
Citation: Wang, L.-N.; Zheng, Y.; Wei,

H.; Dong, J.; Zhong, G. Stretching

Deep Architectures: A Deep Learning

Method without Back-Propagation

Optimization. Electronics 2023, 12,

1537. https://doi.org/10.3390/

electronics12071537

Academic Editors: Sergio Carrato

and Dimitris Apostolou

Received: 31 January 2023

Revised: 19 March 2023

Accepted: 23 March 2023

Published: 24 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Stretching Deep Architectures: A Deep Learning Method
without Back-Propagation Optimization
Li-Na Wang 1, Yuchen Zheng 2 , Hongxu Wei 3, Junyu Dong 3 and Guoqiang Zhong 3,*

1 Qingdao Vocational and Technical College of Hotel Management, Qingdao 266100, China
2 College of Information Science and Technology, Shihezi University, Shihezi 832003, China
3 College of Computer Science and Technology, Ocean University of China, Qingdao 266404, China
* Correspondence: gqzhong@ouc.edu.cn

Abstract: In recent years, researchers have proposed many deep learning algorithms for data repre-
sentation learning. However, most deep networks require extensive training data and a lot of training
time to obtain good results. In this paper, we propose a novel deep learning method based on stretch-
ing deep architectures that are composed of stacked feature learning models. Hence, the method is
called “stretching deep architectures” (SDA). In the feedforward propagation of SDA, feature learning
models are firstly stacked and learned layer by layer, and then the stretching technique is applied
to map the last layer of the features to a high-dimensional space. Since the feature learning models
are optimized effectively, and the stretching technique can be easily calculated, the training of SDA
is very fast. More importantly, the learning of SDA does not need back-propagation optimization,
which is quite different from most of the existing deep learning models. We have tested SDA in
visual texture perception, handwritten text recognition, and natural image classification applications.
Extensive experiments demonstrate the advantages of SDA over traditional feature learning models
and related deep learning models.

Keywords: representation learning; feature learning; stretching deep architectures; visual texture
perception; image understanding

1. Introduction

Data representation plays an essential role in many learning tasks, such as image
understanding and document analysis [1–3]. In the literature, many approaches have been
proposed to bridge the gap between low-level inputs and high-level concepts [4]. For in-
stance, latent semantic analysis (LSA) is an approach to extracting semantic information
from texts using the singular value decomposition (SVD) [5,6], while probabilistic LSA
(PLSA) is its probabilistic version. However, due to low-level representation, most of the
previous methods cannot perform well in complex applications. In recent years, deep
learning has attracted much attention in the areas related to artificial intelligence. Many
papers have shown that deep architectures are more effective than traditional shallow
representation learning methods [7–14]. However, in order to obtain good learning results,
almost all the existing deep networks need a large number of training samples and a long
training period.

In this work, we focus on representation learning for visual texture perception and
image understanding. Texture is a basic image attribute and is often used to describe
various surface features. A textural region may be described as “regular”, “vertically
oriented”, or “rough”. As shown in Figure 1, 20 example images from different categories
of procedural textures are presented. According to the appearance of texture, observers can
determine whether two objects are made of the same substance, and whether two texture
images display the same object. We can locate the intervening border by detecting different
textures of two adjacent regions. Texture-defined boundaries are also helpful for image

Electronics 2023, 12, 1537. https://doi.org/10.3390/electronics12071537 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12071537
https://doi.org/10.3390/electronics12071537
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3093-6929
https://orcid.org/0000-0002-2952-6642
https://doi.org/10.3390/electronics12071537
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12071537?type=check_update&version=1


Electronics 2023, 12, 1537 2 of 21

segmentation and shape recognition. Moreover, as a special type of texture, procedural
textures are generated by mathematical models and widely used to produce large-scale
and realistic scenes, which can bring wonderful visual effects. The advantage of using
procedural texture is that texture images with arbitrary sizes can be efficiently generated
by simply adjusting the model parameters.

Figure 1. Examples of texture images from 20 categories.

In the areas of image understanding, virtual reality, computer graphics, and so on,
visual texture perception is a very popular and important research direction. It seeks to dis-
cover a semantic space to bridge the gap between low-level texture images and high-level
perceptual concepts. Over the past two decades, lots of papers on visual texture percep-
tion have been published to explore the influence of texture itself and the fundamental
mechanism of the human visual system [15–19]. Particularly, in [17,19], researchers found
that three-dimensional representations are sufficient for both natural and artificial textures.
Additionally, several psychophysical tests on statistical characterizations of texture have
been conducted [20,21]. Density and kurtosis are found to be the most sensitive to the ob-
servers, respectively. However, observers have only estimated the perceptual features with
very few texture images (e.g., Rao and Lohse use only 56 texture images to organize their
psychological test [17]), and moreover, the importance of semantic structure underlying
the perceptual features is underestimated.

In order to overcome the above shortcomings, we have reorganized a series of psy-
chophysical experiments and numerical tests [22]. A total of 81 observers have estimated
texture perception features for 450 texture images generated by 23 procedural texture
models [23]. Similar to [17], 12 perceptual features are found to be able to describe texture
images relevant to the observers’ perceptions. They are randomness, direction, contrast,
repetitiveness, granularity, roughness, density, structural complexity, coarseness, unifor-
mity, orientation, and regularity. Hence, each texture image in this work is represented by a
12-dimensional vector, corresponding to 12 perceptual features, respectively. Furthermore,
to learn the effective representations of the texture perceptual features, we adopt the idea
of deep learning in this paper.

Before deep learning was proposed in 2006 [7], principal components analysis (PCA) [24],
linear discriminant analysis (LDA) [25], and many other feature learning models were
proposed and widely used to learn effective representations of data. However, most of
these models cannot perform well because their architecture is not deep enough [26,27].



Electronics 2023, 12, 1537 3 of 21

Recently, deep neural networks have been commonly used to deal with complex image
understanding problems [7,28]. Particularly, in the ImageNet large-scale visual recognition
challenge-2012 (ILSVRC2012), Hinton and their students developed the “AlexNet” model
and won the object recognition and detection tasks [29]; in the ICDAR Chinese handwriting
recognition competition, deep learning models have shown superiority over traditional
feature learning methods on both isolated character recognition and handwritten text
recognition tasks [30]. Specifically, convolutional neural networks (CNNs) are deeply
researched and widely applied to object recognition and detection tasks [31–33]. Recently,
the attention mechanism and vision transformer (ViT) models have shown state-of-the-art
results, even better results than CNNs, on many image classification applications with a
relatively large scale of data [34,35]. Despite the excellent performances of deep neural
networks, they have common problems: they generally need a large amount of training
samples and a long training time.

In order to fully exploit the advantages of both the traditional feature learning models
and deep architectures, in this paper, we propose a novel deep learning framework called
stretching deep architectures (SDA). In this work, the deep network is not a previous neural
architecture. Specifically, the SDA architecture is composed of shallow feature learning
modules. For concreteness, we select seven feature learning models to use, which are PCA,
probabilistic principal components analysis (PPCA) [36], Sammon mapping (Sammon) [37],
stochastic neighbor embedding (SNE) [38], multidimensional scaling (MDS) [39], LDA [25],
and marginal Fisher analysis (MFA) [40,41]. Among them, SNE and MFA are locality-based
models, and others are global ones. Sammon and SNE are nonlinear models, while others
are linear ones. Hence, they are quite representative of the feature learning models. SDA
contains several of these seven feature learning models, which are stacked layer by layer
to learn the representations of data. Note that although all the feature learning models,
either linear or nonlinear, can be used to design the structure of SDA due to their simplicity
and representativeness, we only adopt these seven models in this work. The stretching
technique is then applied to the learned weight matrix between the last two layers to
improve the learning performance [42]. Using the stretching technique, SDA can not
only map the data features into a high-dimensional, even infinite-dimensional space, like
the mapping function in the kernel methods, but also avoid using back-propagation for
optimization, which saves lots of model training time. This is our main motivation to use
the stretching technique here in this work.

This paper is based on the significant revision of our two published conference pa-
pers [22,43]. Typically, more details and new applications of SDA are supplemented.
The rest of this paper is organized as follows: In Section 2, we introduce the related work
of SDA. In Section 3, we describe the proposed SDA method in detail. The experimental
settings and results are reported in Section 4, while Section 5 concludes this paper with
remarks and future work.

2. Related Work

In recent years, the theories and applications of deep learning have developed very
rapidly, while many deep neural networks (DNNs) have been proposed [10,44,45]. The
ground-breaking deep autoencoders are proposed by Hinton and Salakhutdinov [7]. In par-
ticular, the deep architectures are initialized with pre-trained restricted Boltzmann machines
(RBMs) and optimized with supervised fine-tuning. Moreover, based on a deep CNN model
(AlexNet) [46], Krizhevsky, Sutskever, and Hinton won the ILSVRC2012 object recognition
and detection tasks [29]. Since then, the winners of ILSVRC have all used deep learning
models. One important reason why deep networks could achieve such great success is
that they learn the abstract representations of data with the multi-layer architecture [4].
Among others, the most similar work to the proposed model, SDA, is “PCANet” [47].
PCANet is based on cascaded principal component analysis (PCA), binary hashing, and
blockwise histograms. However, there are two main differences between SDA and PCANet.
The first is in the network structure: SDA uses the stretching technique in the last layer, but



Electronics 2023, 12, 1537 4 of 21

PCANet adopts the binary hashing and blockwise histogram operations in the last two
layers to learn effective representations of data. Furthermore, another one is on the learning
method: PCANet learns the “filters” based on PCA for subsequent convolutional comput-
ing, but SDA learns the “weights” between two successive layers. In addition, some more
well-known deep learning models include the deep autoencoder [7], stacked denoising
autoencoder [48], AlexNet [29], network in network [49], ResNet [31], and ViT [35].

In the field of texture analysis and recognition, many interesting papers have been
published, while more and more research finds that the semantic representations of textures
are vital to the texture analysis and recognition problems [23,50–53]. Julesz finds that
texture discrimination consists of a few local conspicuous features, and only first-order
statistics can describe them correctly [51]. Liu et al. apply hierarchical cluster analysis
(HCA) and singular value decomposition (SVD) to discover what perceptual features are
used by humans to group similar textures [23]. To overcome the shortcomings of traditional
descriptors that only utilize single-type features, Yu et al. propose a kernel embedding
multiorientation local pattern [52]. Ji et al. propose a texture classification scheme using
the multi-resolution feature fusion of four gradient local binary pattern descriptors [53].

However, to our best knowledge, work using deep learning methods has rarely been
published in the area of texture analysis and recognition. Meanwhile, in the area of image
understanding, many systems are built based on deep architectures [29,31,54–60]. Typically,
some variants of recurrent neural networks (RNNs) are proposed by Graves and colleagues
for sequential handwriting recognition, where words are difficult to be segmented and
contain long-range bidirectional interdependencies [56]. Based on the biological evidence,
Qiao et al. propose an approach to mimic the dynamic learning and recognition pro-
cess of the primate visual cortex [61]. In the ICDAR Chinese handwriting recognition
competition [30], 27 systems are submitted by 10 groups for five tasks: online/offline hand-
written text recognition, online/offline isolated character recognition, and classification
of extracted features. Among the submitted systems, deep learning-based methods have
shown superiority in both handwritten text recognition and isolated character recognition
tasks. In addition, winners of ILSVRC2012 – ILSVRC2017 represent state-of-the-art object
recognition and detection [29,31,58,59]. Especially in the classification task of ILSVRC2015,
He et al. propose a deep residual learning network with 152 layers, which achieves 3.57 %
on the ImageNet test set and exceeds the 4.94% test error obtained by naked human eyes.
However, deep learning-based recognition systems generally need many computational
resources and a long training time.

In the literature, many cascaded learning frameworks have been proposed [62–66].
However, most of these existing frameworks focus on designing classifiers in a cascaded
manner. Unlike these approaches, the proposed model, SDA, is based on stacked feature
learning blocks and aims at learning deep semantic representations of data.

In summary, although the existing deep network models have attractive performance,
most models share a common problem: these models usually require a large scale of
training data and a very long training time to obtain good test results. In this paper,
a novel deep-learning method called SDA is proposed. SDA can perform recognition tasks
effectively through stacked feature learning modules. The feature stretching technique can
stretch the weight matrix to arbitrary dimensions and even infinite dimensions by using
the arc-cosine kernel [42], which can improve the accuracy of SDA.

3. Stretching Deep Architecture

In this section, we introduce the proposed SDA method in detail, including the
used feature learning models, the stretching technique, and the stretching operation on
deep architecture.

3.1. Feature Learning Models

Since some decades ago, researchers have proposed many feature learning models
[24,27,38,67–70], which are wildly used for dimensionality reduction and mitigating unde-



Electronics 2023, 12, 1537 5 of 21

sired properties of the high-dimensional data space [27]. In our work, to learn the semantic
representations of data, we have selected seven feature learning models and evaluated
their performance in constructing deep architectures. They are PCA [24], PPCA [36], Sam-
mon [37], SNE [38], MDS [39], LDA [25], and MFA [40,41], as mentioned in Section 1.
The reason for selecting these seven feature learning models is that, firstly, they are sim-
ple and easy to implement, and secondly, we expect to include both linear models and
nonlinear ones, both global models and locality-based ones, both unsupervised models
and supervised ones. No other special criterion is applied. In the following, we briefly
introduce these seven feature learning algorithms.

(1) PCA [24] is a linear dimensionality reduction algorithm. Assume that the data have
zero mean. PCA uses the eigenvectors corresponding to the d largest eigenvalues of
the data covariance matrix to form the projection matrix;

(2) PPCA is a probabilistic variant of PCA from the perspective of Gaussian latent variable
models [36]. It is often effective when there are missing values in the training data;

(3) Sammon [37] is a nonlinear feature learning model. It performs dimensionality reduc-
tion while preserving the structure of inter-point distances in high-dimensional data
space;

(4) SNE [38] changes the idea of distance-invariant in MDS, mapping data from high-
dimensional space to low-dimensional space while ensuring that the data distribution
is not changed. SNE treats data distributions in both the high- and low-dimensional
space as Gaussian;

(5) MDS [39] linearly maps the high-dimensional data to a low-dimensional space, while
retaining the pairwise distances between data points as much as possible;

(6) LDA [25] seeks a linear projection that simultaneously minimizes the within-class
scatter and maximizes the between-class scatter to separate the classes;

(7) MFA is one special formulation of the graph embedding framework [40]. It utilizes an
intrinsic graph to characterize the intraclass compactness, and another penalty graph
to characterize the interclass separability.

3.2. Stretching

In this subsection, we introduce the stretching operation and describe how to stretch
the deep architectures.

Let A ∈ <Dp−1×d be a weight matrix learned by a feature learning model in SDA,
where <Dp−1 and d are the dimensionalities of the input and output. Meanwhile, let
W ∈ <d×L, L > d be a random matrix, where its elements are randomly sampled from the
standard normal distribution N (0, 1). The stretched matrix As ∈ <Dp−1×L, L > M, can be
calculated as

As =
1√
L

AW. (1)

It is easy to obtain that the columns of As follow a multivariate Gaussian distribution
with 0 mean and covariance matrix

Σ =
1
M

M

∑
m=1

amaT
m =

1
M

AAT , (2)

where am denotes the m-th column of A. Let x̂ ∈ <Dp−1×1 denote the input of the last layer
of SDA. Its stretched L dimensional representation can be defined as

hx̂ =
1√
L
(WTAT x̂)+, (3)

where (z)+ = max(0, z) is the ReLU function.



Electronics 2023, 12, 1537 6 of 21

If we want to stretch the features of deep architectures to infinite dimensions, we can
first approximately compute the inner product between the feature representations by

hx
Thy =

1
L
(WTATx)T

+(W
TATy)+ (4)

=
1
L
(xTAW)+(WTATy)+ (5)

=
1
L

L

∑
l=1

(xTAwl)+(y
TAwl)+. (6)

Since wl , 1 ≤ l ≤ L, is a random vector, the above quantity is the empirical mean of L
random variables, z1, . . . , zL, where zl = (xTAwl)+(yTAwl)+. Furthermore, since wl’s are
independent and identically distributed, zl’s being functions of wl’s are also independent
and identically distributed. Hence, by the law of large numbers, as L→ ∞, the empirical
mean of zl’s converges to the true mean, that is,

lim
L→∞

hx
Thy (7)

= lim
L→∞

1
L

L

∑
l=1

(xTAwl)+(y
TAwl)+ (8)

=
∫

w∈Rd
(xTAw)+(yTAw)+p(w)dw (9)

=
1

(2π)
d
2

∫
w∈Rd

(xTAw)+(yTAw)+e−
‖w‖2

2 dw. (10)

If we substitute Σ = 1
M AAT , we have

lim
L→∞

hx
Thy =

M
2π

√
xTΣx

√
yTΣy(sin θΣ

+(π − θΣ) cos θΣ), (11)

where θΣ = cos−1 xTΣy√
xTΣx
√

yTΣy
. Here, the last equation follows from the derivation of

the arc-cosine kernel [71]. In this case, the inner product of data representations in the
infinite-dimensional space can be easily computed.

Hence, we can map features to specified or infinite dimensions. In the next section, we
introduce how to combine feature learning models and the “stretching” operation.

3.3. Stretching Deep Architectures

The architecture of SDA is shown in Figure 2. Unlike traditional DNNs, which use
feedforward and backforward propagation to perform prediction and optimization, SDA is
based on stacked feature learning models and the stretching technique we mentioned above.
Since there are tons of connections between DNN nodes, a huge number of parameters are
included. Due to this deficiency, DNNs often spend plenty of time to search optimal solu-
tions by back-propagation. SDA can avoid these drawbacks using the following measures.

First of all, feature learning modules are stacked to build the backbone of SDA [22].
In general, feature learning models can be formulated as follows. Given a set of n data,
{xT

1 , . . . , xT
n} ∈ <D, where D is the dimensionality of the data space, we use the backbone

network of SDA to obtain the compact representations of these data, i.e., {yT
1 , . . . , yT

n} ∈
<d, where d is the dimensionality of the lower-dimensional embeddings. At this stage,
the mapping of data from the original D-dimensional space to the target d-dimensional
space can be described as

D =⇒ D1 =⇒ · · · =⇒ Di =⇒ · · · =⇒ Dp−1 =⇒ d, (12)



Electronics 2023, 12, 1537 7 of 21

where p is the total steps of mappings. Here, many feature learning models can be used
at each layer. Therefore, we can extract the semantic information of data gradually as the
feature learning models are stacked and optimized layer by layer. Suppose that the dimen-
sionality of the target embedding space is d and the number of hidden layers is p. For the
nonlinear feature learning modules, we map the data using the following architecture:

D
PCA

D1
FL

D2
FL

D3 . . .
FL

Dp
FL

d, (13)

where ‘FL’ represents the feature learning models. For the nonlinear feature learning
methods, since they have no projection matrix for stretching, we apply PCA at the last layer.
The architectures are designed by

D
PCA

D1
FL

D2
FL

D3 . . .
FL

Dp
FL

d
PCA

d. (14)

In particular, the linear projection matrix of the last feature learning model is denoted
by A.

…
……
……
…

…
…

…
…

…
…

D D D D di1 p-1 L

Figure 2. The architecture of SDA. D is the dimensionality of the data space, Di is the dimensionality
of intermediate layer, the solid arrow represents feature learning model, and the dotted arrow can
be expressed as stretching operation. From this figure, we can see that the number of features
continues to decrease with the deepening of the intermediate layer. Lastly, the features are mapped
to a high-dimensional space by the stretching operation.

Secondly, to further improve the performance of SDA, we apply the stretching op-
eration to the projection matrix A, although stretching can be applied to any projection
matrix between the successive layers of SDA [42]. Hence, high-dimensional representations
can be learned, and the experimental results shown in the following section show that
the high-dimensional representations generally deliver higher classification accuracy than
those before stretching.

In the end, we can learn semantic representations of data using SDA. Here, please note
that SDA is only based on stacked feature learning models and the stretching operation,
while no back-propagation is needed. Thus, the optimization phase of SDA is very time-
saving. Furthermore, experiments also show that SDA is not only very effective, but it can
be combined with many other techniques. Therefore, SDA is very flexible and easy to be
implemented. Meanwhile, although the stretching operation can be applied to map the data
into a space with infinite dimensions, it is not necessary that the recognition accuracy in this
space with infinite dimensions will be the highest, as discussed in the following section.



Electronics 2023, 12, 1537 8 of 21

4. Experimental Results

To evaluate SDA, we have conducted extensive experiments on various applications
with comparisons to related approaches. In the following, we report the experimental
settings and results.

4.1. Result on Texture Data Sets

In this subsection, we introduce the experimental results obtained on the texture
data sets.

4.1.1. Psychophysical Experiments

In this experiment, we used 450 texture images, which were generated by 23 procedural
texture models (23 categories) [23,72]. As shown in Figure 1, we selected some example
images randomly from this data set. The score of each perceptual feature is represented
by 1 to 9. A ‘1’ indicates that the observer’s perception of the perceptual feature is weak,
and a ‘9’ is very strong. The perceptual features were designed based on previous work
on texture perception [17,19]. A total of 12 perceptive features were found to be the most
important through a thorough analysis of the psychophysical test results. They were
contrast, repetitiveness, granularity, randomness, roughness, density, direction, structural
complexity, coarseness, regularity, orientation, and uniformity. Hence, each texture image
is represented by a 12-dimensional vector, corresponding to the values of the 12 perceptual
features (All data files are available at https://figshare.com/articles/dataset/procedural_
textures/1289700, accessed on 31 December 2020).

4.1.2. Visualization

To visualize the 12-dimensional perceptual features in 2D and 3D spaces, we used
t-SNE to learn the low-dimensional embeddings of the original data. The learned results
are shown in Figure 3. From the figure, we can see in the original data space that it is very
challenging to distinguish the classes from each other, because different classes are heavily
overlapped with each other.

Figure 3. 2D and 3D embeddings of the original data. Here, different colors represent different classes.

Figure 4 shows two texture images; their appearances look very similar. However,
they are generated from different procedural models, i.e., they belong to two different
categories. The psychophysical test results show that the 12 perceptual features of the left
image are (5.3, 6.05, 4.8, 3.35, 4.75, 5, 5.25, 3.65, 5, 5.3, 5.6, 6.7), and that of the right image
are (5.65, 6.7, 4.75, 2.9, 4.3, 5.15, 4.65, 3.85, 4.4, 6.05, 5.35, 6.75). Due to the fact that even
humans find it very difficult to distinguish them from each other, we considered combining
data belonging to different classes but with similar appearance together. In this case, we

https://figshare.com/articles/dataset/procedural_textures/1289700
https://figshare.com/articles/dataset/procedural_textures/1289700


Electronics 2023, 12, 1537 9 of 21

obtained a 13-class problem. The new 2D and 3D embedding of the combined data are
shown in Figure 5.

Figure 4. Two texture images belonging to different categories, but having very similar appearance.

Figure 5. 2D and 3D embeddings of the combined data.

4.1.3. Classification Results

Both the original and combined texture perceptual data (12-dimensional perceptual
features) were used to evaluate the ability of the feature learning models and the proposed
deep architectures in processing texture perception features. Specifically, the classifier
used in SDA was a support vector machine (SVM) with the radial basis function (RBF)
kernel [73], and 5-fold cross validation was used to mean the accuracy of the experimental
results. In particular, we tested the compared methods on different settings with respect to
the dimensionality of the low-dimensional embeddings. Concretely, the dimensionality of
the low-dimensional embeddings was set to 3 and 6, respectively. For concreteness, if the
dimensionality of the embeddings was 3, an architecture

12D
PCA

10D
FL

8D
FL

6D
FL

5D
FL

4D
FL

3D
SC

L. (15)

was used, while if the dimensionality of the embeddings was 6, an architecture

12D
PCA

10D
FL

8D
FL

6D
SC

L, (16)

was applied. If the last feature learning module is nonlinear, we added a PCA layer to it, as
mentioned in Section 3.3. Generally, the mapping modes of linear and nonlinear feature
learning models were different. A projection matrix could be learned to perform feature
mapping in linear feature learning models, whilst for nonlinear feature learning models,
the three nearest neighbors of a test datum in the training data were used to estimate its
low-dimensional representation. The final low-dimensional representations of the test data
were obtained by learning layer by layer.

For MFA [40], the numbers of nearest neighbors for constructing the intrinsic graph
and penalty graph were set to 5 and 15, respectively. For deep autoencoder (Autoencoder),
as it is a classical deep learning method, we used it as the baseline. We set the layers of



Electronics 2023, 12, 1537 10 of 21

Autoencoder for the target spaces with dimensionality 3 and 6 as 12D-20D-8D-4D-3D and
12D-20D-11D-7D-6D. For the LeNet model, we used two convolutional layers and two fully
connected layers without a pooling layer because of the lower dimension of texture data.
The kernel size was set to 2× 2, the stride was set to 1, the number of nodes in the first fully
connected layer was set to 100, the epoch was set to 4000, the initial learning rate was set to
0.001, and the momentum was set to 0.9. For the PCANet model, we used two PCA filter
stages, one binary hashing stage, and one blockwise histogram. In PCANet, the filter size,
the number of filters, and the block size were set to k1 = k2 = 3, L1 = L2 = 2, and 2× 2,
respectively. For the learning rate policy, we used

ri = r0 × (1 + γ× i)−m, (17)

where ri was the learning rate of the ith iteration, r0 was the initial learning rate, γ was set to
0.0001, and m was set to 0.75. Here, the compared deep learning models, i.e., Autoencoder,
LeNet, and PCANet, have similar scales of parameters with SDA, while including both
fully connected networks and CNNs. For other deep learning models, such as ResNet and
ViT [31,35], although they are widely used in many applications, they have much more
parameters than SDA. It is not fair to compare SDA with them. Hence, we do not consider
them for the comparison with SDA in this experiment.

Tables 1 and 2 show the classification results obtained by the compared methods. Here,
because LDA-based approaches performed much worse than others, the results obtained
by them were not included. From Tables 1 and 2, we can see that, firstly, both the feature
learning models and SDA are effective for the visual texture perception problems; secondly,
deep learning models perform better than or at least comparable with the compared feature
learning models; and thirdly, SDA performs better than other stretching deep architectures,
i.e., the previous Autoencoder, LeNet, and PCANet. In addition, we can find the best two
stretching spaces, 48D and 96D, which donate more “winner” results than other spaces.

On the other hand, we can find that when we adopted the stretching strategy, SDA
could achieve good performances in the 6D space using the deep architecture with stacked
PCAs, while in the 3D space, the deep architecture with stacked SNEs performed better
than other methods. This may be because that PCA is a linear model, while SNE is a
nonlinear model. When the dimensionality of the target space is relatively high, linear
models could achieve better performance; while the dimensionality of the target space is
relatively low, nonlinear models could perform better. In the 6D space, with the stretching
operation, the accuracy of the deep architectures with stacked PCAs and MDSs increased
for L < 96, those with stacked PPCAs, SNEs and Sammons increased for L < 192, that with
stacked MFAs increased for L < 48, and all the methods achieved better performance than
in the original 12D space. In the 3D space, we can obtain a similar conclusion as in the 6D
space, and only the deep architectures with stacked SNEs were better than in the original
data space when stretching in 3D space. These results sufficiently show that the stretching
operation could improve the performance of deep architectures.

Figure 6 shows the classification results obtained by variants of SDA on the combined
texture data. We chose the 6D space as the semantic space. Here, we can see two interesting
points: the classification results in this space are better than in the original space using the
deep architectures with stacked PCAs, PPCAs, MFAs, and the stretching operation; and
not surprisingly, the deep architecture with stacked PCAs achieves the highest accuracy.



Electronics 2023, 12, 1537 11 of 21

Table 1. Classification accuracy in the 6D space (before stretching) of the texture data set. “ORIG”
represents the results obtained in the original data space. “shallow” denotes that algorithm only uses
the single-layer feature learning models. ‘L’ represents the dimensionality of the stretched space.
The best two results are highlighted with boldface.

Method Shallow Deep L = 12 L = 24 L = 48 L = 96 L = 192 L = 500 L = ∞

ORIG 0.5524
±0.2302

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

Autoencoder -
-

0.3984
±0.1116

-
-

-
-

-
-

-
-

-
-

-
-

-
-

LeNet -
-

0.4214
±0.1008

-
-

-
-

-
-

-
-

-
-

-
-

-
-

PCANet -
-

0.4691
±0.0854

-
-

-
-

-
-

-
-

-
-

-
-

-
-

PCA 0.4388
±0.2178

0.4215
±0.2408

0.5578
±0.0617

0.5640
±0.0264

0.6217
±0.0673

0.6266
±0.0649

0.6168
±0.0609

0.6109
±0.0562

0.4228
±0.0365

PPCA 0.3226
±0.1947

0.3115
±0.0623

0.3215
±0.0980

0.3885
±0.0620

0.3730
±0.0445

0.3966
±0.0531

0.4175
±0.1144

0.3829
±0.0491

0.2404
±0.0507

MDS 0.4365
±0.1742

0.5406
±0.0995

0.5386
±0.0567

0.5684
±0.0562

0.5758
±0.0524

0.5875
±0.0683

0.5619
±0.0513

0.5660
±0.0478

0.3966
±0.0516

Sammon 0.5023
±0.1964

0.5658
±0.0543

0.5300
±0.0567

0.5783
±0.0597

0.5700
±0.0439

0.5922
±0.0710

0.5989
±0.0734

0.5931
±0.0636

0.4321
±0.0586

SNE 0.4192
±0.2409

0.5289
±0.1371

0.5199
±0.0435

0.5547
±0.0617

0.5529
±0.0537

0.5610
±0.0581

0.5718
±0.0610

0.5693
±0.0576

0.4106
±0.0720

MFA 0.5552
±0.0622

0.5593
±0.0798

0.5601
±0.0712

0.5621
±0.0734

0.5738
±0.0671

0.5496
±0.0446

0.5422
±0.0495

0.5335
±0.0527

0.3984
±0.0540

Table 2. Classification accuracy in the 3D space of texture data set.

Method Shallow Deep L = 12 L = 24 L = 48 L = 96 L = 192 L = 500 L = ∞

ORIG 0.5524
±0.2302

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

Autoencoder -
-

0.4392
±0.0982

-
-

-
-

-
-

-
-

-
-

-
-

-
-

LeNet -
-

0.4214
±0.1008

-
-

-
-

-
-

-
-

-
-

-
-

-
-

PCANet -
-

0.4691
±0.0854

-
-

-
-

-
-

-
-

-
-

-
-

-
-

PCA 0.3982
±0.0906

0.3667
±0.0795

0.4596
±0.0529

0.4575
±0.0695

0.4765
±0.0812

0.4836
±0.0712

0.4624
±0.0309

0.4882
±0.0523

0.3638
±0.0254

PPCA 0.4649
±0.0703

0.4679
±0.0577

0.5095
±0.0619

0.5115
±0.0678

0.5212
±0.0652

0.5266
±0.0573

0.5046
±0.0601

0.5092
±0.0851

0.3988
±0.0807

MDS 0.4628
±0.0724

0.4797
±0.0954

0.4921
±0.0514

0.5035
±0.0424

0.5342
±0.0614

0.5028
±0.0640

0.4963
±0.0661

0.5243
±0.0586

0.3806
±0.0494

Sammon 0.4698
±0.0653

0.4791
±0.0774

0.5245
±0.0713

0.5245
±0.0639

0.5088
±0.0617

0.5056
±0.0609

0.5153
±0.0562

0.5007
±0.0619

0.3852
±0.0374

SNE 0.5531
±0.0904

0.4683
±0.0489

0.5160
±0.0568

0.5028
±0.0452

0.5248
±0.0677

0.5631
±0.0521

0.5039
±0.0647

0.4915
±0.0579

0.3843
±0.0333

MFA 0.4601
±0.0475

0.4634
±0.0475

0.4689
±0.0352

0.4712
±0.0431

0.4856
±0.0372

0.5012
±0.0234

0.4765
±0.0528

0.4712
±0.0327

0.3834
±0.0413

Figure 6. Classification results obtained on the combined texture data. Different lines represent
different methods, while we chose the 12-, 24-, 48-, 96-, 192-, 500-dimensional space for stretching.
The blue line represents the classification result in the original data space.



Electronics 2023, 12, 1537 12 of 21

4.2. Experimental Results on Handwritten Text Data Sets

To evaluate the effectiveness of SDA in the applications of handwritten text recog-
nition, we tested it on three data sets, i.e., handwritten digits data set USPS (http://
www.gaussianprocess.org/gpml/data/, accessed on 31 December 2020), ancient Arabic
documents data set Ibn Sina (http://www.causality.inf.ethz.ch/al_data/IBN_SINA.html,
accessed on 31 December 2020) and English letter data set Letter (http://archive.ics.uci.
edu/ml/, accessed on 31 December 2020). The classifier used in SDA were SVMs [73]. Both
deep neural network models and shallow feature learning models were used to compare
with SDA. For concreteness, PCA [24], PPCA [36], Sammon [37], SNE [38], MDS [39],
LDA [25], MFA [40,41], and deep autoencoder (Autoencoder) [7] were used. The recog-
nition results in the original space of data and that learned with and without stretching
in SDA were all reported. Different values of L were tested for the stretching operation.
For the parameter settings of the compared methods, we adopted the same as introduced
in the above subsection.

4.2.1. Results on the USPS Data Set

The USPS data set includes 10 classes of handwritten digits, with a dimensionality
of 256. There are 7291 training samples and 2007 test samples. Figure 7 shows 10 images
from each class of digits ‘0’ to ‘9’. On this data set, the structure of the Autoencoder was
set to 256D-512D-256D-128D-64D-32D. For the LeNet model, we used two convolutional
layers, two pooling layers, and two fully connected layers. The kernel size of convolutional
layers and pooling layer was set to 2× 2, the stride was set to 1, the number of nodes of
the first layer was set to 200, the epoch was set to 8000, the initial learning rate was set to
0.001, the learning rate policy was set as shown in Equation (17), and the momentum was
set to 0.9. For the PCANet model, we also used two PCA filter stages, one binary hashing
stage, and one blockwise histogram. Parameters in PCANet, the filter size, the number
of filters, and the block size, were set to k1 = k2 = 3, L1 = L2 = 4, and 7× 7, respectively.
The particle swarm optimization (PSO) method [74] was used to learn the parameter C
in SVMs. If SDA was built using linear feature learning modules, the architecture was
designed as

256D
FL

128D
FL

64D
FL

32D
SC

L, (18)

where the feature learning modules were represented by ‘FL’, and the stretching operation
was represented by ‘SC’. Note that when LDA was used to construct SDA, since the number
of classes of the USPS data set was 10, the dimension of the learned subspace was set to 9.
Since nonlinear feature learning models had no projection matrix, we used PCA on the last
layer to perform stretching

256D
FL

128D
FL

64D
FL

32D
PCA

32D
SC

L. (19)

The classification results obtained by different models are shown in Table 3. We can
easily see that SDA outperforms not only shallow feature learning models but also some
deep neural networks. Moreover, stretching deep architectures can indeed improve classi-
fication accuracy, but it does not apply to all dimensions. For example, the classification
accuracy decreases when L is very large or close to infinite.

From Table 3, we can see that the performances of the deep architectures with stacked
PCAs, Sammons, SNEs, MDSs, and MFAs increase for L < 512. Furthermore, the per-
formances of that with stacked PPCAs and LDAs increases for L < 256. In addition,
the results achieved by linear methods are better than nonlinear methods. Finally, PCA-
and MFA-based deep architectures achieve the highest classification accuracy on the USPS
data set.

Figure 8 shows the effect of the stretching operation in SDA that is built upon PCAs.
We can see that the accuracy increases first and then decreases with the increase in stretching
dimension L, and the highest accuracy is obtained when stretching to the 682 dimension.

http://www.gaussianprocess.org/gpml/data/
http://www.gaussianprocess.org/gpml/data/
http://www.causality.inf.ethz.ch/al_data/IBN_SINA.html
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/


Electronics 2023, 12, 1537 13 of 21

Figure 7. The samples of USPS handwritten digits.

Table 3. Classification accuracy on the USPS data set. “ORIG” represents the results obtained in the
original data space. “shallow” denotes that the method is applied with only a single-layer feature
learning model. ‘L’ represents the dimensionality of the stretched space. The best two results are
highlighted in boldface.

Method Shallow Deep L = 64 L = 128 L = 256 L = 512 L = 1000 L = ∞

ORIG 0.8366 – – – – – – –
Autoencoder – 0.9402 – – – – – –
LeNet – 0.8032 – – – – –
PCANet – 0.9477 – – – – –
PCA 0.9402 0.9427 0.9472 0.9492 0.9507 0.9517 0.8829 0.8615
PPCA 0.9342 0.9372 0.9367 0.9382 0.9372 0.9342 0.8789 0.8645
Sammon 0.9292 0.9302 0.9318 0.9342 0.9372 0.9397 0.8894 0.8794
SNE 0.9312 0.9367 0.9372 0.9382 0.9397 0.9422 0.8869 0.8749
MDS 0.9278 0.9292 0.9307 0.9352 0.9367 0.9387 0.8914 0.8824
LDA(9D) 0.9243 0.9268 0.9292 0.9342 0.9312 0.9302 0.8969 0.8879
MFA 0.9392 0.9432 0.9412 0.9442 0.9457 0.9497 0.8929 0.8857

Figure 8. The effect of stretching in SDA on the USPS data set.

4.2.2. Results on the Ibn Sina Data Set

Figure 9 shows one page of the Ibn Sina ancient Arabic document images. We can easily
see that the recognition of ancient Arabic words is more challenging than handwritten
digit recognition. For this data set, 50 pages of the manuscript were used for training
(including 17,543 training samples) and 10 pages for testing (including 3125 test samples)
from 174 classes. The dimensionality of the Ibn Sina data was 200. In this experiment,
for Autoencoder, the layers were set to 200D-400D-200D-50D-25D. The parameters of the
LeNet model and PCANet were the same as the experiment of USPS, except that the epoch
of LeNet was set to 40,000. The parameter C of SVMs was set to 15. Empirically, we
designed a four-layer deep architecture for SDA using linear feature learning modules

200D
FL

100D
FL

50D
FL

25D
SC

L. (20)



Electronics 2023, 12, 1537 14 of 21

The architecture of SDA using nonlinear feature learning modules was set as follows

200D
FL

100D
FL

50D
FL

25D
PCA

25D
SC

L. (21)

Figure 9. One page of the Ibn Sina ancient Arabic document images.

Table 4 shows the classification results on the Ibn Sina data set. We can see that the
accuracy is improved when we use the stretching operation. Furthermore, the accuracy is
higher than that in the original data in most cases when the feature dimension is stretched
to 200 (original dimensionality). The result of the deep architecture with stacked SNEs
increases when L < 500, and others increase when L < 2000. In addition, same as on the
USPS data set, the deep architectures with stacked MFAs and PCAs achieve the best results.

Table 4. Classification accuracy on the Ibn Sina data set.

Method Shallow Deep L = 100 L = 200 L = 500 L = 2000 L = ∞

ORIG 0.9274 – – – – – –
Autoencoder – 0.9334 – – – – –
LeNet – 0.8195 – – – – –
PCANet – 0.8995 – – – – –
PCA 0.9056 0.9184 0.9258 0.9328 0.9453 0.9478 0.9002
PPCA 0.9232 0.9258 0.9274 0.9347 0.9363 0.9369 0.9011
Sammon 0.9110 0.9197 0.9235 0.9274 0.9315 0.9254 0.9082
SNE 0.9034 0.9168 0.9197 0.9235 0.9261 0.9242 0.9011
MDS 0.9200 0.9219 0.9286 0.9264 0.9267 0.9276 0.9058
LDA 0.9258 0.9274 0.9389 0.9395 0.9384 0.9389 0.9014
MFA 0.9263 0.9316 0.9359 0.9440 0.9466 0.9491 0.9107

4.2.3. Results on the Letter Data Set

The Letter data set includes 20,000 samples from 26 classes. We used 16,000 data for
training and 4000 data for testing. In our experiments, the layers of Autoencoder were set
to 16D-32D-16D-15D-14D. For the LeNet model, we used two convolutional layers and two
fully connected layers without a pooling layer. The kernel size was set to 2× 2, the stride
was set to 1, the number of nodes of the first fully connected layer was set to 64, the epoch
was set to 4000, the initial learning rate was set to 0.001, the learning rate policy was set
as shown in Equation (17), and the momentum was set to 0.9. For PCANet, we used two
PCA filter stages, one binary hashing stage, and one blockwise histogram. In PCANet,
the filter size, the number of filters, and the block size were set to k1 = k2 = 3, L1 = L2 = 4,
and 4× 4, respectively. The parameter C of the SVM classifier was set to 35. Due to the



Electronics 2023, 12, 1537 15 of 21

dimensionality of the data being less than other data set, we only use a two-layer structure.
For linear feature learning modules, the architecture we designed was as follows:

16D
FL

15D
FL

14D
SC

L. (22)

For nonlinear feature learning modules, the architecture was

16D
FL

15D
FL

14D
PCA

14D
SC

L. (23)

Table 5 shows the classification results on the Letter data set. We can obtain a similar
conclusion as on the USPS and the Ibn Sina data set. The results of LeNet and PCANet
are especially poor. The reason is that the dimensionality of the Letter data is low, and
CNNs are not suited to it. In addition, we can find that the deep architectures with stacked
PPCAs, LDAs, and MFAs achieve the best results. By analyzing the obtained results on
these three data sets (USPS, Ibn Sina, and Letter), we can basically obtain the consistent
conclusion that if we stretch the deep architecture to an infinite length, the original features
might be submerged in the noise. On the contrary, if we set the length suitably, the new
features will be adapted to the classifier and obtain better results than without stretching.

Table 5. Classification accuracy on the Letter data set.

Method Shallow Deep L = 50 L = 200 L = 500 L = 1000 L = ∞

ORIG 0.8635 – – – – – –
Autoencoder – 0.8823 – – – – –
LeNet – 0.6070 – – – – –
PCANet – 0.5823 – – – – –
PCA 0.8565 0.8600 0.8613 0.8675 0.8713 0.8680 0.8613
PPCA 0.9610 0.9690 0.9703 0.9680 0.9430 0.9285 0.8988
Sammon 0.8233 0.8340 0.8388 0.8413 0.8345 0.8313 0.8255
SNE 0.7715 0.7750 0.7845 0.7893 0.8023 0.7895 0.7760
MDS 0.8673 0.8723 0.8750 0.8795 0.8770 0.8653 0.8620
LDA 0.9630 0.9688 0.9693 0.9720 0.9730 0.9713 0.9610
MFA 0.9670 0.9690 0.9713 0.9735 0.9758 0.9680 0.9520

4.3. Classification of the Cifar-10 Data Set

The CIFAR-10 data set is a relatively large data set, which consists of 60,000 32× 32
color images in 10 classes, with 6000 images per class. There are 50,000 training images
and 10,000 test images. Figure 10 shows some examples of the CIFAR-10 data set from
10 categories. For the purpose of reducing computational cost, we attempted to create a
compact representation of the data using an efficient local binary patterns algorithm. As a
result, the representation of dimensionality 36 and 256 were adopted, and the data were
normalized to [0, 1] as well. For SDA, the layers were set to 36D-18D-9D and 256D-128D-
64D-32D. For Autoencoder, The layers were set to 36D-72D-36D-18D-9D and 256D-512D-
126D-128D-64D-32D. For the LeNet model, we used two convolutional layers and two fully
connected layers without a pooling layer. The kernel size was set to 2× 2, the stride was
set to 1, the number of nodes of the first fully connected layer was set to 64, the epoch
was set to 4000, the initial learning rate was set to 0.01, the learning rate policy was set
as shown in Equation (17), and the momentum was set to 0.9. For PCANet, we used two
PCA filter stages, one binary hashing stage, and one blockwise histogram. In the PCANet,
the filter size, the number of filters, and the block size were set to k1 = k2 = 3, L1 = L2 = 4,
and 7× 7, respectively. To further demonstrate the performance of SDA, we compared SDA
with the classical CNN model AlexNet [29] on CIFAR-10 (256) data set. All the parameters
of AlexNet are the same as [29] except for the kernel size of convolutional layers and
pooling layers. We set the kernel size to 2× 2, and the stride was set to 1. The parameter C
of the SVM classifier was set to the default value.



Electronics 2023, 12, 1537 16 of 21

Figure 10. CIFAR-10 color images from 10 categories. Each column corresponds to one category.

Tables 6 and 7 show the experimental results of the CIFAR-10 data set. We can basically
achieve the same conclusion as previous experiments. In addition, SDA outperforms
AlexNet, LeNet, and PCANet in these experiments. The deep architecture with stacked
MFAs achieves the best results. From these experiments, we can obtain that SDA works
well in the relatively large-scale data set for semantic representation learning.

Table 6. Classification accuracy obtained on the CIFAR-10 (36) set.

Method Shallow Deep L = 36 L = 72 L = 200 L = 500 L = ∞

ORIG 0.3225 – – – – – –
Autoencoder – 0.3521 – – – – –
LeNet – 0.3256 – – – – –
PCANet – 0.2569 – – – – –
PCA 0.3379 0.3385 0.3398 0.3439 0.3489 0.3478 0.3358
PPCA 0.3385 0.3374 0.3385 0.3395 0.3402 0.3411 0.3388
Sammon 0.3278 0.3285 0.3312 0.3356 0.3389 0.3378 0.3314
SNE 0.3355 0.3387 0.3397 0.3425 0.3438 0.3441 0.3322
MDS 0.3311 0.3335 0.3356 0.3397 0.3415 0.3401 0.3325
LDA 0.3178 0.3211 0.3256 0.3298 0.3301 0.3341 0.3211
MFA 0.3401 0.3438 0.3479 0.3511 0.3546 0.3536 0.3359

Table 7. Classification accuracy obtained on the CIFAR-10 (256) set.

Method Shallow Deep L = 64 L = 128 L = 256 L = 500 L = 1000 L = ∞

ORIG 0.3218 – – – – – – –
Autoencoder – 0.3448 – – – – – –
AlexNet – 0.3356 – – – – – –
LeNet – 0.3221 – – – – – –
PCANet – 0.2569 – – – – – –
PCA 0.3378 0.3382 0.3398 0.3405 0.3451 0.3442 0.3435 0.3382
PPCA 0.3358 0.3389 0.3415 0.3426 0.3456 0.3458 0.3425 0.3378
Sammon 0.3314 0.3356 0.3389 0.3436 0.3441 0.3432 0.3402 0.3347
SNE 0.3312 0.3341 0.3375 0.3389 0.3401 0.3412 0.3385 0.3289
MDS 0.3345 0.3358 0.3425 0.3435 0.3432 0.3438 0.3389 0.3322
LDA 0.3341 0.3358 0.3372 0.3396 0.3411 0.3415 0.3401 0.3356
MFA 0.3402 0.3414 0.3456 0.3472 0.3488 0.3452 0.3402 0.3399

4.4. Improving the Effectiveness of CNNs

To demonstrate that SDA can improve the effectiveness of CNNs on image classifi-
cation tasks, we built a deep CNN model with its structure shown in Table 8 and trained
this CNN model on the original CIFAR-10 data set. For this CNN model, we used two
convolutional layers, all of which used max pooling, and two fully connected layers, where
the numbers of nodes were set to 512 and 256, respectively. The RMSProp optimizer was
used to perform optimization of the parameters. For SDA, the input features were that
output from the second fully connected layer of the CNN model. In addition, the layers



Electronics 2023, 12, 1537 17 of 21

were set to 256D-200D-150D-100D-50D. Particularly, PCA, LDA, and MDS were selected to
construct the SDA architecture and perform comparisons with the baseline CNN model.

Table 9 shows that SDA with stacked PCAs achieves the best results among the
compared models. Hence, we can easily conclude that SDA can make full use of the
fully connected layer of the CNNs and improve their classification accuracy. In particular,
for large image data sets or complex image classification problems, we can apply CNNs or
ViT to extract features for SDA, or integrate SDA with CNNs and ViT to perform image
classification. In this case, SDA may improve the performance of the original CNNs or
ViT model.

Table 8. Structure of our baseline convolutional neural network.

Layer Output Shape Kernal Size

Conv_1 (32, 32, 32) (3 × 3)
Activation_1 (ReLU) (32, 32, 32) –
Max Pooling_1 (16, 16, 32) (2 × 2)
Conv_2 (16, 16, 64) (3 × 3)
Activation_2 (ReLU) (16, 16, 64) –
Max pooling_2 (8, 8, 64) (2 × 2)
Flatten_1 (4096, 1) –
Dense_1 (512, 1) –
Dense_2 (256, 1) –
Dense_3 (Softmax) (10, 1) –

Table 9. Classification accuracy obtained on the CIFAR-10 data set.

Method Deep L = 100 L = 200 L = 500 L = 1000 L = ∞

Baseline CNN 0.7158 – – – – –
PCA 0.7347 0.7348 0.7364 0.7345 0.7320 0.7205
LDA 0.7208 0.7241 0.7198 0.6098 0.6124 0.6972
MDS 0.7320 0.7340 0.7325 0.7321 0.7319 0.7193

4.5. Evaluation of the Number of Feature Learning Layers

To evaluate the number of feature learning layers, we designed the experiments on
handwritten text data sets. We set the number of hidden layers from one to seven layers,
and the parameters were the same as in previous experiments. For the last stretching
layers, we set L as the same as the previous experiments that achieved the best results.
Furthermore, all SDAs were based on stacking MFAs.

Figure 11 shows the results on the different number of feature learning layers. We
can see that three to five feature learning layers obtain the best results. In addition, when
the number of feature learning layers are less than 3, the results increase along with the
number of feature learning layers. Then, the results will decrease with the increase in the
number of feature learning layers.



Electronics 2023, 12, 1537 18 of 21

Figure 11. The effect of different numbers of feature learning layers.

5. Conclusions

In this paper, we proposed a novel deep learning method called SDA for semantic
representation learning. SDA is constructed using stacked shallow feature learning mod-
ules. The stretching technique is applied to improve the learning performance of SDA.
Extensive experiments on visual texture perception and image classification problems
demonstrate that, in most cases, SDA greatly improves both traditional feature learning
and deep learning models. In some cases, SDA can also improve the accuracy of CNNs.
For future work, we plan to adopt some other techniques to enhance SDA, such as su-
pervised fine-tuning and dropout regularization. It is expected that these techniques can
greatly improve SDA in many object recognition tasks. Specifically, when the training
data are limited, the regularization techniques can, to some extent, handle the overfitting
problem. Moreover, we would like to extend the applications of SDA to real-world open
sets, which are much more challenging than the tested closed sets in this paper.

Author Contributions: Conceptualization, L.-N.W., Y.Z. and G.Z.; methodology, Y.Z. and G.Z.;
software, Y.Z.; validation, L.-N.W., H.W. and J.D.; formal analysis, G.Z.; investigation, L.-N.W.;
resources, J.D.; data curation, Y.Z.; writing—original draft preparation, Y.Z. and G.Z.; writing—review
and editing, L.-N.W. and H.W.; visualization, Y.Z.; supervision, J.D.; project administration, G.Z. and
J.D.; funding acquisition, G.Z. All authors have read and agreed to the submission of this manuscript.

Funding: This work was partially supported by the National Key Research and Development
Program of China under Grant No. 2018AAA0100400, HY Project under Grant No. LZY2022033004,
the Natural Science Foundation of Shandong Province under Grants No. ZR2020MF131 and No.
ZR2021ZD19, the Project of the Marine Science and Technology cooperative Innovation Center under
Grant No. 22-05-CXZX-04-03-17, the Science and Technology Program of Qingdao under Grant No.
21-1-4-ny-19-nsh, and the Project of Associative Training of the Ocean University of China under
Grant No. 202265007.

Data Availability Statement: The data used in this work are all publicly available on the Internet.
Please follow the links provided in our paper.

Acknowledgments: We want to thank “Qingdao AI Computing Center” and “Eco-Innovation Center”
for providing inclusive computing power, and the technical support of MindSpore during the
completion of this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2023, 12, 1537 19 of 21

References
1. Chen, K.; Salman, A. Learning Speaker-Specific Characteristics with a Deep Neural Architecture. Neural Netw. IEEE Trans. 2011,

22, 1744–1756. [CrossRef]
2. Stuhlsatz, A.; Lippel, J.; Zielke, T. Feature Extraction with Deep Neural Networks by a Generalized Discriminant Analysis. Neural

Netw. Learn. Syst. IEEE Trans. 2012, 23, 596–608. [CrossRef]
3. Yuan, M.; Tang, H.; Li, H. Real-Time Keypoint Recognition Using Restricted Boltzmann Machine. Neural Netw. Learn. Syst. IEEE

Trans. 2014, 25, 2119–2126. [CrossRef]
4. Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. Pattern Anal. Mach. Intell. IEEE

Trans. 2013, 35, 1798–1828. [CrossRef] [PubMed]
5. Deerwester, S.; Dumais, S.; Landauer, T.; Furnas, G.; Harshman, R. Indexing by Latent Semantic Analysis. JASIS 1990, 41, 391–407.

[CrossRef]
6. Landauer, T.; Foltz, P.; Laham, D. An Introduction to Latent Semantic Analysis. Discourse Process. 1998, 25, 259–284. [CrossRef]
7. Hinton, G.; Salakhutdinov, R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [CrossRef]

[PubMed]
8. Ainsworth, S. DeFT: A Conceptual Framework for Considering Learning with Multiple Representations. Learn. Instr. 2006,

16, 183–198. [CrossRef]
9. Bengio, Y. Learning Deep Architectures for AI. Found. Trends Mach. Learn. 2009, 2, 1–127. [CrossRef]
10. Lee, H.; Grosse, R.; Ranganath, R.; Ng, A. Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical

Representations. In Proceedings of the ICML, Montreal, QC, Canada, 14–18 June 2009; ACM: New York, NY, USA, 2009; pp.
609–616.

11. Xiao, M.; Guo, Y. A Novel Two-Step Method for Cross Language Representation Learning. In Proceedings of the NIPS, Lake
Tahoe, NY, USA, 5–10 December 2013; pp. 1259–1267.

12. Huang, P.S.; He, X.; Gao, J.; Deng, L.; Acero, A.; Heck, L. Learning Deep Structured Semantic Models for Web Search Using
Clickthrough Data. In Proceedings of the CIKM, San Francisco, CA, USA, 27 October–1 November 2013; ACM: New York, NY,
USA, 2013; pp. 2333–2338.

13. Shen, Y.; He, X.; Gao, J.; Deng, L.; Mesnil, G. Learning Semantic Representations Using Convolutional Neural Networks for Web
Search. In Proceedings of the WWW, Seoul, Republic of Korea, 7–11 April 2014; pp. 373–374.

14. Oveis, A.H.; Giusti, E.; Ghio, S.; Martorella, M. A Survey on the Applications of Convolutional Neural Networks for Synthetic
Aperture Radar: Recent Advances. IEEE Aerosp. Electron. Syst. Mag. 2022, 37, 18–42. [CrossRef]

15. Landy, M.; Graham, N. Visual Perception of Texture. In Proceedings of the Visual Neurosciences; MIT Press: Cambridge, MA, USA,
2004; pp. 1106–1118.

16. Heeger, D.; Bergen, J. Pyramid-based Texture Analysis/Synthesis. In Proceedings of the SIGGRAPH, Los Angeles, CA, USA,
6–11 August 1995; ACM: New York, NY, USA, 1995; pp. 229–238.

17. Rao, A.; Lohse, G. Towards a Texture Naming System: Identifying Relevant Dimensions of Texture. Vis. Res. 1996, 36, 1649–1669.
18. Wolfson, S.; Landy, M. Examining Edge- and Region-based Texture Mechanisms. Vis. Res. 1998, 38, 439–446. [CrossRef] [PubMed]
19. Gurnsey, R.; Fleet, D. Texture Space. Vis. Res. 2001, 41, 745–757. [CrossRef] [PubMed]
20. Kingdom, F.; Hayes, A.; Field, D. Sensitivity to Contrast Histogram Differences in Synthetic Wavelet-Textures. Vis. Res. 2001,

41, 585–598. [CrossRef] [PubMed]
21. Durgin, F. Texture Contrast Aftereffects Are Monocular, Texture Density Aftereffects Are Binocular. Vis. Res. 2001, 41, 2619–2630.

[CrossRef] [PubMed]
22. Zheng, Y.; Zhong, G.; Liu, J.; Cai, X.; Dong, J. Visual Texture Perception with Feature Learning Models and Deep Architectures.

In Pattern Recognition, Proceedings of the 6th Chinese Conference, CCPR 2014, Changsha, China, 17–19 November 2014; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 401–410.

23. Liu, J.; Dong, J.; Cai, X.; Q, L.; Chantler, M. Visual Perception of Procedural Textures: Identifying Perceptual Dimensions and
Predicting Generation Models. PLoS ONE 2015, 10, e0130335. [CrossRef] [PubMed]

24. Jolliffe, I. Principal Component Analysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2002.
25. Fisher, R. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188. [CrossRef]
26. van der Maaten, L.; Postma, E.; van den Herik, H. Dimensionality Reduction: A Comparative Review. J. Mach. Learn. Res. 2009,

10, 66–71.
27. van der Maaten, L. An Introduction to Dimensionality Reduction Using Matlab. Report 2007, 1201, 62.
28. Salakhutdinov, R.; Hinton, G. Deep Boltzmann Machines. In Proceedings of the AISTATS, Clearwater, FL, USA, 16–19 April 2009;

pp. 448–455.
29. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of

the NIPS, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1106–1114.
30. Yin, F.; Wang, Q.F.; Zhang, X.Y.; Liu, C.L. ICDAR 2013 Chinese Handwriting Recognition Competition. In Proceedings of the

ICDAR, Washington, DC, USA, 25–28 August 2013; pp. 1464–1470.
31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
32. Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing.

ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [CrossRef]

http://doi.org/10.1109/TNN.2011.2167240
http://dx.doi.org/10.1109/TNNLS.2012.2183645
http://dx.doi.org/10.1109/TNNLS.2014.2303478
http://dx.doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://dx.doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
http://dx.doi.org/10.1080/01638539809545028
http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://dx.doi.org/10.1016/j.learninstruc.2006.03.001
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1109/MAES.2021.3117369
http://dx.doi.org/10.1016/S0042-6989(97)00153-3
http://www.ncbi.nlm.nih.gov/pubmed/9536367
http://dx.doi.org/10.1016/S0042-6989(00)00307-2
http://www.ncbi.nlm.nih.gov/pubmed/11248263
http://dx.doi.org/10.1016/S0042-6989(00)00284-4
http://www.ncbi.nlm.nih.gov/pubmed/11226504
http://dx.doi.org/10.1016/S0042-6989(01)00121-3
http://www.ncbi.nlm.nih.gov/pubmed/11520508
http://dx.doi.org/10.1371/journal.pone.0130335
http://www.ncbi.nlm.nih.gov/pubmed/26106895
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1016/j.isprsjprs.2020.12.010


Electronics 2023, 12, 1537 20 of 21

33. Yuan, Y.; Wang, L.N.; Zhong, G.; Gao, W.; Jiao, W.; Dong, J.; Shen, B.; Xia, D.; Xiang, W. Adaptive Gabor Convolutional Networks.
Pattern Recognit. 2022, 124, 108495. [CrossRef]

34. Niu, Z.; Zhong, G.; Yu, H. A Review on the Attention Mechanism of Deep Learning. Neurocomputing 2021, 452, 48–62. [CrossRef]
35. Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer.

IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 87–110. [CrossRef] [PubMed]
36. Tipping, M.; Bishop, C. Probabilistic Principal Component Analysis. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 1999, 61, 611–622.

[CrossRef]
37. Sammon, J. A Nonlinear Mapping for Data Structure Analysis. IEEE Trans. Comput. 1969, 18, 401–409. [CrossRef]
38. Hinton, G.; Roweis, S. Stochastic Neighbor Embedding. In Proceedings of the NIPS, Vancouver, BC, Canada, 9–14 December

2002; Volume 2, pp. 833–840.
39. Kruskal, J.; Wish, M. Multidimensional Scaling; Sage: New York, NY, USA, 1978; Volume 11.
40. Yan, S.; Xu, D.; Zhang, B.; Zhang, H.J.; Yang, Q.; Lin, S. Graph Embedding and Extensions: A General Framework for

Dimensionality Reduction. Pattern Anal. Mach. Intell. IEEE Trans. 2007, 29, 40–51. [CrossRef]
41. Zhong, G.; Chherawala, Y.; Cheriet, M. An Empirical Evaluation of Supervised Dimensionality Reduction for Recognition. In

Proceedings of the ICDAR, Washington, DC, USA, 25–28 August 2013; pp. 1315–1319.
42. Pandey, G.; Dukkipati, A. Learning by Stretching Deep Networks. In Proceedings of the ICML, Beijing, China, 21–26 June 2014;

pp. 1719–1727.
43. Zheng, Y.; Cai, Y.; Zhong, G.; Chherawala, Y.; Shi, Y.; Dong, J. Stretching Deep Architectures for Text Recognition. In Proceedings

of the ICDAR, Tunis, Tunisia, 23–26 August 2015; pp. 236–240.
44. Ranzato, M.; Boureau, Y.; LeCun, Y. Sparse Feature Learning for Deep Belief Networks. In Proceedings of the NIPS, Vancouver,

BC, Canada, 3–6 December 2007; pp. 1185–1192.
45. Lee, H.; Pham, P.; Largman, Y.; Ng, A. Unsupervised Feature Learning for Audio Classification Using Convolutional Deep Belief

Networks. In Proceedings of the NIPS, Vancouver, BC, Canada, 7–10 December 2009; pp. 1096–1104.
46. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
47. Chan, T.H.; Jia, K.; Gao, S.; Lu, J.; Zeng, Z.; Ma, Y. PCANet: A Simple Deep Learning Baseline for Image Classification? Image

Process. IEEE Trans. 2015, 24, 5017–5032. [CrossRef]
48. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked Denoising Autoencoders: Learning Useful Representations

in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.
49. Lin, M.; Chen, Q.; Yan, S. Network In Network. arXiv 2013, arXiv:1312.4400.
50. Julesz, B. Experiments in the visual perception of texture. Sci. Am. 1975, 232, 34–43. [CrossRef]
51. Julesz, B. Textons, the elements of texture perception, and their interactions. Nature 1981, 290, 91–97. [CrossRef] [PubMed]
52. Yu, Y.F.; Ren, C.X.; Dai, D.Q.; Huang, K.K. Kernel Embedding Multiorientation Local Pattern for Image Representation. IEEE

Trans. Cybern. 2017, 48, 1124–1135. [CrossRef] [PubMed]
53. Ji, L.; Ren, Y.; Liu, G.; Pu, X. Training-Based Gradient LBP Feature Models for Multiresolution Texture Classification. IEEE Trans.

Cybern. 2017, 48, 2683–2696. [CrossRef] [PubMed]
54. Graves, A.; Liwicki, M.; Fernandez, S.; Bertolami, R.; Bunke, H.; Schmidhuber, J. A Novel Connectionist System for Unconstrained

Handwriting Recognition. Pattern Anal. Mach. Intell. IEEE Trans. 2009, 31, 855–868. [CrossRef]
55. Graves, A.; Schmidhuber, J. Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks. In Proceedings

of the NIPS, Vancouver, BC, Canada, 7–10 December 2009; pp. 545–552.
56. Graves, A. Generating Sequences with Recurrent Neural Networks. arXiv 2013, arXiv:1308.0850.
57. Liu, C.L.; Yin, F.; Wang, D.H.; Wang, Q.F. Online and Offline Handwritten Chinese Character Recognition: Benchmarking on

New Databases. Pattern Recognit. 2013, 46, 155–162. [CrossRef]
58. Zeiler, M.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Proceedings of the ECCV, Zurich, Switzerland,

6–12 September 2014; pp. 818–833.
59. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with

Convolutions. In Proceedings of the CVPR, Boston, MA, USA, 7–12 June 2015; pp. 1–9.
60. Du, B.; Xiong, W.; Wu, J.; Zhang, L.; Zhang, L.; Tao, D. Stacked Convolutional Denoising Auto-Encoders for Feature Representation.

IEEE Trans. Cybern. 2017, 47, 1017–1027. [CrossRef]
61. Qiao, H.; Li, Y.; Li, F.; Xi, X.; Wu, W. Biologically Inspired Model for Visual Cognition Achieving Unsupervised Episodic and

Semantic Feature Learning. IEEE Trans. Cybern. 2016, 46, 2335–2347. [CrossRef] [PubMed]
62. Gama, J.; Brazdil, P. Cascade Generalization. Mach. Learn. 2000, 41, 315–343. [CrossRef]
63. Zhao, H.; Ram, S. Constrained Cascade Generalization of Decision Trees. Knowl. Data Eng. IEEE Trans. 2004, 16, 727–739.

[CrossRef]
64. Viola, P.; Jones, M. Robust Real-time Object Detection. Int. J. Comput. Vis. 2001, 4.
65. Minguillón, J. On Cascading Small Decision Trees. Ph.D. Thesis, Universitat Autònoma de Barcelona, Barcelona, Spain, 2002.
66. Pang, Y.; Cao, J.; Li, X. Cascade Learning by Optimally Partitioning. IEEE Trans. Cybern. 2017, 47, 4148–4161. [CrossRef]
67. Zhang, Z.; Zha, H. Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment. SIAM J. Sci.

Comput. 2004, 26, 313–338. [CrossRef]

http://dx.doi.org/10.1016/j.patcog.2021.108495
http://dx.doi.org/10.1016/j.neucom.2021.03.091
http://dx.doi.org/10.1109/TPAMI.2022.3152247
http://www.ncbi.nlm.nih.gov/pubmed/35180075
http://dx.doi.org/10.1111/1467-9868.00196
http://dx.doi.org/10.1109/T-C.1969.222678
http://dx.doi.org/10.1109/TPAMI.2007.250598
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/TIP.2015.2475625
http://dx.doi.org/10.1038/scientificamerican0475-34
http://dx.doi.org/10.1038/290091a0
http://www.ncbi.nlm.nih.gov/pubmed/7207603
http://dx.doi.org/10.1109/TCYB.2017.2682272
http://www.ncbi.nlm.nih.gov/pubmed/28368841
http://dx.doi.org/10.1109/TCYB.2017.2748500
http://www.ncbi.nlm.nih.gov/pubmed/28922134
http://dx.doi.org/10.1109/TPAMI.2008.137
http://dx.doi.org/10.1016/j.patcog.2012.06.021
http://dx.doi.org/10.1109/TCYB.2016.2536638
http://dx.doi.org/10.1109/TCYB.2015.2476706
http://www.ncbi.nlm.nih.gov/pubmed/26394441
http://dx.doi.org/10.1023/A:1007652114878
http://dx.doi.org/10.1109/TKDE.2004.3
http://dx.doi.org/10.1109/TCYB.2016.2601438
http://dx.doi.org/10.1137/S1064827502419154


Electronics 2023, 12, 1537 21 of 21

68. Zhong, G.; Li, W.J.; Yeung, D.Y.; Hou, X.; Liu, C.L. Gaussian Process Latent Random Field. In Proceedings of the AAAI, Atlanta,
GA, USA, 11–15 July 2010.

69. Zhong, G.; Liu, C.L. Error-Correcting Output Codes Based Ensemble Feature Extraction. Pattern Recognit. 2013, 46, 1091–1100.
[CrossRef]

70. Zhong, G.; Cheriet, M. Large Margin Low Rank Tensor Analysis. Neural Comput. 2014, 26, 761–780. [CrossRef]
71. Cho, Y.; Saul, L. Large-Margin Classification in Infinite Neural Networks. Neural Comput. 2010, 22, 2678–2697. [CrossRef]
72. Liu, J.; Dong, J.; Qi, L.; Chantler, M. Identifying Perceptual Features of Procedural Textures. In Proceedings of the ECVP, Bremen,

Germany, 25–29 August 2013.
73. Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. (TIST) 2011, 2, 27.

[CrossRef]
74. Lin, S.W.; Ying, K.C.; Chen, S.C.; Lee, Z.J. Particle Swarm Optimization for Parameter Determination and Feature Selection of

Support Vector Machines. Expert Syst. Appl. 2008, 35, 1817–1824. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.patcog.2012.10.015
http://dx.doi.org/10.1162/NECO_a_00570
http://dx.doi.org/10.1162/NECO_a_00018
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1016/j.eswa.2007.08.088

	Introduction
	Related Work
	Stretching Deep Architecture
	Feature Learning Models
	Stretching
	Stretching Deep Architectures

	Experimental Results
	Result on Texture Data Sets
	Psychophysical Experiments
	Visualization
	Classification Results

	Experimental Results on Handwritten Text Data Sets
	Results on the USPS Data Set
	Results on the Ibn Sina Data Set
	Results on the Letter Data Set

	Classification of the Cifar-10 Data Set
	Improving the Effectiveness of CNNs
	Evaluation of the Number of Feature Learning Layers

	Conclusions
	References

