the predicted

results under other biaxial loads. Furthermore, the THIN-II ge-

ometry has been used during in-situ neutron diffraction studies

in [10, 11]. The non-linear macroscopic stress evolution of the

THIN-II geometry influences the inter (type-II) and intra (type

III) granular stresses. This is evidenced from the non-linear kink

in the lattice strain evolution during uniaxial loading of the

THIN-II sample [10, 11]. In the following, the macroscopic

stress evolution in the THIN-II sample is studied for 10 different

loading ratios F1:F2 – 10:0, 10:1, 10:2, 10:3, 10:4, 10:5, 10:6,

10:7, 10:8, 10:9 and 10:10, while F1 is always increased from 0

to 50kN. The results for the in-plane gauge stress components

and the stress-force relationships are shown in Figure 7.

In the elastic regime, the linear stress-force relationship i.e.

S11 = aF1 − bF2 and S22 = − bF1 + aF2 [27–29], is tested. For

all loadings, the values for a and b are found to be constant and

equal to 10,750 (m−2) and 2500 (m−2), respectively. This is in

accordance with the work of Hoferlin et al. [27]. The

elastic-plastic transition is characterized by a kink in R

and in the stress-force relationships. The kink evolves

differently for different load ratios: it is very pro-

nounced in all three plots for the force ratios 10:0 to

10:6 and less pronounced for the force ratios 10:7 to 10:10.

Once full plasticity sets in, the non-linear deviations

between the in-plane stresses and stress-force relationships

become less pronounced.

Figure 7(b) shows the evolution of S11 as a function of F1.

Since for all the loading ratios F1 is ramped to 50kN, the evo-

lution of S11 is similar for all the load ratios. A closer inspection

shows that in S11 the point of inflection only appears for load

ratios between 10:0 to 10:6. In addition, with increasing magni-

tude of F2 from a load ratio between 10:0 up to 10:6, the inflec-

tion point tends to occur at higher values of S11. This is because

the stress evolution follows the von Mises plastic behavior.

Figure 7(c) shows that the evolution of S22 as a function of F1
is qualitatively similar to the evolution of S22with respect to S11.

In order to better understand the non-linear behavior for

different load ratios, Figure 8 shows the deviation from linear

evolution of the elastic regime for each stress component i.e.

M ¼ S11−F1
* S11

F1

� �

elastic

h i

and N ¼ S22−F1
* S22

F1

� �

elastic

h i

as

a function of the applied force F1. The nature of the non-linearity

varies significantly as function of the applied force. There are

three interesting observations to bemade. First, although the kink

during the non-linear behavior of S22 vs S11 in Figure 7(a) ap-

pears to be most pronounced for the load ratio of 10:5, the largest

deviation from the linear elastic behavior in S11 occurs for uni-

axial loading i.e. 10:0. The largest deviation from linearity in S22

Fig. 6 (a) Evolution of macroscopic total strain E22 as a function of E11
and (b) Cauchy stress component S22 as a function of S11 for the six

cruciform geometries and the DB sample (DB)

Table 1 The strain and stress ratios E22/E11 and S22/S11 in the elastic

regime and in the plastic regime at the end of loading for the DB and six

cruciform geometries

Ratio geometry E22/E11 S22/S11

Elastic Plastic Elastic Plastic

DB -0.31 -0.5 0 0

SLIT-I -0.33 -0.51 -0.019 -0.045

THIN-I -0.58 -0.68 -0.35 -0.27

THIN-II -0.5 -0.67 -0.23 -0.46

SLIT-THIN-I -0.49 -0.52 -0.21 0.009

SLIT-THIN-II -0.081 -0.1 0.24 0.41

SLIT-THIN-III -0.31 -0.48 -0.0043 0.008
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occurs first for the load ratio 10:4 at F1 = 36kN and then for

10:2 at 50kN. Second, equibiaxial loading results in a non-

linear evolution of the stress components as a function of the

applied force. Third, the load ratio of 10:6 results in a linear

evolution of S11 with the same slope as in the elastic re-

gime up to F1 = 30kN. This is at the beginning of the

elastic-plastic transition. After F1 = 30kN, S11 deviates

away from the linear behavior. For the load ratio of 10:7, the

evolution of S22 as a function of F1 is found to be nearly linear

till the end of loading. The origin of these counter-intuitive

stress evolutions under different load ratios lies in the geom-

etry of the sample. These should vary depending on the cru-

ciform shape and size, and the material properties.

A more general outcome of these simulations is that

decoupling the cruciform gauge stresses and computing

them as force divided by area is not possible for any stress

ratio R. Furthermore, this coupling will be different for

different geometries. This reinforces the need to use FE

simulations to predict the gauge stress state.

Non-linear Gauge Stress Evolution for Different

Hardening Behavior

In this section, we study the gauge stress evolution for the

THIN-II cruciform geometry during uniaxial loading for dif-

ferent materials. Figure 9(a) shows the true stress v/s true strain

Fig. 7 (a) S11 v/s S22, (b) S11 v/s F1 and (c) S22 v/s F1, for F1:F2 equal to 10:0, 10:1, 10:2, 10:3, 10:4, 10:5, 10:6, 10:7, 10:8, 10:9 and 10:10
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curve for six new materials in addition to the 316 L stainless

steel: (i) Aluminum alloy AA5086, similar to the one from

[31], with isotropic elastic properties Y = 73 GPa but a slightly

modified ν = 0.31, yield stress at 135MPa andmaximum plas-

tic strain of ~20%, (ii) a nearly perfectly plastic (NPP) pseudo-

material with the same elastic properties, yield stress and max-

imum strain as AA5086, but with a maximum stress of

206MPa at a maximum plastic strain of ~20%, (iii) an artificial

isotropic linear elastic material with Y=1GPa and ν = 0.31

(ISO-LIN-I), (iv) an artificial isotropic linear elastic material

with Y = 73 GPa and ν = 0.12 (ISO-LIN-II), (v) an artificial

isotropic linear elastic material with Y = 73 GPa and ν = 0.45

(ISO-LIN-III) and (vi) an artificial orthotropic linear elastic

material (ORTHO-LIN) with the engineering constants Y1 =

190GPa, Y2 = 73 GPa, Y3 = 190 GPa, ν12 = 0.31, ν13 = 0.31,

ν23 = 0.31, G12 =G13 =G23 = 65 GPa. For the ABAQUS sim-

ulations of the ORTHO-LIN material, a local coordinate sys-

tem needs to be defined for each element in the FE mesh. For

simplicity, the local coordinate system of all the elements is

defined as the global coordinate system. Figure 9(b) shows S22
as a function of S11 for the THIN-II geometry for all the

Fig. 8 Deviation from the linear behavior in the elastic regime for both

the in-plane stress components, (a) M ¼ S11−F1
* S11

F1

� �

elastic

h i

and (b)

N ¼ S22−F1
* S22

F1

� �

elastic

h i

, in the gauge area as a function of the force

F1 in the arm for different load ratios F1 :F2 for the THIN-II geometry

Fig. 9 (a) True stress v/s strain curve from FE simulations of DB samples

and (b) S22 v/s S11 curves for the THIN-II geometry for the (i) 316L, (ii)

AA5086, (iii) NPP, (iv) ISO-LIN-I, (v) ISO-LIN-II, (vi) ISO-LIN-III

(overlaps ISO-LIN-II) and (vii) ORTHO-LIN materials. The legend for

both (a) and (b) is shown in (b)
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materials in this work. Note that the results for the ISO-LIN-I

material are only shown until S11 = ~ 60 MPa. Beyond this

stress, there are significant elastic deflections in the arms at

the location of applied force due to the very low stiffness of

ISO-LIN-I. This results in a non-linear evolution of the S22 v/s

S11 which is not representative of the elastic deformations of

the THIN-II geometry made from other stiffer materials.

Focusing first on the stresses in the elastic regime, under

uniaxial loading we have S11 = aF1 and S22 = bF1. This gives

R = S22/S11 = b/a. Next, the Hooke’s law for an orthotropic

elastic material with a negligible out-of-plane stress compo-

nent gives E11 = S11/Y1 − ν12S22/Y2 and E22 = S22/Y2 − ν21S11/

Y1. Combining the last three equations gives,

R ¼
Y 2

Y 1

� �

E22=E11
þ ν12

1þ ν21
E22=E11

� �

ð1Þ

Note here that the −E22/E11 is the Beffective Poisson’s ratio^

for the cruciform geometry and it is not equal to ν12. This

implies that in the elastic regime the biaxial stress ratio R,

and thus the ratio of the equivalent area measures b/a, are

dependent on the material’s elastic properties. For an isotropic

material with Y = Y1 = Y2 and ν = ν12 = ν21, equation (1) re-

duces to R ¼
E22=E11þν

1þν
E22=E11

� �

. Interestingly, for all the simulated

isotropic elastic materials with the same Poisson’s ratio have

the same R value equal to −0.232. This result suggests that for

an isotropic material, R depends only on the Poisson’s ratio.

This implies that the Beffective Poisson’s ratio^ i.e. E22=E11
for a

given cruciform geometry should also depend only on the

Poisson’s ratio. Therefore, all the isotropic materials with the

same Poisson’s ratio should give the same R, irrespective of

the Young’s modulus. Next, R is computed for the ISO-LIN-II

and ISO-LIN-III materials having different Poisson’s ratio.

These materials, whose Poisson’s ratios are 0.12 and 0.31,

respectively, result in an R value that are ~5% less and ~5%

more, respectively, than the R value for the isotropic linear

elastic materials with ν = 0.31. The ORTHO-LIN material re-

sults in R = − 0.129 which results in a 44.4% difference with

respect to the isotropic linear elastic materials with ν = 0.31.

Note that for the ORTHO-LIN material, the difference in

Young’s moduli Y1 and Y2 also results in a difference in the

Poisson’s ratio ν12 and ν21; from the relationship νij/Yi = νji/Yj,

we have ν21 = 0.12. These results, along with equation (1),

imply that a and b, which have dimensionsm−2, are dependent

on the material properties. This is fundamentally different

from the gauge stress-applied force relationship in DB sam-

ples, where in the elastic regime this relationship is solely

dependent on the DB gauge cross-section.

Following the on-set of plasticity, the evolution of S22 v/s

S11 varies according to the hardening behavior of the material.

An evolution trend is however not obvious. Simulations were

also performed for the THIN-I, SLIT-THIN-I and SLIT-

THIN-II geometries (results not shown). Similar to the

THIN-II geometry, an evolution trend in S22 v/s S11 depending

on the hardening behavior was not evident.

Engineering metals and alloys, that are macroscopically

nearly elastic isotropic, often have a Poisson’s ratio that falls

in the range 0.25–0.35. Geometrically same cruciform samples

constructed from these materials will have nearly the same

stress ratio R in the elastic regime. For these materials, R will

strongly depend on the cruciform geometry and not the elastic

properties of thematerial. A simple uniaxial DB test, along with

the strain ratio E22/E11 from cruciform samples, is sufficient to

obtain the material parameters required for analytically approx-

imating the stress ratioR. For anisotropicmaterials, such as cold

rolled Mg-alloys, in the elastic regime R will depend on the

cruciform geometry shape and the degree of anisotropy;

the full macroscopic anisotropic elastic stiffness tensor

would be necessary to analytically obtain the stress ratio

R. In the plastic regime, R varies according to both the

cruciform geometry and the hardening behavior of the ma-

terial with no obvious trend, thus making it difficult to analyt-

ically obtain its value. This further underlines the need to

perform FE simulations to predict their stress evolution.

Discussion

In the following, we propose cruciform selection criteria to

reduce the non-linear gauge stress coupling and to improve

the gauge plastic deformation based on the cruciform geome-

tries simulated in the previous section.

(1) Symmetric/asymmetric geometry: In the works of [8,

30], the SLIT-THIN-I geometry was originally designed

to be a one-sided geometry due to the complexity asso-

ciated with the design. However, one-sided geometries

could suffer from shear and bending stresses in the cen-

tral region. All the cruciform geometries simulated in this

work are symmetric two-sided geometries. The results

show negligible shear stresses and out-of-plane normal

stress components in comparison to the in-plane normal

stresses. The cruciform should be designed symmetric

along all three directions.

(2) Number of slits and slit width: As seen from the simula-

tions of SLIT-I and SLIT-THIN-III geometries in section

4.2, a relatively large number of slits results in homoge-

nizing the stress field within the gauge area. These results

also show that a slit width smaller than the cruciform

thickness causes very high stress concentrations at the

slit-ends. In contrast, for the SLIT-THIN-I geometry,

which has a slit width of 2.2 mm and slit-ends ~3 mm

away from the gauge area, the highest stress con-

centrations occur in the gauge area. However, the

biaxial stress ratio is appreciably large and the stress
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distribution is relatively less homogeneous. Based on

these results, the slit-widths should be kept nearly the

same size as the gauge thickness and should be as close

as possible to the gauge area to obtain a homogeneous

stress distribution.

(3) Gauge thickness: The gauge thickness should be suffi-

ciently smaller than the arm thickness in order to ensure

that the stress concentrations occur in the center of the

sample. Amongst the cruciform geometries studied in this

work, those with an arm-to-gauge thickness ratio greater

than 5 have the highest stress concentration occurring in

the gauge area. Note that when the region with reduced

thickness encompasses the cross-arms, the ratio of the

cross-arm-to-gauge thickness also becomes important.

(4) Thickness gradient and gauge area: Cruciform ge-

ometries with gradual thickness reduction and larg-

er gauge surface area have shown the highest stress

concentrations and more homogeneous stress distri-

bution near the center in comparison to geometries

with steep thickness reduction and smaller surface

area. The cruciform design should account for this

aspect.

(5) Cross-arm thickness and shape: Amongst the simu-

lated cruciform geometries, those with cross-arms

having the same thickness as the arms and thicker than

the gauge area, do not result in stress concentrations in

the gauge area.

Based on these geometry selection criteria, and the cruciform

geometries simulated in this work, we propose a cruciform ge-

ometry design (non-optimized) for the 316L steel that minimizes

the non-linear coupling of gauge stresses while attaining large

plastic strains in the center of the gauge region. This is achieved

by combining the geometric features from SLIT-THIN-I and

SLIT-THIN-III geometries. Figure 10(a) shows the new geom-

etry design, henceforth known as SLIT-THIN-NEW. This ge-

ometry has the same arm dimensions, gauge size and area, and

cross-arm shape and size as the SLIT-THIN-I geometry. The

only difference is the number of slits, slit-width and slit-ends.

A total of 9 slits of thickness 1 mm each are added per arm. On

one end, all the slits terminate at 1 mm from the region of the

first thickness reduction. In the opposite direction, similar to the

SLIT-THIN-III geometry, the slits are drawn throughout the

length of the arm. This geometry is simulated under uniaxial

loading along direction 1. The ABAQUS FE mesh has

20,530, C3D8 mixed hexahedron and tetrahedron elements.

The FE mesh is shown in Fig. 10(b). The simulation is stopped

when a 40% equivalent plastic strain is first reached anywhere in

the geometry. This occurs at the gauge area of the SLIT-THIN-

NEW geometry. Figures 10(c) and (d) show a snap-shot of the

equivalent plastic strain and von Mises stress distribution in the

SLIT-THIN-NEW geometry at the end of the simulation. The

simulated S22 v/s S11 curve is shown in Fig. 10(e).

Results show that the SLIT-THIN-NEW geometry has

the highest equivalent plastic strain in the gauge area of

the sample throughout the simulation. The stress concen-

tration is initially highest in the gauge area, however, after

S11 ≈ 700 MPa, it shifts to the third slit-end from the right

in the arm along direction 2. In the elastic regime, the

SLIT-THIN-III demonstrates a reduced stress ratio R in

comparison to the SLIT-THIN-I geometry; although not

as much as the SLIT-THIN-III geometry. Following the

on-set of plasticity, the absolute value of ratio R ap-

proaches 0. The value of R fluctuates around 0 up to

S11 ≈ Smises = 700 MPa. Following this, the highest stress

concentration shifts from the gauge area to the slit-end. In

addition, R rapidly increases until the end of the simula-

tion. At S11 ≈ Smises = 700 MPa, the obtained equivalent

plastic strain at the center of the gauge area is ~20%.

Amongst all the cruciform geometries simulated in this

work, the SLIT-THIN-NEW geometry is the better geometry

to obtain high gauge equivalent plastic strain with the lowest

non-linear coupling between the arms but only up to 700MPa.

The SLIT-THIN-NEW geometry can be further optimized by

tuning the slits, gauge area and cross-arms. However, the re-

sults strongly indicate that designing a single cruciform geom-

etry for all kinds of materials is not feasible when the addi-

tional requirements include decoupling the non-linearly

evolving in-plane gauge stresses, homogeneous stress distri-

bution, and achieving the highest stresses and large plastic

strains in the gauge area.

Conclusion

In this work, an FE simulation study was undertaken to high-

light the role of cruciform shaped sample geometry on the

stress evolution within the gauge area. Six cruciform shaped

sample geometries are studied: (i) the ISO standard slit geom-

etry – SLIT-I, (ii) the elliptical cross-arm steeply thinned ge-

ometry with no slits – THIN-I, (iii) the circular cross-arm

gradually thinned geometry with no slits THIN-II, (iv) the

two-step gradually thinned geometry with slits – SLIT-

THIN-I, (v) the uneven slit, circular notched and sharply

thinned geometry – SLIT-THIN-II, and (vi) the modified

ISO standard slit geometry – SLIT-THIN-III. The gauge stress

and strain evolution for these geometries were compared with

DB (dog-bone) samples under uniaxial loading. Then the

THIN-II geometry was tested under different biaxial tensile

loads for different materials. Based on these studies, cruciform

geometry selection criteria were suggested. Using these

criteria, a new cruciform geometry (SLIT-THIN-III) was pro-

posed that allowed to achieve medium plastic strain in the

gauge area while significantly reducing the non-linear cou-

pling of gauge stresses during uniaxial loading. The main

conclusions of this study are as follows:
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Fig. 10 (a) SLIT-THIN-NEW geometry, (b) FE mesh, (c) equivalent plastic strain distribution, (d) von Mises stress distribution, and (e) comparison of

S22 v/s S11 with other cruciform geometries
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1) In the elastic regime, the SLIT-I and SLIT-THIN-III ge-

ometries result in uniaxial stress state at the center of the

gauge region. In contrast, THIN-I, THIN-II, SLIT-THIN-

I and SLIT-THIN-II geometries show a linear coupling

between the forces in the arms and in-plane gauge stresses

in the elastic regime such that S11 = aF1 + bF2 and S22 =

aF2 + bF1. A uniaxial tensile load along one of the arms

results in a stress component along the in-plane direction

normal to the loading direction. This transverse compo-

nent is tensile for the SLIT-THIN-I geometry and com-

pressive for the THIN-I, THIN-II and SLIT-THIN-II ge-

ometries. The transverse stress component can have a

significant contribution in defining the gauge stress state.

This makes it difficult to analytically compute the gauge

stresses as a function of the applied force. The magnitude

of the transverse stress component significantly varies

according to the cruciform geometry and the macroscopic

elastic anisotropy of the material.

2) Following the on-set of plasticity, the THIN-I, THIN-II,

SLIT-THIN-I and SLIT-THIN-II geometries result in a

non-linear coupling between gauge stresses and ap-

plied forces in the arms. Its nature strongly depends

on the cruciform geometry, applied biaxial load ra-

tio and elastic-plastic properties of the material. A

material, geometry, and applied load ratio dependent

trend on the non-linear stress evolution couldn’t be

established.

3) In SLIT-I and SLIT-THIN-III, important stress concentra-

tions are developing at the slit ends limiting the plastic

strains that can be reached in the gauge region. These

geometries are therefore not suitable to study the mechan-

ical behavior of materials with low work hardening

rates. In the THIN-II and SLIT-THIN-II geometries,

the stress concentrations occur at the cross-arms and

slit-ends, respectively. However, these are compara-

ble to the gauge stresses. Consequently, relatively large

plastic deformation can be achieved in the gauge area.

The THIN-I and SLIT-THIN-I geometries result in the

largest von Mises stress and equivalent plastic strains in

the gauge area.

4) A new geometry is designed based on the knowl-

edge gained from simulating the six geometries and

novel cruciform geometry selection criteria. The

new geometry helps reduce the non-linear gauge

stress coupling while attaining moderate gauge plas-

tic strains.

Acknowledgements HVS and MVY thank the European Research

Council for the financial support within the advanced grant MULTIAX

(339245). The authors thank Markus Niffenegger at the Paul Scherrer

Institute for providing the mechanical data for 316L stainless steel based

on his experimental results.

Open Access This article is distributed under the terms of the Creative

Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /

creativecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give appro-

priate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

References

1. Tasan CC, Hoefnagels JPM, Dekkers ECA, Geers MGD (2012)

Multi-axial deformation setup for microscopic testing of sheet

metal to fracture. Exp Mech 52:669–678. doi:10.1007/s11340-

011-9532-x

2. Kuwabara T (2007) Advances in experiments on metal sheets and

tubes in support of constitutive modeling and forming simulations.

Int J Plast 23:385–419. doi:10.1016/j.ijplas.2006.06.003

3. Smits A, Van Hemelrijck D, Philippidis TP, Cardon A (2006)

Design of a cruciform specimen for biaxial testing of fibre rein-

forced composite laminates. Compos Sci Technol 66:964–975.

doi:10.1016/j.compscitech.2005.08.011

4. Hannon A, Tiernan P (2008) A review of planar biaxial tensile test

systems for sheet metal. J Mater Process Technol 198:1–13.

doi:10.1016/j.jmatprotec.2007.10.015

5. Abu-Farha F, Hector LG, Khraisheh M (2009) Cruciform-shaped

specimens for elevated temperature biaxial testing of lightweight

materials. J Miner Met Mater Soc 61:48–56

6. Repper J, Niffenegger M, Van Petegem S et al (2013) In-situ biaxial

mechanical testing at the neutron time-of-flight diffractometer

POLDI. Mater Sci Forum 768–769:60–65. doi:10.4028/www.

scientific.net/MSF.768-769.60

7. Kuroda M, Tvergaard V (2000) Effect of strain path change on

limits to ductility of anisotropic metal sheets. Int J Mech Sci 42:

867–887. doi:10.1016/S0020-7403(99)00029-6

8. Leotoing L, Guines D (2015) Investigations of the effect of strain

path changes on forming limit curves using an in-plane biaxial tensile

test. Int J Mech Sci 99:21–28. doi:10.1016/j.ijmecsci.2015.05.007

9. Collins DM, Mostafavi M, Todd RI et al (2015) A synchrotron X-

ray diffraction study of in situ biaxial deformation. Acta Mater 90:

46–58. doi:10.1016/j.actamat.2015.02.009

10. Van Petegem S, Wagner J, Panzner T et al (2016) In-situ neutron

diffraction during biaxial deformation. Acta Mater 105:404–416.

doi:10.1016/j.actamat.2015.12.015

11. UpadhyayMV,Van Petegem S, Panzner Tet al (2016) Study of lattice

strain evolution during biaxial deformation of stainless steel using a

finite element and fast Fourier transform based multi-scale approach.

Acta Mater 118:28–43. doi:10.1016/j.actamat.2016.07.028

12. ISO 16842 (2014) Metallic materials — Sheet and strip — Biaxial

tensile testing method using a cruciform test piece. Exp Mech.

doi:10.1007/s11340-015-9999-y

13. Hayhurst DR (1973) A biaxial-tension creep-rupture testingmachine.

J Strain Anal Eng Des 8:119–123. doi:10.1243/03093247V082119

14. Kelly DA (1976) Problems in creep testing under biaxial stress

systems. J Strain Anal Eng Des 11:1–6. doi:10.1243/03093247

V111001

15. Makinde A, Thibodeau L, Neale KW, Lefebvre D (1992) Design of

a biaxial extensometer for measuring strains in cruciform speci-

mens. Exp Mech 32:132–137. doi:10.1007/BF02324724

16. Makinde A, Thibodeau L, Neale KW (1992) Development of an

apparatus for biaxial testing using cruciform specimens. Exp Mech

32:138–144. doi:10.1007/BF02324725

17. Kuwabara T, Ikeda S, Kuroda K (1998) Measurement and analysis

of differential work hardening in cold-rolled steel sheet under

Exp Mech (2017) 57:905–920 919

http://dx.doi.org/10.1007/s11340-011-9532-x
http://dx.doi.org/10.1007/s11340-011-9532-x
http://dx.doi.org/10.1016/j.ijplas.2006.06.003
http://dx.doi.org/10.1016/j.compscitech.2005.08.011
http://dx.doi.org/10.1016/j.jmatprotec.2007.10.015
http://dx.doi.org/10.4028/www.scientific.net/MSF.768-769.60
http://dx.doi.org/10.4028/www.scientific.net/MSF.768-769.60
http://dx.doi.org/10.1016/S0020-7403(99)00029-6
http://dx.doi.org/10.1016/j.ijmecsci.2015.05.007
http://dx.doi.org/10.1016/j.actamat.2015.02.009
http://dx.doi.org/10.1016/j.actamat.2015.12.015
http://dx.doi.org/10.1016/j.actamat.2016.07.028
http://dx.doi.org/10.1007/s11340-015-9999-y
http://dx.doi.org/10.1243/03093247V082119
http://dx.doi.org/10.1243/03093247V111001
http://dx.doi.org/10.1243/03093247V111001
http://dx.doi.org/10.1007/BF02324724
http://dx.doi.org/10.1007/BF02324725


biaxial tension. J Mater Process Technol 80–81:517–523.

doi:10.1016/S0924-0136(98)00155-1

18. Kuwabara T, Yoshida K, Narihara K, Takahashi S (2005) Anisotropic

plastic deformation of extruded aluminum alloy tube under axial

forces and internal pressure. Int J Plast 21:101–117. doi:10.1016/j.

ijplas.2004.04.006

19. Hanabusa Y, Takizawa H, Kuwabara T (2013) Numerical verification

of a biaxial tensile test method using a cruciform specimen. J Mater

P r o c e s s Te c h n o l 2 1 3 : 9 6 1 – 9 7 0 . d o i : 1 0 . 1 0 1 6 / j .

jmatprotec.2012.12.007

20. Huh J, Huh H, Lee CS (2013) Effect of strain rate on plastic anisot-

ropy of advanced high strength steel sheets. Int J Plast 44:23–46.

doi:10.1016/j.ijplas.2012.11.012

21. Kuwabara T, Kuroda M, Tvergaard V, Nomura K (2000) Use of

abrupt strain path change for determining subsequent yield surface:

experimental study with metal sheets. Acta Mater 48:2071–2079.

doi:10.1016/S1359-6454(00)00048-3

22. Verma RK, Kuwabara T, Chung K, Haldar A (2011) Experimental

evaluation and constitutive modeling of non-proportional deforma-

tion for asymmetric steels. Int J Plast 27:82–101. doi:10.1016/j.

ijplas.2010.04.002

23. Wilson IH, White DJ (1971) Cruciform specimens for biaxial fa-

tigue tests: an investigation using finite-element analysis and

photoelastic-coating techniques. J Strain Anal Eng Des 6:27–37.

doi:10.1243/03093247V061027

24. Baptista R, Claudio RA, Reis L, et al (2015) Optimization of cru-

ciform specimens for biaxial fatigue loading with direct multi

search. Theor Appl Fract Mech 80, Part A:65–72. doi:10.1016/j.

tafmec.2015.06.009

25. MacEwen SR, Perrin R, Green D, et al (1992) An evaluation of

planar biaxial deformation in H19 can-stock sheet. In: Proc. 13th

Risø Int. Symp. Mater. Sci. Risø National Laboratory, Roskilde,

Denmark, pp 539–545

26. Green DE, Neale KW, MacEwen SR et al (2004) Experimental

investigation of the biaxial behaviour of an aluminum sheet. Int J

Plast 20:1677–1706. doi:10.1016/j.ijplas.2003.11.012

27. Hoferlin E, Van Bael A, Van Houtte P et al (1998) Biaxial tests on

cruciform specimens for the validation of crystallographic yield

loci. J Mater Process Technol 80–81:545–550. doi:10.1016

/S0924-0136(98)00123-X

28. Bonnand V, Chaboche JL, Gomez P et al (2011) Investigation of

multiaxial fatigue in the context of turboengine disc applications.

Int J Fatigue 33:1006–1016. doi:10.1016/j.ijfatigue.2010.12.018

29. Cláudio RA, Reis L, Freitas M (2014) Biaxial high-cycle fatigue

life assessment of ductile aluminium cruciform specimens. Theor

Appl Fract Mech 73:82–90. doi:10.1016/j.tafmec.2014.08.007

30. Zidane I, Guines D, Leotoing L, Ragneau E (2010) Development of

an in-plane biaxial test for forming limit curve (FLC) characteriza-

tion of metallic sheets. Meas Sci Technol 21:055701. doi:10.1088

/0957-0233/21/5/055701

31. Liu W, Guines D, Leotoing L, Ragneau E (2015) Identification of

sheet metal hardening for large strains with an in-plane biaxial tensile

test and a dediated cross specimen. Int J Mech Sci 101–102:387–398

32. Deng N, Kuwabara T, Korkolis YP (2015) Cruciform specimen

design and verification for constitutive identification of anisotropic

sheets. Exp Mech 55:1005–1022. doi:10.1007/s11340-015-9999-y

33. ABAQUS (2011) ‘ABAQUS Documentation’, Dassault Systèmes,

Providence, RI, USA

920 Exp Mech (2017) 57:905–920

http://dx.doi.org/10.1016/S0924-0136(98)00155-1
http://dx.doi.org/10.1016/j.ijplas.2004.04.006
http://dx.doi.org/10.1016/j.ijplas.2004.04.006
http://dx.doi.org/10.1016/j.jmatprotec.2012.12.007
http://dx.doi.org/10.1016/j.jmatprotec.2012.12.007
http://dx.doi.org/10.1016/j.ijplas.2012.11.012
http://dx.doi.org/10.1016/S1359-6454(00)00048-3
http://dx.doi.org/10.1016/j.ijplas.2010.04.002
http://dx.doi.org/10.1016/j.ijplas.2010.04.002
http://dx.doi.org/10.1243/03093247V061027
http://dx.doi.org/10.1016/j.tafmec.2015.06.009
http://dx.doi.org/10.1016/j.tafmec.2015.06.009
http://dx.doi.org/10.1016/j.ijplas.2003.11.012
http://dx.doi.org/10.1016/S0924-0136(98)00123-X
http://dx.doi.org/10.1016/S0924-0136(98)00123-X
http://dx.doi.org/10.1016/j.ijfatigue.2010.12.018
http://dx.doi.org/10.1016/j.tafmec.2014.08.007
http://dx.doi.org/10.1088/0957-0233/21/5/055701
http://dx.doi.org/10.1088/0957-0233/21/5/055701
http://dx.doi.org/10.1007/s11340-015-9999-y

	Stresses and Strains in Cruciform Samples Deformed in Tension
	Abstract
	Introduction
	Experimental Procedure
	Simulation Setup
	Results
	Experimental Validation of the FE Procedure
	Plastic Deformation in the Cruciform Geometries
	Gauge Strain and Stress Evolution during Uniaxial Deformation in Cruciform and DB Samples
	Non-linear Gauge Stresses during General Biaxial Loading
	Non-linear Gauge Stress Evolution for Different Hardening Behavior

	Discussion
	Conclusion
	References


