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Abstract
Transactional memory (TM) is an appealing abstraction for pro-
gramming multi-core systems. Potential target applications for TM,
such as business software and video games, are likely to involve
complex data structures and large transactions, requiringspecific
software solutions (STM). So far, however, STMs have been mainly
evaluated and optimized for smaller scale benchmarks.

We revisit the main STM design choices from the perspec-
tive of complex workloads and propose a new STM, which we
call SwissTM. In short, SwissTM is lock- and word-based and
uses (1) optimistic (commit-time) conflict detection for read/write
conflicts and pessimistic (encounter-time) conflict detection for
write/write conflicts, as well as (2) a new two-phase contention
manager that ensures the progress of long transactions while induc-
ing no overhead on short ones. SwissTM outperforms state-of-the-
art STM implementations, namely RSTM, TL2, and TinySTM, in
our experiments on STMBench7, STAMP, Lee-TM and red-black
tree benchmarks.

Beyond SwissTM, we present the most complete evaluation to
date of the individual impact of various STM design choices on the
ability to support the mixed workloads of large applications.

Categories and Subject DescriptorsD.1.3 [Programming Tech-
niques]: Concurrent Programming; D.2.8 [Software Engineering]:
Metrics—performance measures

General Terms Measurement, Performance, Experimentation

Keywords Software transactional memories, Benchmarks

1. Introduction
Transactional memory (TM) is an appealing abstraction for making
concurrent programming accessible to a wide community of non-
expert programmers while avoiding the pitfalls of criticalsections.
With a TM, application threads communicate by executing opera-
tions on shared data inside lightweight in-memorytransactions. A
transaction performs a number of actions and then eithercommits,
in which case all the actions are applied to shared dataatomically,
or aborts, in which case the effects of those actions are rolled back
and never visible to other transactions. From a programmer’s per-
spective, the TM paradigm is very promising as it promotes pro-
gram composition [20], in contrast to explicit locking, while still
providing the illusion that all shared objects are protected by some
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global lock. Yet, it offers the possibility of performance comparable
to hand-crafted, fine-grained locking.

A possible target of TMs are large applications such as business
software or video games: the size of these applications makethem
ideal candidates to benefit from emerging multi-core architectures.
Such applications typically involve dynamic and non-uniform data
structures consisting of many objects of various complexity. For
example, a video gameplay simulation can use up to 10,000 active
interacting game objects, each having mutable state, beingupdated
30–60 times per second, and causing changes to 5–10 other objects
on every update [40]. Unless a TM is used, making such code
thread-safe and scalable on multi-cores is a daunting task [40]. The
big size and complexity of such applications can, in turn, easily
lead to large transactions, for these can naturally be composed [20].
Some TM interfaces [1], in fact, promote the encapsulation of entire
applications within very few transactions.

The motivation of this work is to explore the ability of software
mechanisms to effectively support mixed workloads consisting of
small and large transactions, as well as possibly complex data
structures. We believe this to be of practical relevance because even
if hardware TM support becomes widely available in the future, it is
likely that only smaller-scale transactional workloads will be fully
executed in hardware, while software support will still be needed
for transactions with large read and write sets. For example, the
hybrid hardware/software scheme proposed in [26] switchesfrom
full hardware TM to full software TM when it encounters large
transactions. The ability of STM systems to effectively deal with
large transactions will be crucial in these settings as well.

Since the seminal paper on asoftwareTM (STM) that supported
dynamicdata structures andunboundedtransactions [22], all mod-
ern STMs are supposed to handle complex workloads [22, 27, 10,
31, 21, 2, 35, 29]. A wide variety of STM techniques, mainly in-
spired by database algorithms, have been explored. The big chal-
lenge facing STM researchers is to determine the right combination
of strategies that suit the requirements of concurrent applications—
requirements that are significantly different than those ofdatabase
applications. So far, however, most STM experiments have been
performed using benchmarks characterized by small transactions,
simple and uniform data structures, or regular data access patterns.
While such experiments reveal performance differences between
STM implementations, they are not fully representative of com-
plex workloads that STMs are likely to get exposed to once used in
real applications. Worse, they can mislead STM implementors by
promoting certain strategies that may perform well in small-scale
applications but are counter-productive with complex workloads.
Examples of such strategies, which we discuss in more details later
in the paper, include the following.

1. Thecommit-time lockingscheme, used for instance in TL2 [10],
is indeed effective for short transactions, but might wastesig-
nificant work of longer transactions that eventually abort due



to write/write conflicts. This is because write/write conflicts,
which usually lead to transaction aborts1, are detected too late.

2. Theencounter-time lockingscheme, used by most STMs, e.g.,
TinySTM [31], McRT-STM [35, 29], and Bartok-STM [21] im-
mediately aborts a transaction that tries to read a memory loca-
tion locked by another transaction. Hence, read/write conflicts,
which can often be handled without aborts, are detected very
early and resolved by aborting readers. Long transactions that
write memory locations commonly read by other transactions
might thus end up blocking many other transactions, and for a
long time, thus slowing down the system overall.

3. The timid contention managementscheme, used by many
STMs, especially word-based ones such as TL2 and TinySTM,
and which aborts transactions immediately upon a conflict, fa-
vors short transactions. Contention managers such as Greedy [16]
or Serializer [34] are more appropriate for large transactions,
but are hardly ever used due to the overhead they impose on
short transactions.

It is appealing but challenging to come up with strategies that
account both for long transactions and complex workloads, as well
as for short transactions and simple data structures: thesemight
indeed typically co-exist in real applications. This paperis a first
step towards taking that challenge up. We perform that step through
SwissTM, a new lock- and word-based STM. The main distinctive
features of SwissTM are:

• A conflict detection scheme that detects (a) write/write con-
flicts eagerly, in order to prevent transactions that are doomed
to abort from running and wasting resources, and (b) read/write
conflicts late, in order to optimistically allow more parallelism
between transactions. In short, transactions eagerly acquire ob-
jects for writing, which helps detect write/write conflictsas
soon as they appear. This also avoids wasting work of trans-
actions that are already doomed to abort after a write/writecon-
flict. By using invisible reads and allowing transactions toread
objects acquired for writing, SwissTM detects read/write con-
flicts late, thus increasing inter-transaction parallelism. A time-
based scheme [10, 33] is used to reduce the cost of transaction
validation with invisible reads.

• A two-phase contention manager that incurs no overhead on
read-only and short read-write transactions while favoring the
progress of transactions that have performed a significant num-
ber of updates. Basically, transactions that are short or read-only
use the simple but inexpensive timid contention management
scheme, aborting on first encountered conflict. Transactions that
are more complex switch dynamically to the Greedy mecha-
nism that involves more overhead but favors these transactions,
preventing starvation. Additionally, transactions that abort due
to write/write conflicts back-off for a period proportionalto the
number of their successive aborts, hence reducing contention
on memory hot spots.

We evaluate SwissTM with state-of-the-art STMs by using
benchmarks that cover a large part of the complexity space. We
start with STMBench7 [18], which involves (1) non-uniform data
structures of significant size, and (2) a mix of operations ofvarious
length and data access patterns. Then, we move to Lee-TM [4]—a
benchmark with large but regular transactions—and STAMP [8]—
a collection of realistic medium-scale workloads. Finally, we eval-
uate SwissTM with a red-black tree microbenchmark that involves
very short and simple transactions. SwissTM outperforms state-of-

1 Pure write/write conflicts do not necessarily lead to transaction aborts, but
are very rare—most transactions read memory locations before updating
them.

STM design choices
Acquire Reads CM Effectiveness
lazy invisible any +
eager visible any +
eager invisible Polka +
eager invisible timid or Greedy ++
mixed invisible timid or Greedy +++
mixed invisible 2-phase ++++

Table 1. A summary comparison of the effectiveness of selected
combinations of STM design choices in mixed workloads.

the-art STMs—RSTM [27], TL2 [10], and TinySTM [31]—in all
the considered benchmarks. For example, in the read-dominated
workload of STMBench7 (90% of read-only operations), SwissTM
outperforms the other STMs by up to 65%, and in the write-
dominated workload (10% of read-only operations)—by up to
10%. Also, SwissTM provides a better scalability than the other
STMs, especially for read-dominated and read-write (60% ofread-
only operations) workloads of STMBench7.

We compare SwissTM to RSTM, TL2, and TinySTM for two
reasons.

• They constitute the state-of-the-art performance-wise, among
the publicly available library-based STMs. Furthermore, just
like SwissTM, they can be used to manually instrument concur-
rent applications with transactional accesses. Indeed, our goal
is to evaluate the performance of the core STM algorithm, not
the efficiency of the higher layers such as STM compilers. We
did not use for instance McRT-STM [35, 29], because it does
not expose such a low-level API to a programmer. Evaluat-
ing STM-aware compilers (which naturally introduce additional
overheads above the low-level STM interface [42, 6]) is largely
an orthogonal issue;

• They represent a wide spectrum of known TM design choices:
obstruction-freevs. lock-basedimplementation,eagervs. lazy
updates,invisible vs. visible reads, andword-level vs.object-
level access granularity. They also allow for experiments with
a variety of contention management strategies, from simply
aborting a transaction on a conflict, through exponential back-
off, up to advanced contention managers like Greedy [16],
Serializer [34], or Polka [41].

We report on our SwissTM (trial-and-error) experience, which
we believe is interesting in its own right. It is the first to date that
evaluates the ability of software solutions to provide goodper-
formance to large transactions and complex objects withoutintro-
ducing significant overheads on short transactions and simple data
structures. We evaluate the individual impact of various STM de-
sign choices on the ability to support mixed workloads. A summary
of our observations, is presented in Table 1.

From an implementation perspective, we also evaluate the im-
pact of the locking granularity. Word-based STM implementations
used so far either word-level locking (e.g., TL2 and TinySTM) or
cache-line level locking (e.g., McRT-STM C/C++). Our sensitivity
analysis shows that a lock granularity of four words outperforms
both word-level and cache line-level locking by 4% and 5% re-
spectively across all benchmarks we considered.

To summarize, the main contributions of this paper are (1) the
design and implementation of an STM that performs particularly
well with large-scale complex transactional workloads while hav-
ing good performance in small-scale ones, and (2) an extensive ex-
perimental evaluation of STM strategies and implementations from
the perspective of complex applications with mixed workloads.



The rest of the paper is organized as follows. In Section 2,
we give a short overview of STM design space and benchmarks.
We then present SwissTM in Section 3. In Sections 4 and 5, we
present the results of our experimental evaluation: first, we com-
pare the performance of SwissTM to that of TL2, TinySTM, and
RSTM, and, second, we evaluate the individual impact of the de-
sign choices underlying SwissTM.

2. Background
Transactional memory was first proposed in hardware (HTM) [23].
So far, most HTMs support only limited-size transactions and of-
ten do not ensure transaction progress upon specific system events,
e.g., interrupts, context switches, or function calls [9].While there
have been proposals for truly dynamic HTMs (e.g. [3, 32]), it
is very likely that actual HTM implementations will still have
some of these limitations. Hybrid approaches either execute short
transactions in hardware and fall back to software for longer ones
(e.g., [26]), or accelerate certain operations of an STM in hard-
ware. This work focuses on pure software solutions (STM) [37].
In this section, we survey some distinctive features of STMsand
discuss the three representative STMs we focus on in our evalua-
tion: RSTM [27], TL2 [10], and TinySTM [31] (see [24] for a full
survey). We also give a short description of the benchmarks used in
our experiments.

2.1 STM Design Space

The main task of an STM is todetectconflicts among concurrent
transactions andresolvethem. Deciding what to do when conflicts
arise is performed by a (conceptually) separate component called
a contention manager[22]. A concept closely related to conflict
detection is that ofvalidation. Validating a transaction consists of
checking its read set (i.e., the set of locations2 the transaction has
already read) for consistency.

Two classes of STMs can be distinguished,word-based and
object-based, depending on the granularity at which they perform
logging. RSTM is object-based while TL2 and TinySTM are word-
based. There are also two general classes of STM implementa-
tions:lock-based andobstruction-free. Lock-based STMs, first pro-
posed in [19, 12], implement some variant of the two-phase lock-
ing protocol [13]. Obstruction-free STMs [22] do not use any
blocking mechanisms (such as locks), and guarantee progress even
when some of the transactions are delayed. RSTM (version 3) is
obstruction-free, while TL2 and TinySTM internally use locks.

Conflict detection. Most STMs employ the single-writer-multiple-
readers strategy; accesses to the same location by concurrent trans-
actionsconflictwhen at least one of the accesses is a write (update).
In order to commit, a transactionT must eventuallyacquireevery
locationx that is updated byT. Acquisition can beeager, i.e., at
the time of the first update operation ofT on x, or lazy, i.e., at the
commit time ofT. A transactionT that readsx can be eithervisible
or invisible[27] to other transactions accessingx. WhenT is invis-
ible, T has the sole responsibility of detecting conflicts onx with
transactions that writex concurrently, i.e., validating its read set.
The time complexity of a basic validation algorithm is proportional
to the size of the read set, but can be boosted with a global commit
counter heuristic (RSTM), or a time-based scheme [10, 31] (TL2
and TinySTM).

A mixed invalidationconflict detection scheme (first proposed
in [39]) eagerly detects write/write conflicts while lazilydetecting
read/write conflicts (it is a mix between pure lazy and pure eager
schemes). A similar conflict detection scheme is provided bymore

2 These are memory words in word-based STMs and objects in object-based
STMs.

general (but also more expensive)multi-versioningschemes used in
LSA-STM [33] and JVSTM [7]. Mixed invalidation, which under-
lies SwissTM, has never been used with lock-based or word-based
STMs, nor has it been evaluated with any large-scale workload.

RSTM supports lazy and eager acquisition, as well as visi-
ble and invisible reads (i.e., four algorithm variants). TL2 and
TinySTM use, respectively, lazy and eager acquisition. Both TL2
and TinySTM employ invisible reads.

Contention management. The contention manager decides what
a given transaction (attacker) should do in case of a conflict with
another transaction (victim). Possible outcomes are: aborting the
attacker, aborting the victim, or forcing the attacker to retry after
some period.

The simplest scheme (which we calltimid) is to always abort the
attacker (possibly with a short back-off). This is the default scheme
in TL2 and TinySTM. More involved contention managers were
proposed in [41, 36, 16], and are provided with RSTM. They can
also be combined at run-time [15].Polka [41] assigns every trans-
action a priority that is equal to the number of objects the trans-
action accessed so far. Whenever the attacker waits, its priority is
temporarily increased by one. If the attacker has a lower priority
than the victim, it will be forced to wait (using exponentialback-
off to calculate the wait interval), otherwise the victim gets aborted.
Greedyassigns each transaction a unique, monotonically increas-
ing timestamp on its start. The transaction with the lower times-
tamp always wins. An important property of Greedy is that, un-
like other contention managers we mention, it avoids starvation of
transactions. Polka has been shown to provide best performance in
smaller-scale benchmarks previously [41], while our experiments
show that Greedy performs better in large-scale workloads (Sec-
tion 5).Serializeris very similar to Greedy except that it assigns a
new timestamp to a transaction on every restart, and thus does not
prevent starvation or even livelocks of transactions.

2.2 STM Benchmarks

In this section, we give an overview of the benchmarks we use
in our experiments. These represent a large spectrum of workload
types: from simple data structures with small transactions(the red-
black tree microbenchmark) to complex applications with possibly
long transactions (STMBench7). All the benchmarks we used are
implemented in C/C++.

STMBench7. STMBench7 [18] is a synthetic benchmark which
workloads aim at representing realistic, complex, object-oriented
applications that are an important target for STMs. STMBench7
exhibits a large variety of operations (from very short, read-only
operations to very long ones that modify large parts of the data
structure) and workloads (from workloads consisting mostly of
read-only transactions to write-dominated ones). The datastructure
used by STMBench7 is many orders of magnitude larger than in
other typical STM benchmarks. Also, its transactions are longer
and access larger numbers of objects.

STMBench7 is inherently object-based and its implementations
also use standard language libraries. A thin wrapper, described
in [11], is thus necessary to use STMBench7 with word-based
STMs (TL2, TinySTM, and SwissTM).

STAMP. STAMP [8] is a TM benchmarking suite that consists of
eight different transactional programs and ten workloads.3 STAMP
applications are representative of various real-world workloads, in-
cluding bioinformatics, engineering, computer graphics,and ma-
chine learning. While STAMP covers a broad range of possible
STM uses, its does not involve very long transactions, such as those
that might be produced by average, non-expert programmers or

3 We used STAMP version 0.9.9.



generated automatically by a compiler along the lines of [1]. Fur-
thermore, some STAMP algorithms (e.g.,bayes) split logical op-
erations into multiple transactions and use intricate programming
techniques that might not be representative of average program-
mers’ skills.

Lee-TM. Lee-TM [4] is a benchmark that offers large, realistic
workloads and is based on Lee’s circuit routing algorithm. The al-
gorithm takes pairs of points (e.g., of an integrated circuit) as its
input and produces non-intersecting routes between them. While
transactions of Lee-TM are significant in size, they exhibitvery
regular access patterns—every transaction first reads a large num-
ber of locations (searching for suitable paths) and then updates a
small number of them (setting up a path). Moreover, the bench-
mark uses very simple objects (each can be represented as a single
integer variable). It is worth noting that STAMP contains anappli-
cation (calledlabyrinth) that uses the same algorithm as Lee-TM.
However, Lee-TM uses real-world input sets that make it morere-
alistic thanlabyrinth. Lee-TM distribution includes two input data
sets:memoryandmaincircuit boards.

Red-black tree. The prevailing way of measuring the perfor-
mance of STMs has been through microbenchmarks. The widely
used (first in [22]) red-black tree microbenchmark consistsof
short transactions that insert, lookup, and remove elements from
a red-black tree data structure. Short and simple transactions of mi-
crobenchmarks are good for testing mechanics of STM itself and
comparing low-level details of various implementations.

3. SwissTM
SwissTM is a lock-based STM that uses invisible reads and counter
based heuristics (the same as in TinySTM and TL2). It features
eager write/write and lazy read/write conflict detection, as well as
a two-phase contention manager with random linear back-off. The
API of SwissTM is word-based, as it enables transactional access
to arbitrary memory words. SwissTM uses a redo-logging scheme
(partially to support its conflict detection scheme).

3.1 Programming model

Similarly to most other STM libraries, SwissTM guarantees opac-
ity [17]. Opacity is similar to serializability in databasesys-
tems [30]. The main difference is that all transactions always ob-
serve consistent states of the system. This means that transactions
cannot, e.g., use stale values, and that they do not require periodic
validation or sandboxing to prevent infinite loops or crashes due to
accesses to inconsistent memory states.

SwissTM is a weakly atomic STM, i.e., it does not provide
any guarantees for the code that accesses the same data from both
inside and outside of transactions. SwissTM is not privatization
safe [38]. This could make programming with SwissTM slightly
more difficult in certain cases, but did not affect us, as noneof the
benchmarks we use requires privatization-safe STM.

When programming with SwissTM, programmers have to re-
place all memory references to shared data from inside transactions
with SwissTM calls for reading and writing memory words. The
programming model can be improved by using an STM compiler
(as in e.g. [21, 2, 14, 29]). While the compiler instrumentation can
degrade performance due to over-instrumentation [42] and possi-
bly even change the characteristics of the workload slightly (e.g.
numbers and ratio of transactional read and write operations), the
compiler instrumentation remains a largely orthogonal issue to the
performance of an STM library.

Other three STMs we compare to in our experiments provide
the same semantical guarantees as SwissTM. Also, strengthening
the guarantees (as described in Section 6) would have a similar
performance impact on all STMs we use.

3.2 Algorithm

We give the pseudo-code of SwissTM in Algorithm 1. The algo-
rithm invokes contention manager functions (cm-*), which are de-
fined in Algorithm 2 and described below. All transactions share a
global commit countercommit-tsincremented by every non-read-
only transaction upon commit. Each memory wordm is mapped
to a pair of locks in a globallock table: r-lock (read) andw-lock
(write). Lockw-lockis acquired by a writerT of m (eagerly) to pre-
vent other transactions fromwriting to m. Lock r-lock is acquired
by T at commit time to prevent other transactions fromreading
wordmand, as a result, observing inconsistent states of words writ-
ten byT. In addition, whenr-lock is unlocked, it contains the ver-
sion number ofm. Every transactionT has atransaction descriptor
tx that contains (among other data): (1) the value ofcommit-tsread
at the start or subsequent validation ofT, and (2) read and write
logs ofT.

Transaction start. Every transactionT, upon its start, reads the
global countercommit-tsand stores its value intx.valid-ts(line 2).

Reading. When reading locationaddr, transactionT first reads
the value ofw-lock to detect possible read-after-write cases. IfT is
the owner ofw-lock, thenT can return the value from its write log
immediately, which is the last valueT has written toaddr (line 6).
Otherwise, i.e., when some other transaction ownsw-lockor when
w-lock is unlocked,T reads the value ofr-lock, then the value of
addr, and then again the value ofr-lock. TransactionT repeats these
three reads until (1) two values ofr-lock are the same, meaning
thatT has read consistent values ofr-lock andaddr, and (2)r-lock
is unlocked (lines 8–15). Whenr-lock is unlocked, it contains the
current versionv of addr. If v is lower or equal to the validation
timestamptx.valid-tsof T (which means thataddr has not changed
sinceT ’s last validation or start),T returns the value ataddr read
in line 18. Otherwise,T revalidates its read set. If the revalidation
does not succeed,T rolls back (line 17). If it succeeds, the read
operation returns andT extends its validation timestamptx.valid-ts
to the current value ofcommit-ts(line 56).

Writing. Whenever some transactionT writes to a memory lo-
cation addr, T first checks ifT is the owner of the lockw-lock
corresponding toaddr. If it is, T updates the value ofaddr in its
write log and returns (lines 21–23). Otherwise,T tries to acquire
w-lockby atomically replacing, using a compare-and-swap (CAS)
operation, valueunlocked with the pointer to theT ’s write log en-
try that contains the new value ofaddr (line 29). If CAS does not
succeed,T asks the contention manager whether to rollback and
retry or wait for the current owner of the lock to finish (line 26). In
order to guarantee opacity,T has to revalidate its read set if the cur-
rent version ofaddr (contained inr-lock) is higher than its validity
timestamptx.valid-ts(lines 31–32).

Validation. To validate itself,T compares the versions of all
memory locations read so far to their versions at the point they
were initially read byT (lines 51–52). These versions are stored in
T ’s read log. If there is a mismatch between any version numbers,
the validation fails (line 52).

Commit. A read-only transactionT can commit immediately, as
its read log is guaranteed to be consistent (line 35). A transactionT
that is not read-only first locks all read locks of memory locationsT
has written to (line 36). Then,T incrementscommit-ts(line 37) and
re-validates its read log. If the validation does not succeed, T roll-
backs and restarts (lines 38–41). Upon successful validation,T tra-
verses its write set, updates values of all written memory locations,
and releases the corresponding read and write locks (lines 42–45).
When releasing read locks,T writes the new value ofcommit-tsto
those locks.



Algorithm 1: Pseudo-code representation of SwissTM.

function start(tx)1
tx.valid-ts← commit-ts;2
cm-start(tx);3

function read-word(tx, addr)4
(r-lock,w-lock)←map-addr-to-locks(addr);5
if is-locked-by(w-lock, tx) then return get-value(w-lock, addr);6
version← read(r-lock);7
while true do8

if version= locked then9
version← read(r-lock);10
continue;11

value← read(addr);12
version2← read(r-lock);13
if version= version2then break;14
version2← version;15

add-to-read-log(tx, r-lock, version);16
if version> tx.valid-tsand not extend(tx) then rollback(tx);17
return value;18

function write-word(tx, addr, value)19
(r-lock,w-lock)←map-addr-to-locks(addr);20
if is-locked-by(w-lock, tx) then21

update-log-entry(w-lock, addr, value);22
return;23

while true do24
if is-locked(w-lock) then25

if cm-should-abort(tx, w-lock) then rollback(tx);26
else continue;27

log-entry← add-to-write-log(tx, w-lock, addr, value);28
if compare&swap(w-lock,unlocked, log-entry) then29

break;30

if read(r-lock) > tx.valid-tsand not extend(tx) then31
rollback(tx);32

cm-on-write(tx);33

function commit(tx)34
if is-read-only(tx) then return;35
for log-entryin tx.read-logdo write(log-entry.r-lock, locked);36
ts← increment&get(commit-ts);37
if ts> tx.valid-ts+1 and not validate(tx) then38

for log-entryin tx.read-logdo39
write(log-entry.r-lock, log-entry.version);40

rollback(tx);41

for log-entryin tx.write-log do42
write(log-entry.addr, log-entry.value);43
write(log-entry.r-lock, ts);44
write(log-entry.w-lock, unlocked);45

function rollback(tx)46
for log-entryin tx.write-log do47

write(log-entry.w-lock, unlocked);48

cm-on-rollback(tx);49

function validate(tx)50
for log-entryin tx.read-logdo51

if log-entry.version6= read(log-entry.r-lock) and not52
is-locked-by(log-entry.r-lock, tx) then return false;

return true;53

function extend(tx)54
ts← read(commit-ts);55
if validate(tx) then tx.valid-ts← ts; return true;56
return false;57

Algorithm 2: Pseudo-code of the two-phase contention man-
ager (Wn is a constant)

function cm-start(tx)1
if not-restart(tx) then tx.cm-ts← ∞ ;2

function cm-on-write(tx)3
if tx.cm-ts= ∞ and size(tx.write-log) = Wn then4
tx.cm-ts← increment&get(greedy-ts) ;

function cm-should-abort(tx, w-lock)5
if tx.cm-ts= ∞ then return true;6
lock-owner= owner(w-lock);7
if lock-owner.cm-ts< tx.cm-tsthen return true;8
else abort(lock-owner); return false;9

function cm-on-rollback(tx)10
wait-random(tx.succ-abort-count);11

Rollback. On rollback, transactionT releases all write locks it
holds (lines 47–48), and then restarts itself.

Contention management. We give the pseudo-code of our two-
phase contention manager in Algorithm 2. The contention manager
gets invoked by Algorithm 1 (1) at transaction start (cm-start in
line 3), (2) on a write/write conflict (cm-should-abortin line 26),
(3) after a successful write (cm-on-writein line 33), and (4) after
restart (cm-on-rollbackin line 49). Every transaction, upon exe-
cuting itsWn

th write (where we setWn to 10), increments global
countergreedy-tsand stores its value intx.cm-ts(line 4). Hence,
short transactions (those that execute less thanWn writes) do not
accessgreedy-tsthat would otherwise become a memory hot spot—
this reduces contention and the number of cache misses. Trans-
actions that have already incrementedgreedy-tsare in the second
phase of the contention management scheme, and others are inthe
first phase. Upon a conflict, a transaction that is still in thefirst
phase gets restarted immediately (line 6). If both conflicting trans-
actions are already in the second phase, the transaction with the
higher value ofcm-tsis restarted (lines 8–9). This prioritizes trans-
actions that have performed more work. Conceptually, transactions
in the first phase have an infinite value ofcm-ts(set in line 2). This
means that (longer) transactions, which are in the second phase,
have higher priority than (short) transactions that are in the first
phase. After restarting, transactions are delayed using a random-
ized back-off scheme (line 11). This reduces probability ofhav-
ing some transaction aborted many times repeatedly becauseof the
same conflict.

3.3 Implementation Highlights

We implemented SwissTM in C++ (g++ 4.0.1 compiler). We used
the (fairly portable) atomicops library [5] for atomic operations
implementation. Currently, SwissTM works on 32-bit x86 Linux
2.6.x and OS X 10.5 platforms (64-bit port is in progress).

Lock table. To map memory wordm to a lock table entry, we
take the addressa of m, shift it to the right by 4 (it would be 5
with 64-bit words). This makes each lock map to consecutive four
memory words (we empirically selected this value, as explained in
Section 5). Then, we set all high order bits to zero. As the lock
table contains 222 entries in our implementation, we just perform
logical AND operation between shifted address and 222−1 to get
the index into the table. Figure 1 depicts the mapping scheme.
Having multiple consecutive memory words mapped to the same
lock table entry can result in false conflict, when unrelatedmemory
words get locked together, but this does not cause any problems in
practice.



Rm[i-1] Wm[i-1]

Rm[i] Wm[i]

Rm[i+1] Wm[i+1]

...

...

4(i-1)

4(i-1) + 1

4(i-1) + 2

4(i-1) + 3

4i

4i + 1

4i + 2

4i + 3

4(i+1)

4(i+1) + 1

4(i+1) + 2

4(i+1) + 3

...

...

Lock table

Memory

Figure 1. Mapping of memory words to lock table entries.

Every lock is implemented as a single memory wordw. The
write lock is equal to 0 in its unlocked state and contains a pointer to
the corresponding write log entry when locked. Acquiring a write
lock is done using a compare-and-swap (CAS) operation. When
releasing write lockw, transactions simply write 0 tow. The read
lock has its least significant bit set to 0 when unlocked, while other
bits store the version number of memory locations corresponding
to w. When locked, the read lock is equal to 1. Both locking and
unlocking of read locks is performed by simply writing a new value
to w (CAS is not used), as only the transaction that already acquired
a write lock can acquire the corresponding read lock.

4. Evaluating SwissTM
We compare the performance of SwissTM to that of TL2, TinySTM,
and RSTM.

We performed all measurements on a 4-processor dual-core
AMD Opteron 8216 2.4 GHz 1024 KB cache machine with 8 GB
of RAM, running Linux operating system. This provided us with
8 cores to experiment on. All results were averaged over multi-
ple runs, where the length and the number of runs were chosen to
reduce variations in collected data. We typically used 20 runs for
STMBench7 and STAMP, 10 runs for LeeTM and 80 runs for the
red-black tree microbenchmark. We used the TL2 x86 implemen-
tation provided with the STAMP benchmark suite (version 0.9.5).
We were not able to use the TL2 implementation from original au-
thors as it does not support the x86 architecture. Also, the origi-
nal TL2 does not support transactional memory management ina
straightforward manner, and is, because of that, difficult to use with
benchmarks we had at our disposal, without significant changes to
the benchmark code. While we did not use the original TL2 im-
plementation in a setting that it was primarily designed for, we be-
lieve that the TL2 x86 port we used is the best representativeof
the TL2 algorithm and design available for the x86 architecture.
The experiments were performed with the RSTM (version 3) and
TinySTM (version 0.9.5) implementations available from respec-
tive sites. Unless stated otherwise, we configured RSTM to use
eager conflict detection, invisible reads with the commit counter
heuristic, and the Polka contention manager. We used default con-
figurations of TL2 (i.e., lazy conflict detection, GV4) and TinySTM
(i.e., encounter-time locking, timid contention manager).

STMBench7. Figure 2 shows the performance of SwissTM, TL2,
TinySTM, and RSTM with STMBench7. We configured RSTM to
use the Serializer contention manager, as this gave the bestper-
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Figure 2. Throughput of SwissTM, RSTM, TL2, and TinySTM
with STMBench7; top to bottom: read-dominated, read-write, and
write-dominated workload

forming RSTM configuration in STMBench7. SwissTM signifi-
cantly outperforms all other STMs for both read-dominated and
read-write workloads, while also achieving superior scalability.
SwissTM also outperforms other STMs in high-contention write-
dominated workload, but it is only marginally faster than TinySTM.

The main reason for the good performance of SwissTM is
(a) its optimism in detecting read/write conflicts when compared
to RSTM and TinySTM, and (b) its conservatism in detecting
write/write conflicts when compared to TL2. The contention man-
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Figure 3. SwissTM vs. TL2 (top) and TinySTM (bottom) in
STAMP. The figure conveys the speedup of SwissTM compared to
TL2 and TinySTM (with 1 subtracted, i.e., positive numbers mean
that SwissTM is faster and negative that it is slower) for 1, 2, 4, and
8 threads.

agement scheme used in SwissTM also helps boost performance,
as we illustrate in Section 5.

TL2 performs poorly even in the read-dominated workload—
it does not scale after 4 threads. Its performance gets even worse
with higher contention. The main reason for this is the lazy conflict
detection scheme of TL2, which wastes more work of transactions
than the eager write/write conflict detection of other STMs.

STAMP. Figure 3 compares the performance of SwissTM, TL2,
and TinySTM in the STAMP benchmark suite workloads.4 SwissTM
outperforms TL2 in all STAMP workloads, for all thread counts,
excluding thevacation benchmark under low contention where
TL2 and SwissTM have the same performance. SwissTM out-
performs TL2 by over 50% with eight threads for thebayes,
intruder, and yada benchmarks (being almost twice as fast as
TL2 in yada), and by over 20% inkmeans(both variants) and
labyrinth, while being about 10% faster than TL2 ingenome,
ssca2, andvacationunder high contention. SwissTM outperforms
TinySTM in ten STAMP workloads with eight threads, except for
thekmeansbenchmark under low contention where TinySTM has

4 There is no RSTM implementation of STAMP, due to API incompatibil-
ity. RSTM provides an object-based API, while STAMP uses word-based
API. This makes it difficult to simply plug-in RSTM into current STAMP
version.

 0

 20

 40

 60

 80

 100

 120

 1  2  3  4  5  6  7  8

D
ur

at
io

n 
[s

]

Threads

RSTM
TinySTM
SwissTM

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1  2  3  4  5  6  7  8

D
ur

at
io

n 
[s

]

Threads

RSTM
TinySTM
SwissTM
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input data set

a slightly better performance (1% of difference). SwissTM out-
performs TinySTM by over 45% with eight threads inintruder,
kmeansunder high contention, andyada, and by over 12% in
bayes, genome, labyrinth, andssca2, while being about 5% faster
in vacation(both variants). SwissTM has good performance with
lower thread counts, while scaling well as the number of concurrent
threads increases. To summarize, SwissTM outperforms bothTL2
and TinySTM in all STAMP benchmark workloads.

Lee-TM. Figure 4 compares the performance of SwissTM, RSTM,
and TinySTM in the Lee-TM benchmark.5 RSTM has the lowest
performance mainly because of higher single object access over-
heads (objects in Lee-TM are very simple—consisting of a single
integer variable). SwissTM and TinySTM have very similar perfor-
mance, although SwissTM is faster by a small margin for all thread
counts.

Red-black tree. Finally, Figure 5 compares the performance of
SwissTM, TL2, TinySTM, and RSTM in the commonly used red-
black tree microbenchmark. RSTM delivers significantly lower per-
formance than other three STMs due to its high overheads on single
memory location accesses. These low-level overheads have most
significant impact in microbenchmarks like this one. This ispre-
cisely the reason while SwissTM, that uses two locks for each

5 We were not able to get Lee-TM to run with TL2 (we suspect theremight
be a bug in the x86 TL2 port).
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memory location, has lower performance than TL2 and TinySTM,
which use a single lock, in single thread executions. It is worth not-
ing that a red-black tree is the only benchmark for which slightly
higher overheads of using two locks have more than negligible per-
formance impact. SwissTM outperforms both TL2 and TinySTM
when there are more than four threads and exhibits better scalabil-
ity.

5. Dissecting the SwissTM Experience
In this section, we evaluate individually the design choices under-
lying SwissTM: its conflict detection strategy, the two-phase con-
tention manager, and the granularity of the lock table.

Conflict detection. Current state-of-the-art STMs typically detect
both read/write and write/write conflicts in the same way—either
as soon as conflicts occur (eagerly, e.g., TinySTM, McRT-STM
and Bartok STM), or at commit time (lazily, e.g., TL2). Detect-
ing conflicts eagerly helps avoid wasting work of transactions that
are doomed to abort after a conflict. Lazy conflict detection,how-
ever, is more optimistic and gives transactions more possibilities to
commit. For example, Figure 6a depicts an execution of an STM
that uses lazy conflict detection. There, transactionT2 spends time
betweent3 (commit time ofT1) andt4 (commit time ofT2) perform-
ing work that is doomed to be roll-backed. The period betweent3
andt4 can be significant with long transactions. It is worth noting
that bothT1 and T2 could commit with a lazy conflict detection
STM, if they both only write toV. However, pure write/write con-
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in read-dominated STMBench7

flicts are typically rare, as transactions usually first readsome data
and then subsequently update it. Because of this, lazy conflict de-
tection STMs react too slowly to write/write conflicts (which are
good signs that transactions cannot proceed in parallel) and results
in transactions performing work that has to be rolled back later.
Figure 6b, gives an example execution of an STM that uses eager
conflict detection. There, transactionT2 has to wait until timet4 be-
fore continuing, although it could commit already at timet3 if lazy
scheme was used. The waiting time ofT2 might be significant ifT1
is very long.

SwissTM takes the best of both strategies—it detects write/write
conflicts eagerly and read/write conflicts lazily. This combined
strategy is beneficial for complex workloads with long transactions
because it (1) prevents transactions with write/write conflicts from
running for a long time before detecting the conflict, and (2)allows
short transactions having a read/write conflict with longerones to
proceed, thus increasing parallelism.

Figure 2 suggests that the mixed eager-lazy scheme gives better
performance than pure eager scheme which, in turn, outperforms
lazy scheme (Figure 7). This does not say what kind of workloads
benefit most from the mixed scheme, and what part of the perfor-
mance boost of SwissTM can be attributed to its two-phase con-
tention manager (and not to the mixed conflict detection).

To answer this question, we modified slightly the Lee-TM
benchmark. The performance of the original Lee-TM does not
seem to be influenced by the choice of a conflict detection and
contention management schemes, because the transactions in Lee-
TM are highly regular—they first read and then write. We introduce
a small irregularity in Lee-TM by adding a single objectOc that
every transaction reads at its start. A small ratioR of transactions
(chosen randomly) also updatesOc, causing a read/write conflict
with all the other transactions. The contention manager used by
SwissTM does not provide a lot of benefit in this case, as the num-
ber of write/write conflicts introduced by this irregularity is not
large (we keepR low in experiments).

Figure 8 compares the performance of TinySTM and SwissTM
for R of 0%, 5%, and 20%. Due to its conflict detection scheme,
the SwissTM performance degrades only slightly even whenR is
relatively high (20%). Also, SwissTM continues to scale well as the
number of threads increases. On the other hand, the performance
of TinySTM degrades significantly even whenR is only 5%, while
with R of 20% it stops scaling already at three threads.

We conclude here that applications exhibiting regular access
patterns benefit the most from lowering single-location access costs
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dominated workload of STMBench7

and are not significantly influenced by the conflict detectionscheme
itself. However, for applications where the access patterns intro-
duce even small irregularities, especially those creatinglonger-
lasting read/write conflicts, SwissTM’s optimistic approach yields
significant benefits.

Contention management. The contention manager gets invoked
in SwissTM only on write/write conflicts. The reasoning hereis
simple—read/write conflicts are detected only at commit time of
the writer, and it makes little sense for the reader to abort the writer
that is already committing. This is why the reader waits until the
writer (quickly) commits, before attempting to revalidateits read
set.

Figure 9 shows that Greedy performs better than Polka (which
was shown previously to perform very well in a range of smaller
scale benchmarks [41]) in STMBench7, our larger-scale bench-
mark. However, Greedy performs poorly with short transactions,
because all transactions increment a single shared counterat their
start, which causes a lot of cache misses and significantly degrades
performance and scalability (Figure 10). This problem is not no-
ticeable with longer transactions as the overhead caused bycache
misses is relatively small compared to the work of the transactions
themselves. As shown in Figure 10, our two-phase contentionman-

 0

 1

 2

 3

 4

 5

 6

 7

 1  2  3  4  5  6  7  8

T
hr

ou
gh

pu
t [

10
6  tx

/s
]

Threads

Two-phase
Greedy

Figure 10. Throughput of the two-phase contention manager vs.
Greedy (in SwissTM) with the red-black tree

 0

 10

 20

 30

 40

 50

 60

 1  2  3  4  5  6  7  8

D
ur

at
io

n 
[s

]

Threads

No backoff
Linear backoff

Figure 11. Execution time of backoff vs. no backoff (in SwissTM)
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ager overcomes this issue completely, improving both performance
and scalability over Greedy. This is because it allows all short and
read-only transactions to commit without incrementing theshared
counter used by the Greedy algorithm, yet it provides the strong
progress guarantees of Greedy for long ones.

It might seem beneficial to make transactions restart as soon
as possible after conflicts that force them to rollback, as waiting
just decreases the reaction time before the transaction re-executes.
However, restarting immediately tends to increase contention on
cache lines containing data that gets updated very frequently. Con-
sequently, short back-offs after transaction rollbacks can improve
performance. Figure 11 compares the performance of SwissTM
in the STAMPintruder benchmark with and without the back-off
scheme. (Theintruder benchmark is a good example here, because
it indeed contains a “hot spot”: a high number of transactions de-
queue elements from a single queue.) The figure shows that imme-
diately restarting transactions after rollback causes scalability prob-
lem with eight threads. A simple randomized linear (in the number
of successive aborts) back-off scheme resolves the scalability issue.

Finally, we evaluate the influence of our two-phase contention
manager on the overall performance of SwissTM. Figure 12 shows
that the two-phase contention manager improves performance by as
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much as 16% in high-contention workloads. Its influence is lower
in the read-dominated workload, which is not surprising given that
this workload is characterized by a small number of write/write
conflicts.

Locking granularity. An important implementation choice in an
STM is its lock table configuration, in particular the size ofthe
memory stripe that gets mapped to the same (lock table) entry. In-
creasing the size of memory stripes reduces locking and validation
time, due to the data access locality, but increases abort rates by
introducing false conflicts when the memory stripe becomes too
large. The optimal value for this parameter is application specific
and we searched for the best value across all benchmarks we used.6

Figure 13 depicts the average speedup (minus 1) of each logarith-
mic lock granularity compared to all the others at eight threads (32
bit word). The figure shows that the granularity of 24 bytes achieves
the best performance, with 23 and 25 being slightly slower. It is in-
teresting to note that the commonly used sizes of one word (22)
and one cache line (26) have performance of 4% and 5% lower on
average than the one we select. We give a breakdown of these dif-
ferences across benchmarks in Table 2.

It is interesting to note here that, while using different lock
granularities does impact performance, the impact of usingcoarser
lock granularities is not significant enough to prevent SwissTM
from scaling (e.g. due to increased number of false conflicts).

6. Concluding Remarks
This paper presents SwissTM—an effective compilation of STM
design choices for mixed workloads characterized by non-uniform,
dynamic data structures and various transaction sizes. Those kinds
of workloads are inherent to many applications that might beex-
pected to significantly benefit from the STM paradigm and multi-
core architectures. SwissTM significantly outperforms state-of-the-
art STMs in precisely such workloads, while also deliveringgood
performance in smaller-scale scenarios.

Not surprisingly, the design of SwissTM is a result of trial-
and-error. We reported in the paper on various choices that might
have seemed natural, but revealed inappropriate. Besides those, we
also experimented with nested transactions (closed nesting) and
multi-versioning, but we could not see a clear advantage of those

6 Performance results presented in previous sections all usethe same lock-
ing granularity of 24 bytes.
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Difference in performance
Benchmark 24 vs. 22 24 vs. 26 22 vs. 26

bayes 0.16 0.81 0.57
genome 0.13 −0.03 −0.14
intruder 0 −0.04 −0.04
kmeans-high 0.19 0.4 0.18
kmeans-low 0.14 0.05 −0.08
labyrinth −0.12 −0.09 0.04
ssca2 0 0 0
vacation-high 0.14 −0.03 −0.15
vacation-low 0.12 −0.05 −0.15
yada 0 0.12 0.12
red-black tree −0.01 0 0.01
Lee-TM memory 0.01 −0.03 −0.04
Lee-TM main 0.02 −0.01 −0.02
STMBench7 read 0 −0.02 −0.02
STMBench7 read-write −0.01 −0.03 −0.02
STMBench7 write −0.04 −0.06 −0.02
Average 0.05 0.06 0.01

Table 2. Comparing three different lock granularities. Numbers
represent relative speedups (with one subtracted) with 8 threads

techniques in the considered workloads. Further experiments might
be needed in this direction.

Improving the programming model. Two main directions along
which we plan to improve the semantical guarantees of SwissTM
are: (1) adding compiler support, and (2) making SwissTM privatization-
safe. There exists a number of STM C/C++ compilers that have
open interfaces supporting different STM libraries (e.g. [14, 29])
and we plan to integrate SwissTM with one of them. A conceptually
simple algorithm for ensuring privatization-safety uses quiescence:
every committing transactionT has to wait for all in-flight transac-
tions to validate, commit, or abort. While this algorithm issimple, it
would probably significantly impact performance of SwissTM[42]
and we plan to investigate other options, possibly using techniques
similar to [28] or [25].



7. Availability
SwissTM is open-source and available from:http://lpd.epfl.
ch/site/research/tmeval. The source code of benchmarks
used in the paper can be downloaded from the same location.
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