Stretching Transactional Memory

Aleksandar Dragojevic

Rachid Guerraoui

Michat Kapatka

Ecole Polytechnique Fédérale de Lausanne, School of G@npnd Communication Sciences, 1&C, Switzerland
{aleksandar.dragojevic, rachid.guerraoui, michal.kapalka}®@epfl.ch

Abstract

Transactional memory (TM) is an appealing abstraction for p
gramming multi-core systems. Potential target applicestior TM,
such as business software and video games, are likely tévénvo
complex data structures and large transactions, requiegific
software solutions (STM). So far, however, STMs have bednlgna
evaluated and optimized for smaller scale benchmarks.

We revisit the main STM design choices from the perspec-
tive of complex workloads and propose a new STM, which we
call SwissTM. In short, SwissTM is lock- and word-based and
uses (1) optimistic (commit-time) conflict detection foadéwrite
conflicts and pessimistic (encounter-time) conflict detector
write/write conflicts, as well as (2) a new two-phase cornitent
manager that ensures the progress of long transactions intilc-
ing no overhead on short ones. SwissTM outperforms statbesf
art STM implementations, namely RSTM, TL2, and TinySTM, in
our experiments on STMBench7, STAMP, Lee-TM and red-black
tree benchmarks.

Beyond SwissTM, we present the most complete evaluation to
date of the individual impact of various STM design choicedhe
ability to support the mixed workloads of large applicaton

Categories and Subject DescriptorsD.1.3 [Programming Tech-
niqueg: Concurrent Programming; D.2.8¢ftware Engineerifig
Metrics—performance measures

General Terms Measurement, Performance, Experimentation

Keywords Software transactional memories, Benchmarks

1. Introduction

Transactional memory (TM) is an appealing abstraction fakimy
concurrent programming accessible to a wide community of no
expert programmers while avoiding the pitfalls of critisaktions.
With a TM, application threads communicate by executingrape
tions on shared data inside lightweight in-memtmgnsactions A
transaction performs a number of actions and then edbemits

in which case all the actions are applied to shared ditaically;

or aborts in which case the effects of those actions are rolled back
and never visible to other transactions. From a progransmpen-
spective, the TM paradigm is very promising as it promotes pr
gram composition [20], in contrast to explicit locking, Whtill
providing the illusion that all shared objects are protédig some
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global lock. Yet, it offers the possibility of performancenparable
to hand-crafted, fine-grained locking.

A possible target of TMs are large applications such as lessin
software or video games: the size of these applications ik
ideal candidates to benefit from emerging multi-core aehitres.
Such applications typically involve dynamic and non-umificdata
structures consisting of many objects of various compjexor
example, a video gameplay simulation can use up t600® active
interacting game objects, each having mutable state, hgidgted
30-60 times per second, and causing changes to 5-10 otleetobj
on every update [40]. Unless a TM is used, making such code
thread-safe and scalable on multi-cores is a daunting #kThe
big size and complexity of such applications can, in turrsilga
lead to large transactions, for these can naturally be ceatp[20].
Some TM interfaces [1], in fact, promote the encapsulati@ntire
applications within very few transactions.

The motivation of this work is to explore the ability of sofive
mechanisms to effectively support mixed workloads coimgisbf
small and large transactions, as well as possibly compléa da
structures. We believe this to be of practical relevancabse even
if hardware TM support becomes widely available in the fetitris
likely that only smaller-scale transactional workloadd v fully
executed in hardware, while software support will still leded
for transactions with large read and write sets. For exanthie
hybrid hardware/software scheme proposed in [26] switfttes
full hardware TM to full software TM when it encounters large
transactions. The ability of STM systems to effectively Ideih
large transactions will be crucial in these settings as.well

Since the seminal paper osaftwareTM (STM) that supported
dynamicdata structures anghboundedransactions [22], all mod-
ern STMs are supposed to handle complex workloads [22, 27, 10
31, 21, 2, 35, 29]. A wide variety of STM techniques, mainly in
spired by database algorithms, have been explored. Thehbig ¢
lenge facing STM researchers is to determine the right coatigin
of strategies that suit the requirements of concurrentiegibns—
requirements that are significantly different than thosdaifbase
applications. So far, however, most STM experiments haen be
performed using benchmarks characterized by small tréiosac
simple and uniform data structures, or regular data accssrps.
While such experiments reveal performance differencesdssi
STM implementations, they are not fully representative @fne
plex workloads that STMs are likely to get exposed to oncel use
real applications. Worse, they can mislead STM implemenibgr
promoting certain strategies that may perform well in sraadlle
applications but are counter-productive with complex iaaks.
Examples of such strategies, which we discuss in more déadr
in the paper, include the following.

1. Thecommit-time lockingcheme, used for instance in TL2[10],
is indeed effective for short transactions, but might wasge
nificant work of longer transactions that eventually abare d



to write/write conflicts. This is because write/write cocifi,
which usually lead to transaction abdrtare detected too late.

. Theencounter-time lockingcheme, used by most STMs, e.g.,
TinySTM [31], McRT-STM [35, 29], and Bartok-STM [21] im-
mediately aborts a transaction that tries to read a memeosy lo
tion locked by another transaction. Hence, read/write aisfl
which can often be handled without aborts, are detected very
early and resolved by aborting readers. Long transactiuais t
write memory locations commonly read by other transactions
might thus end up blocking many other transactions, and for a
long time, thus slowing down the system overall.

. The timid contention managemergcheme, used by many
STMs, especially word-based ones such as TL2 and TinySTM,
and which aborts transactions immediately upon a confhet, f
vors short transactions. Contention managers such as 3 te#id
or Serializer [34] are more appropriate for large transasti

STM design choices

Acquire  Reads CM Effectiveness
lazy invisible any +

eager visible any +

eager invisible  Polka +

eager invisible  timid or Greedy ++

mixed invisible  timid or Greedy +++

mixed invisible  2-phase ++++

Table 1. A summary comparison of the effectiveness of selected
combinations of STM design choices in mixed workloads.

the-art STMs—RSTM [27], TL2 [10], and TinySTM [31]—in all
the considered benchmarks. For example, in the read-dtedina
workload of STMBench7 (90% of read-only operations), Sivids

but are hardly ever used due to the overhead they impose onoutperforms the other STMs by up to 65%, and in the write-

short transactions.

It is appealing but challenging to come up with strategies th
account both for long transactions and complex workloasisvell
as for short transactions and simple data structures: tmégiet
indeed typically co-exist in real applications. This pajsea first
step towards taking that challenge up. We perform that stepigh
SwissTM, a new lock- and word-based STM. The main distiectiv
features of SwissTM are:

¢ A conflict detection scheme that detects (a) write/write-con
flicts eagerly, in order to prevent transactions that arevdab
to abort from running and wasting resources, and (b) reata/wr
conflicts late, in order to optimistically allow more pagism
between transactions. In short, transactions eagerlyir@cob-
jects for writing, which helps detect write/write conflicés
soon as they appear. This also avoids wasting work of trans-
actions that are already doomed to abort after a write/\wdte
flict. By using invisible reads and allowing transactionse¢ad
objects acquired for writing, SwissTM detects read/wrib@-c
flicts late, thus increasing inter-transaction paralielig\ time-
based scheme [10, 33] is used to reduce the cost of transactio
validation with invisible reads.

A two-phase contention manager that incurs no overhead on
read-only and short read-write transactions while faxgptime
progress of transactions that have performed a signifiaant n
ber of updates. Basically, transactions that are shortat-omly

use the simple but inexpensive timid contention management
scheme, aborting on first encountered conflict. Transasthuat

are more complex switch dynamically to the Greedy mecha-
nism that involves more overhead but favors these tramsesti
preventing starvation. Additionally, transactions thiaor due

to write/write conflicts back-off for a period proportiortal the
number of their successive aborts, hence reducing coatenti
on memory hot spots.

We evaluate SwissTM with state-of-the-art STMs by using
benchmarks that cover a large part of the complexity spaee. W
start with STMBench7 [18], which involves (1) non-uniforrate
structures of significant size, and (2) a mix of operationgasfous
length and data access patterns. Then, we move to Lee-TMd4]—
benchmark with large but regular transactions—and STAMP-[8
a collection of realistic medium-scale workloads. Finalle eval-
uate SwissTM with a red-black tree microbenchmark thatlire
very short and simple transactions. SwissTM outperformatesbf-

1Pure write/write conflicts do not necessarily lead to tratiea aborts, but
are very rare—most transactions read memory locationsrédefpdating
them.

dominated workload (10% of read-only operations)—by up to
10%. Also, SwissTM provides a better scalability than theeot
STMs, especially for read-dominated and read-write (60%ead-
only operations) workloads of STMBench7.

We compare SwissTM to RSTM, TL2, and TinySTM for two
reasons.

e They constitute the state-of-the-art performance-wiseorsy
the publicly available library-based STMs. Furthermorest j
like SwissTM, they can be used to manually instrument concur
rent applications with transactional accesses. Indeedgaei
is to evaluate the performance of the core STM algorithm, not
the efficiency of the higher layers such as STM compilers. We
did not use for instance McRT-STM [35, 29], because it does
not expose such a low-level APl to a programmer. Evaluat-
ing STM-aware compilers (which naturally introduce adufigl
overheads above the low-level STM interface [42, 6]) iséfyg
an orthogonal issue;

They represent a wide spectrum of known TM design choices:
obstruction-freevs. lock-basedmplementationgagervs. lazy
updatesjnvisible vs. visible reads, andvord-level vs.object
level access granularity. They also allow for experimenith w

a variety of contention management strategies, from simply
aborting a transaction on a conflict, through exponentiakba
off, up to advanced contention managers like Greedy [16],
Serializer [34], or Polka [41].

We report on our SwissTM (trial-and-error) experience, akhi
we believe is interesting in its own right. It is the first tatelahat
evaluates the ability of software solutions to provide gqueat-
formance to large transactions and complex objects withmg-
ducing significant overheads on short transactions andisidgia
structures. We evaluate the individual impact of varioud/Sie-
sign choices on the ability to support mixed workloads. A swary
of our observations, is presented in Table 1.

From an implementation perspective, we also evaluate the im
pact of the locking granularity. Word-based STM impleméntes
used so far either word-level locking (e.g., TL2 and TinySjTov
cache-line level locking (e.g., MCRT-STM C/C++). Our s¢ingty
analysis shows that a lock granularity of four words outperfs
both word-level and cache line-level locking by 4% and 5% re-
spectively across all benchmarks we considered.

To summarize, the main contributions of this paper are (&) th
design and implementation of an STM that performs partityla
well with large-scale complex transactional workloads levihiav-
ing good performance in small-scale ones, and (2) an exepst
perimental evaluation of STM strategies and implememntatfoom
the perspective of complex applications with mixed workima



The rest of the paper is organized as follows. In Section 2,

we give a short overview of STM design space and benchmarks.

We then present SwissTM in Section 3. In Sections 4 and 5, we
present the results of our experimental evaluation: first,com-
pare the performance of SwissTM to that of TL2, TinySTM, and
RSTM, and, second, we evaluate the individual impact of #e d
sign choices underlying SwissTM.

2. Background

Transactional memory was first proposed in hardware (HTIg).[2
So far, most HTMs support only limited-size transactiond af
ten do not ensure transaction progress upon specific systmtse
e.g., interrupts, context switches, or function calls [@hile there
have been proposals for truly dynamic HTMs (e.g. [3, 32]), it
is very likely that actual HTM implementations will still ke
some of these limitations. Hybrid approaches either exeshiort
transactions in hardware and fall back to software for loruyees
(e.g., [26]), or accelerate certain operations of an STMardh
ware. This work focuses on pure software solutions (STM).[37
In this section, we survey some distinctive features of STHvid
discuss the three representative STMs we focus on in ounaval
tion: RSTM [27], TL2 [10], and TinySTM [31] (see [24] for a ful
survey). We also give a short description of the benchmasksd in
our experiments.

2.1 STM Design Space

The main task of an STM is tdetectconflicts among concurrent
transactions antesolvethem. Deciding what to do when conflicts
arise is performed by a (conceptually) separate comporadietc
a contention managef22]. A concept closely related to conflict
detection is that ofralidation Validating a transaction consists of
checking its read set (i.e., the set of locatfotize transaction has
already read) for consistency.

Two classes of STMs can be distinguisheehrd-based and
objectbased, depending on the granularity at which they perform
logging. RSTM is object-based while TL2 and TinySTM are word

based. There are also two general classes of STM implementa-

tions:lock-based andbstruction-freeLock-based STMs, first pro-
posed in [19, 12], implement some variant of the two-phask-lo
ing protocol [13]. Obstruction-free STMs [22] do not use any
blocking mechanisms (such as locks), and guarantee psogves
when some of the transactions are delayed. RSTM (versioa 3) i
obstruction-free, while TL2 and TinySTM internally use ksc

Conflict detection. Most STMs employ the single-writer-multiple-
readers strategy; accesses to the same location by comtcinanes-
actionsconflictwhen at least one of the accesses is a write (update).
In order to commit, a transactioh must eventuallyacquire every
locationx that is updated byl. Acquisition can besager i.e., at
the time of the first update operation Bfon x, or lazy, i.e., at the
commit time ofT. A transactionT that readx can be eithevisible

or invisible[27] to other transactions accessgVhenT is invis-
ible, T has the sole responsibility of detecting conflicts»owith
transactions that writ& concurrently, i.e., validating its read set.
The time complexity of a basic validation algorithm is pragmnal

to the size of the read set, but can be boosted with a globainibom
counter heuristic (RSTM), or a time-based scheme [10, 3LR(T
and TinySTM).

A mixed invalidationconflict detection scheme (first proposed
in [39]) eagerly detects write/write conflicts while lazifietecting
read/write conflicts (it is a mix between pure lazy and purgeea
schemes). A similar conflict detection scheme is providechbye

2These are memory words in word-based STMs and objects intebgsed
STMs.

general (but also more expensivalilti-versioningschemes used in
LSA-STM [33] and JVSTM [7]. Mixed invalidation, which under
lies SwissTM, has never been used with lock-based or wosdeba
STMs, nor has it been evaluated with any large-scale wodkloa
RSTM supports lazy and eager acquisition, as well as visi-

ble and invisible reads (i.e., four algorithm variants).ZTand
TinySTM use, respectively, lazy and eager acquisitionhBit2
and TinySTM employ invisible reads.

Contention management. The contention manager decides what
a given transactionaftacke) should do in case of a conflict with
another transactiorvictim). Possible outcomes are: aborting the
attacker, aborting the victim, or forcing the attacker toyrafter
some period.

The simplest scheme (which we ctifhid) is to always abort the
attacker (possibly with a short back-off). This is the défacheme
in TL2 and TinySTM. More involved contention managers were
proposed in [41, 36, 16], and are provided with RSTM. They can
also be combined at run-time [15}olka[41] assigns every trans-
action a priority that is equal to the number of objects tlzedr
action accessed so far. Whenever the attacker waits, dstgris
temporarily increased by one. If the attacker has a lowenrityi
than the victim, it will be forced to wait (using exponenttzck-
off to calculate the wait interval), otherwise the victimtgaborted.
Greedyassigns each transaction a unique, monotonically increas-
ing timestamp on its start. The transaction with the lowares-
tamp always wins. An important property of Greedy is that, un
like other contention managers we mention, it avoids stemwaf
transactions. Polka has been shown to provide best penfoeria
smaller-scale benchmarks previously [41], while our expents
show that Greedy performs better in large-scale worklo&as-(
tion 5). Serializeris very similar to Greedy except that it assigns a
new timestamp to a transaction on every restart, and thus e
prevent starvation or even livelocks of transactions.

2.2 STM Benchmarks

In this section, we give an overview of the benchmarks we use
in our experiments. These represent a large spectrum ofleaatk
types: from simple data structures with small transact{tims red-
black tree microbenchmark) to complex applications withgiloly
long transactions (STMBench?7). All the benchmarks we used a
implemented in C/C++.

STMBench7. STMBench7 [18] is a synthetic benchmark which
workloads aim at representing realistic, complex, obgganted
applications that are an important target for STMs. STMB&nc
exhibits a large variety of operations (from very short,drealy
operations to very long ones that modify large parts of tha da
structure) and workloads (from workloads consisting nyost
read-only transactions to write-dominated ones). The statature
used by STMBench7 is many orders of magnitude larger than in
other typical STM benchmarks. Also, its transactions areyéo
and access larger numbers of objects.

STMBench7 is inherently object-based and its implementati
also use standard language libraries. A thin wrapper, iestr
in [11], is thus necessary to use STMBench7 with word-based
STMs (TL2, TinySTM, and SwissTM).

STAMP. STAMP [8] is a TM benchmarking suite that consists of
eight different transactional programs and ten worklch83AMP
applications are representative of various real-worldkeads, in-
cluding bioinformatics, engineering, computer graphasd ma-
chine learning. While STAMP covers a broad range of possible
STM uses, its does not involve very long transactions, sat¢hase
that might be produced by average, non-expert programmnrers o

3We used STAMP version 0.9.9.



generated automatically by a compiler along the lines of fiif-
thermore, some STAMP algorithms (e.baye$ split logical op-
erations into multiple transactions and use intricate pogning
techniques that might not be representative of averagergomog
mers’ skills.

Lee-TM. Lee-TM [4] is a benchmark that offers large, realistic
workloads and is based on Lee’s circuit routing algorithrne Bl-
gorithm takes pairs of points (e.g., of an integrated ctjcas its
input and produces non-intersecting routes between thehileW
transactions of Lee-TM are significant in size, they exhikty
regular access patterns—every transaction first readge teum-
ber of locations (searching for suitable paths) and theratgsda
small number of them (setting up a path). Moreover, the bench
mark uses very simple objects (each can be representedragia si
integer variable). It is worth noting that STAMP containsagpli-
cation (calledabyrinth) that uses the same algorithm as Lee-TM.
However, Lee-TM uses real-world input sets that make it nmere
alistic thanlabyrinth. Lee-TM distribution includes two input data
sets:memoryandmaincircuit boards.

Red-black tree. The prevailing way of measuring the perfor-
mance of STMs has been through microbenchmarks. The widely
used (first in [22]) red-black tree microbenchmark consists
short transactions that insert, lookup, and remove elesnieoin

a red-black tree data structure. Short and simple tramsectif mi-
crobenchmarks are good for testing mechanics of STM itself a
comparing low-level details of various implementations.

3. SwissTM

SwissTMis a lock-based STM that uses invisible reads andteou
based heuristics (the same as in TinySTM and TL2). It feature
eager write/write and lazy read/write conflict detectioavell as

a two-phase contention manager with random linear backrof
API of SwissTM is word-based, as it enables transactionc¢ss
to arbitrary memory words. SwissTM uses a redo-logging sehe
(partially to support its conflict detection scheme).

3.1 Programming model

Similarly to most other STM libraries, SwissTM guarantepa®
ity [17]. Opacity is similar to serializability in databassys-
tems [30]. The main difference is that all transactions gbvab-
serve consistent states of the system. This means thaattéorss
cannot, e.g., use stale values, and that they do not reqgeliredic
validation or sandboxing to prevent infinite loops or crastige to
accesses to inconsistent memory states.

SwissTM is a weakly atomic STM, i.e., it does not provide
any guarantees for the code that accesses the same dataditom b
inside and outside of transactions. SwissTM is not priwgiimn
safe [38]. This could make programming with SwissTM slightl
more difficult in certain cases, but did not affect us, as nufithe
benchmarks we use requires privatization-safe STM.

When programming with SwissTM, programmers have to re-
place all memory references to shared data from insidedcéioss
with SwissTM calls for reading and writing memory words. The
programming model can be improved by using an STM compiler
(asine.g.[21, 2, 14, 29]). While the compiler instrumeiotatan
degrade performance due to over-instrumentation [42] arssip
bly even change the characteristics of the workload skgelg.
numbers and ratio of transactional read and write opersiticghe
compiler instrumentation remains a largely orthogonales® the
performance of an STM library.

Other three STMs we compare to in our experiments provide
the same semantical guarantees as SwissTM. Also, strerigghe
the guarantees (as described in Section 6) would have aasimil
performance impact on all STMs we use.

3.2 Algorithm

We give the pseudo-code of SwissTM in Algorithm 1. The algo-
rithm invokes contention manager functiorsn(-*), which are de-
fined in Algorithm 2 and described below. All transactionargha
global commit countecommit-tsincremented by every non-read-
only transaction upon commit. Each memory waonds mapped
to a pair of locks in a globabck table r-lock (read) andw-lock
(write). Lockw-lockis acquired by a writeF of m(eagerly) to pre-
vent other transactions fromariting to m. Lock r-lock is acquired
by T at commit time to prevent other transactions frosading
wordmand, as a result, observing inconsistent states of words wri
ten byT. In addition, whemnr-lock is unlocked, it contains the ver-
sion number ofn. Every transactiof has aransaction descriptor

tx that contains (among other data): (1) the value@hmit-tsread

at the start or subsequent validationTafand (2) read and write
logs of T.

Transaction start. Every transactio, upon its start, reads the
global countecommit-tsand stores its value ix.valid-ts(line 2).

Reading. When reading locatiomddr, transactionT first reads
the value ofw-lockto detect possible read-after-write cased. I§
the owner ofw-lock thenT can return the value from its write log
immediately, which is the last value has written tcaddr (line 6).
Otherwise, i.e., when some other transaction owrsck or when
w-lockis unlocked,T reads the value atlock, then the value of
addr, and then again the valueefock. TransactioT repeats these
three reads until (1) two values oflock are the same, meaning
thatT has read consistent valuesrdbck andaddr, and (2)r-lock

is unlocked (lines 8-15). Whenlock is unlocked, it contains the
current versiorv of addr. If v is lower or equal to the validation
timestampx.valid-tsof T (which means thaaddr has not changed
sinceT'’s last validation or start)] returns the value addr read

in line 18. OtherwiseT revalidates its read set. If the revalidation
does not succeed, rolls back (line 17). If it succeeds, the read
operation returns ant extends its validation timestantp.valid-ts

to the current value acfommit-tg(line 56).

Writing.  Whenever some transactidhwrites to a memory lo-
cationaddr, T first checks ifT is the owner of the lockv-lock
corresponding taddr. If it is, T updates the value afddr in its
write log and returns (lines 21-23). Otherwidefries to acquire
w-lock by atomically replacing, using a compare-and-swap (CAS)
operation, valuanlocked with the pointer to thd’s write log en-

try that contains the new value afidr (line 29). If CAS does not
succeed;T asks the contention manager whether to rollback and
retry or wait for the current owner of the lock to finish (lin6)2In
order to guarantee opacifl,has to revalidate its read set if the cur-
rent version ofaddr (contained irr-lock) is higher than its validity
timestampx.valid-ts(lines 31-32).

Validation. To validate itself, T compares the versions of all
memory locations read so far to their versions at the poiay th
were initially read byT (lines 51-52). These versions are stored in
T’s read log. If there is a mismatch between any version nusjber
the validation fails (line 52).

Commit. A read-only transactioi can commit immediately, as
its read log is guaranteed to be consistent (line 35). A &etienT
that is not read-only firstlocks all read locks of memory tomas T
has written to (line 36). Thef, incrementcommit-tline 37) and
re-validates its read log. If the validation does not sudc@&eroll-
backs and restarts (lines 38—41). Upon successful valiaitra-
verses its write set, updates values of all written memargtions,
and releases the corresponding read and write locks (I2e45).
When releasing read lock§, writes the new value cfommit-tsto
those locks.



Algorithm 1: Pseudo-code representation of SwissTM.
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function start(tx)
tx.valid-ts < commit-ts
| cm-star{tx);

function read-wordtx, addr)
(r-lock, w-lock) < map-addr-to-lock&ddr);
if is-locked-byw-lock, t§ then return get-valugw-lock, add);
version« read(r-lock);
whiletrue do
if version= locked then
version— read(r-lock);
L continue;

value— read(addr);

version2— read(r-lock);

if version= version2then break;
version2« version

add-to-read-logtx, r-lock, version);
if version> tx.valid-tsand not extendtx) then rollback(tx);
return valug

function write-word(tx, addr, valug

(r-lock, w-lock) < map-addr-to-lock&addr);

if is-locked-byw-lock, ) then

update-log-entryw-lock, addr, value);
return;

whiletrue do
if is-lockedw-lock) then
if cm-should-aboi(tx, w-lock then rollback(tx);
L €else continue;

log-entry— add-to-write-lod tx, w-lock, addr, value);

if compare&swapw-lock,unlocked, log-entry) then
| break;

if_reac(r-lock) > tx.valid-tsand not extendtx) then
| rollback(tx);

| cm-on-writgtx);

function committx)
if is-read-only(tx) then return;
for log-entryin tx.read-logdo write(log-entryr-lock, Locked);
ts « increment&getcommit-tg;
if ts> tx.valid-ts+ 1 and not validate(tx) then

for log-entryin tx.read-logdo

| write(log-entryr-lock, log-entry.versior);

| rollback(tx);
for log-entryin tx.write-log do
write(log-entryaddr, log-entry.value);
write(log-entryr-lock, ts);
write(log-entryw-lock, unlocked);

function rollback(tx)
for log-entryin tx.write-log do
| write(log-entryw-lock unlocked);

| cm-on-rollbacKtx);

function validate(tx)
for log-entryin tx.read-logdo
if log-entryversions readlog-entry.r-lock) and not
L is-locked-bylog-entryr-lock, tx) then return false

return true;

function extendtx)

ts < read commit-tg;

if validate(tx) then tx.valid-ts « ts; return true;
return false

Algorithm 2: Pseudo-code of the two-phase contention man-
ager Y\ is a constant)

1 function cm-starttx)
| if not-restarftx) then tx.cm-ts— oo ;

N

w

function cm-on-writgtx)
4 if tx.cm-ts= o0 and siztx.write-log) = W, then
| tx.cm-ts— increment&getgreedy-t3 ;

5 function cm-should-abortx, w-lock

6 if tx.cm-ts= oo then return true;

7 lock-owner= owner(w-lock);

8 if lock-ownercm-ts< tx.cm-tsthen return true;
9 else abort(lock-ownel; return false

10 function cm-on-rollbacktx)
11 | wait-randon{ix.succ-abort-coury;

Rollback. On rollback, transactio releases all write locks it
holds (lines 47-48), and then restarts itself.

Contention management. We give the pseudo-code of our two-
phase contention manager in Algorithm 2. The contentionagan
gets invoked by Algorithm 1 (1) at transaction stasin¢startin
line 3), (2) on a write/write conflictqm-should-aborin line 26),
(3) after a successful writeifn-on-writein line 33), and (4) after
restart ¢m-on-rollbackin line 49). Every transaction, upon exe-
cuting its\Wh" write (where we set\, to 10), increments global
countergreedy-tsand stores its value itx.cm-ts(line 4). Hence,
short transactions (those that execute less Yhamrites) do not
accesgreedy-tghat would otherwise become a memory hot spot—
this reduces contention and the number of cache missess-Tran
actions that have already incremenggdedy-tsare in the second
phase of the contention management scheme, and othersthee in
first phase. Upon a conflict, a transaction that is still in fingt
phase gets restarted immediately (line 6). If both configctrans-
actions are already in the second phase, the transactitnthet
higher value otm-tsis restarted (lines 8-9). This prioritizes trans-
actions that have performed more work. Conceptually, &retiens

in the first phase have an infinite valueamh-ts(set in line 2). This
means that (longer) transactions, which are in the secoadeph
have higher priority than (short) transactions that arehin first
phase. After restarting, transactions are delayed usirandom-
ized back-off scheme (line 11). This reduces probabilityhat-
ing some transaction aborted many times repeatedly bechtise
same conflict.

3.3 Implementation Highlights

We implemented SwissTM in C++ (g++ 4.0.1 compiler). We used
the (fairly portable) atomimps library [5] for atomic operations
implementation. Currently, SwissTM works on 32-bit x86 Wi
2.6.x and OS X 10.5 platforms (64-bit port is in progress).

Lock table. To map memory wordn to a lock table entry, we
take the addresa of m, shift it to the right by 4 (it would be 5
with 64-bit words). This makes each lock map to consecutivg f
memory words (we empirically selected this value, as erplain
Section 5). Then, we set all high order bits to zero. As thé loc
table contains 2 entries in our implementation, we just perform
logical AND operation between shifted address af-21 to get

the index into the table. Figure 1 depicts the mapping scheme
Having multiple consecutive memory words mapped to the same
lock table entry can result in false conflict, when unrelatesmory
words get locked together, but this does not cause any prshile
practice.
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Figurel. Mapping of memory words to lock table entries.

Every lock is implemented as a single memory werdThe
write lock is equal to 0 in its unlocked state and containsiatpoto
the corresponding write log entry when locked. Acquiring rétev
lock is done using a compare-and-swap (CAS) operation. When
releasing write lockw, transactions simply write O tov. The read
lock has its least significant bit set to 0 when unlocked, evbther
bits store the version number of memory locations corredipon
to w. When locked, the read lock is equal to 1. Both locking and
unlocking of read locks is performed by simply writing a nealue
tow (CAS is not used), as only the transaction that already aegjui
a write lock can acquire the corresponding read lock.

4. Evaluating SwissTM

We compare the performance of SwissTM to that of TL2, TinySTM
and RSTM.

We performed all measurements on a 4-processor dual-core

AMD Opteron 8216 2.4 GHz 1024 KB cache machine with 8 GB
of RAM, running Linux operating system. This provided ustwit
8 cores to experiment on. All results were averaged overimult
ple runs, where the length and the number of runs were chosen t
reduce variations in collected data. We typically used 26 rior
STMBench7 and STAMP, 10 runs for LeeTM and 80 runs for the
red-black tree microbenchmark. We used the TL2 x86 implemen
tation provided with the STAMP benchmark suite (version®).9
We were not able to use the TL2 implementation from original a
thors as it does not support the x86 architecture. Also, thg-o
nal TL2 does not support transactional memory managemeant in
straightforward manner, and is, because of that, difficuliste with
benchmarks we had at our disposal, without significant cbsubg
the benchmark code. While we did not use the original TL2 im-
plementation in a setting that it was primarily designed ¥z be-
lieve that the TL2 x86 port we used is the best representafive
the TL2 algorithm and design available for the x86 architext
The experiments were performed with the RSTM (version 3) and
TinySTM (version 0.9.5) implementations available fronspec-
tive sites. Unless stated otherwise, we configured RSTM & us
eager conflict detection, invisible reads with the commitrger
heuristic, and the Polka contention manager. We used defanH
figurations of TL2 (i.e., lazy conflict detection, GV4) anch{y§TM
(i.e., encounter-time locking, timid contention manager)

STMBench7. Figure 2 shows the performance of SwissTM, TL2,
TinySTM, and RSTM with STMBench7. We configured RSTM to
use the Serializer contention manager, as this gave thepbest
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Figure 2. Throughput of SwissTM, RSTM, TL2, and TinySTM
with STMBench7; top to bottom: read-dominated, read-vwarel
write-dominated workload

forming RSTM configuration in STMBench7. SwissTM signifi-
cantly outperforms all other STMs for both read-dominated a
read-write workloads, while also achieving superior Joiditst.
SwissTM also outperforms other STMs in high-contentiontevri
dominated workload, but it is only marginally faster thany$TM.
The main reason for the good performance of SwissTM is
(a) its optimism in detecting read/write conflicts when ceingal
to RSTM and TinySTM, and (b) its conservatism in detecting
write/write conflicts when compared to TL2. The contentioarm
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Figure4. Execution time of SwissTM, TinySTM and RSTM in the

STAMP. The figure conveys the speedup of SwissTM compared to Lee-TM benchmark; top isnemory bottom ismain circuit board

TL2 and TinySTM (with 1 subtracted, i.e., positive numbersam
that SwissTM is faster and negative that it is slower) for,4,2and
8 threads.

input data set

a slightly better performance (1% of difference). SwissTM-o
performs TinySTM by over 45% with eight threads iimtruder,

agement scheme used in SwissTM also helps boost performancekmeansunder high contention, angada and by over 12% in

as we illustrate in Section 5.

TL2 performs poorly even in the read-dominated workload—
it does not scale after 4 threads. Its performance gets evesew
with higher contention. The main reason for this is the laayflict
detection scheme of TL2, which wastes more work of transasti
than the eager write/write conflict detection of other STMs.

STAMP. Figure 3 compares the performance of SwissTM, TL2,
and TinySTM in the STAMP benchmark suite workloddSwissTM
outperforms TL2 in all STAMP workloads, for all thread cosint
excluding thevacation benchmark under low contention where
TL2 and SwissTM have the same performance. SwissTM out-
performs TL2 by over 50% with eight threads for thayes
intruder, and yada benchmarks (being almost twice as fast as
TL2 in yadg, and by over 20% irkmeans(both variants) and
labyrinth, while being about 10% faster than TL2 genome
ssca? andvacationunder high contention. SwissTM outperforms
TinySTM in ten STAMP workloads with eight threads, except fo
the kmeansbenchmark under low contention where TinySTM has

4There is no RSTM implementation of STAMP, due to AP!I inconitght
ity. RSTM provides an object-based API, while STAMP usesdsoased
API. This makes it difficult to simply plug-in RSTM into cume STAMP
version.

bayes genomelabyrinth, andssca? while being about 5% faster
in vacation(both variants). SwissTM has good performance with
lower thread counts, while scaling well as the number of aoment
threads increases. To summarize, SwissTM outperformsHath
and TinySTM in all STAMP benchmark workloads.

Lee-TM. Figure 4 compares the performance of SwissTM, RSTM,
and TinySTM in the Lee-TM benchmafkRSTM has the lowest
performance mainly because of higher single object access o
heads (objects in Lee-TM are very simple—consisting of glsin
integer variable). SwissTM and TinySTM have very similarfpe
mance, although SwissTM is faster by a small margin for aédid
counts.

Red-black tree. Finally, Figure 5 compares the performance of
SwissTM, TL2, TinySTM, and RSTM in the commonly used red-
black tree microbenchmark. RSTM delivers significantlyéower-
formance than other three STMs due to its high overheadsgiesi
memory location accesses. These low-level overheads hase m
significant impact in microbenchmarks like this one. Thipiis-
cisely the reason while SwissTM, that uses two locks for each

5We were not able to get Lee-TM to run with TL2 (we suspect tmeight
be a bug in the x86 TL2 port).
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Figure 6. Disadvantages of lazy (left) and eager (right) conflict
detection strategies

memory location, has lower performance than TL2 and TinySTM
which use a single lock, in single thread executions. It isthvnot-
ing that a red-black tree is the only benchmark for whichhglig
higher overheads of using two locks have more than negéigibt-
formance impact. SwissTM outperforms both TL2 and TinySTM
when there are more than four threads and exhibits bettibskca

ity.

5. Dissecting the SwissTM Experience

In this section, we evaluate individually the design cheioader-
lying SwissTM: its conflict detection strategy, the two-pbaaon-
tention manager, and the granularity of the lock table.

Conflict detection. Current state-of-the-art STMs typically detect
both read/write and write/write conflicts in the same waythei

as soon as conflicts occur (eagerly, e.g., TinySTM, McRT-STM
and Bartok STM), or at commit time (lazily, e.g., TL2). Detec
ing conflicts eagerly helps avoid wasting work of transadithat
are doomed to abort after a conflict. Lazy conflict detectimw-
ever, is more optimistic and gives transactions more piisisb to
commit. For example, Figure 6a depicts an execution of an STM
that uses lazy conflict detection. There, transaclipapends time
betweertz (commit time ofT;) andts (commit time ofT,) perform-

ing work that is doomed to be roll-backed. The period betwgen
andt, can be significant with long transactions. It is worth noting
that bothT; and T> could commit with a lazy conflict detection
STM, if they both only write td/. However, pure write/write con-

Figure7. Throughput of eager and lazy conflict detection schemes
in read-dominated STMBench7

flicts are typically rare, as transactions usually first reache data
and then subsequently update it. Because of this, lazy cod#
tection STMs react too slowly to write/write conflicts (whiare
good signs that transactions cannot proceed in paralldlyesults

in transactions performing work that has to be rolled bac¢&rla
Figure 6b, gives an example execution of an STM that uses eage
conflict detection. There, transactidsnhas to wait until timey be-

fore continuing, although it could commit already at titgéf lazy
scheme was used. The waiting timeTgfmight be significant ifTy

is very long.

SwissTM takes the best of both strategies—it detects wnitts/
conflicts eagerly and read/write conflicts lazily. This conelal
strategy is beneficial for complex workloads with long ti@et®ns
because it (1) prevents transactions with write/write ¢oisfifrom
running for a long time before detecting the conflict, anda(®)ws
short transactions having a read/write conflict with longees to
proceed, thus increasing parallelism.

Figure 2 suggests that the mixed eager-lazy scheme givies bet
performance than pure eager scheme which, in turn, outpesfo
lazy scheme (Figure 7). This does not say what kind of woddoa
benefit most from the mixed scheme, and what part of the perfor
mance boost of SwissTM can be attributed to its two-phase con
tention manager (and not to the mixed conflict detection).

To answer this question, we modified slightly the Lee-TM
benchmark. The performance of the original Lee-TM does not
seem to be influenced by the choice of a conflict detection and
contention management schemes, because the transaatioss-i
TM are highly regular—they first read and then write. We idtroe
a small irregularity in Lee-TM by adding a single obje&gg that
every transaction reads at its start. A small r&iof transactions
(chosen randomly) also updat€s, causing a read/write conflict
with all the other transactions. The contention managed use
SwissTM does not provide a lot of benefit in this case, as time-nu
ber of write/write conflicts introduced by this irregulariis not
large (we keefR low in experiments).

Figure 8 compares the performance of TinySTM and SwissTM
for R of 0%, 5%, and 20%. Due to its conflict detection scheme,
the SwissTM performance degrades only slightly even wRés
relatively high (20%). Also, SwissTM continues to scalehaslthe
number of threads increases. On the other hand, the perfiecema
of TinySTM degrades significantly even whBnis only 5%, while
with R of 20% it stops scaling already at three threads.

We conclude here that applications exhibiting regular sece
patterns benefit the most from lowering single-locatioreascosts
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dominated workload of STMBench7

and are not significantly influenced by the conflict detecsicineme
itself. However, for applications where the access padtémtro-
duce even small irregularities, especially those creakimger-
lasting read/write conflicts, SwissTM’s optimistic appchayields
significant benefits.

Contention management. The contention manager gets invoked
in SwissTM only on write/write conflicts. The reasoning hése
simple—read/write conflicts are detected only at commitetiof
the writer, and it makes little sense for the reader to alhertriter
that is already committing. This is why the reader waits Iuhg
writer (quickly) commits, before attempting to revalidat® read
set.

Figure 9 shows that Greedy performs better than Polka (which
was shown previously to perform very well in a range of snmalle
scale benchmarks [41]) in STMBench7, our larger-scale benc
mark. However, Greedy performs poorly with short trangen]
because all transactions increment a single shared coaintieeir
start, which causes a lot of cache misses and significangisades
performance and scalability (Figure 10). This problem it mo-
ticeable with longer transactions as the overhead causeddie
misses is relatively small compared to the work of the tretisas
themselves. As shown in Figure 10, our two-phase contentiem

Figure 10. Throughput of the two-phase contention manager vs.
Greedy (in SwissTM) with the red-black tree
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Figure1l. Execution time of backoff vs. no backoff (in SwissTM)
in the STAMPIntruder application

ager overcomes this issue completely, improving both perdnce

and scalability over Greedy. This is because it allows altshnd

read-only transactions to commit without incrementingghared
counter used by the Greedy algorithm, yet it provides thenstr
progress guarantees of Greedy for long ones.

It might seem beneficial to make transactions restart as soon
as possible after conflicts that force them to rollback, aginga
just decreases the reaction time before the transactieraedtes.
However, restarting immediately tends to increase corterdn
cache lines containing data that gets updated very frelyu€un-
sequently, short back-offs after transaction rollbacks icaprove
performance. Figure 11 compares the performance of SwissTM
in the STAMPintruder benchmark with and without the back-off
scheme. (Thintruder benchmark is a good example here, because
it indeed contains a “hot spot™: a high number of transactide-
gueue elements from a single queue.) The figure shows thagdimm
diately restarting transactions after rollback causelabiay prob-
lem with eight threads. A simple randomized linear (in thenber
of successive aborts) back-off scheme resolves the skiglédsue.

Finally, we evaluate the influence of our two-phase conpenti
manager on the overall performance of SwissTM. Figure 1&sho
that the two-phase contention manager improves perforenayas
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much as 16% in high-contention workloads. Its influence vigelo

in the read-dominated workload, which is not surprisingegithat

this workload is characterized by a small number of writéavr
conflicts.

Locking granularity. An important implementation choice in an
STM is its lock table configuration, in particular the sizetbé
memory stripe that gets mapped to the same (lock table).dntry
creasing the size of memory stripes reduces locking andatadin
time, due to the data access locality, but increases abed gy
introducing false conflicts when the memory stripe beconoes t
large. The optimal value for this parameter is applicatipecgfic
and we searched for the best value across all benchmarksag us
Figure 13 depicts the average speedup (minus 1) of eachtlogar
mic lock granularity compared to all the others at eightaldise(32
bit word). The figure shows that the granularity 8ft8tes achieves
the best performance, wit 2nd 2 being slightly slower. It is in-
teresting to note that the commonly used sizes of one watd (2
and one cache line 2 have performance of 4% and 5% lower on
average than the one we select. We give a breakdown of thiese di
ferences across benchmarks in Table 2.

It is interesting to note here that, while using differentko
granularities does impact performance, the impact of ustragser
lock granularities is not significant enough to prevent SWid
from scaling (e.g. due to increased number of false conflicts

6. Concluding Remarks

This paper presents SwissTM—an effective compilation oMST
design choices for mixed workloads characterized by nafeun,
dynamic data structures and various transaction sizeseTkiods
of workloads are inherent to many applications that migheke
pected to significantly benefit from the STM paradigm and mult
core architectures. SwissTM significantly outperformsestf-the-
art STMs in precisely such workloads, while also deliveryugpd
performance in smaller-scale scenarios.

Not surprisingly, the design of SwissTM is a result of trial-
and-error. We reported in the paper on various choices tigttm
have seemed natural, but revealed inappropriate. Besidses,twe
also experimented with nested transactions (closed iggstind
multi-versioning, but we could not see a clear advantagdage

6 performance results presented in previous sections athessame lock-
ing granularity of 2 bytes.

Figure 13. Average speedup across all benchmarks used (with one
subtracted) of locking granularities fron? 2o 22 compared to all
other granularities, with 8 threads

Difference in performance

Benchmark Avs. 2 2Hvs. B 2ys. B
bayes 0.16 0.81 0.57
genome 0.13 —-0.03 -0.14
intruder 0 -0.04 -0.04
kmeans-high 0.19 0.4 0.18
kmeans-low 0.14 0.05 -0.08
labyrinth -0.12 —0.09 0.04
ssca2 0 0 0
vacation-high 0.14 —0.03 -0.15
vacation-low 0.12 -0.05 -0.15
yada 0 0.12 0.12
red-black tree -0.01 0 0.01
Lee-TM memory 0.01 —-0.03 —0.04
Lee-TM main 0.02 -0.01 -0.02
STMBench7 read 0 —0.02 —0.02
STMBench7 read-write —0.01 -0.03 -0.02
STMBench7 write -0.04 —0.06 —0.02
Average 0.05 0.06 0.01

Table 2. Comparing three different lock granularities. Numbers
represent relative speedups (with one subtracted) withe@tts

techniques in the considered workloads. Further expetsmaight
be needed in this direction.

Improving the programming model. Two main directions along
which we plan to improve the semantical guarantees of SwissT
are: (1) adding compiler support, and (2) making SwissTMgtization-
safe. There exists a number of STM C/C++ compilers that have
open interfaces supporting different STM libraries (eXgt,[29])

and we plan to integrate SwissTM with one of them. A concdptua
simple algorithm for ensuring privatization-safety usagegcence:
every committing transactioh has to wait for all in-flight transac-
tions to validate, commit, or abort. While this algorithnsisple, it
would probably significantly impact performance of Swiss[]

and we plan to investigate other options, possibly usingrtiegies
similar to [28] or [25].



7. Availability
SwissTM is open-source and available framtp://1pd.epfl.

ch/site/research/tmeval. The source code of benchmarks

used in the paper can be downloaded from the same location.
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