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ABSTRACT
In this paper, we propose new graph-based data structure
and indexing to organize and retrieve video data. Several re-
searches have shown that a graph can be a better candidate
for modeling semantically rich and complicated multimedia
data. However, there are few methods that consider the
temporal feature of video data, which is a distinguishable
and representative characteristic when compared with other
multimedia (i.e., images). In order to consider the temporal
feature effectively and efficiently, we propose a new graph-
based data structure called Spatio-Temporal Region Graph
(STRG). Unlike existing graph-based data structures which
provide only spatial features, the proposed STRG further
provides temporal features, which represent temporal rela-
tionships among spatial objects. The STRG is decomposed
into its subgraphs in which redundant subgraphs are elim-
inated to reduce the index size and search time, because
the computational complexity of graph matching (subgraph
isomorphism) is NP-complete. In addition, a new distance
measure, called Extended Graph Edit Distance (EGED), is
introduced in both non-metric and metric spaces for match-
ing and indexing respectively. Based on STRG and EGED,
we propose a new indexing method STRG-Index, which is
faster and more accurate since it uses tree structure and
clustering algorithm. We compare the STRG-Index with
the M-tree, which is a popular tree-based indexing method
for multimedia data. The STRG-Index outperforms the M-
tree for various query loads in terms of cost and speed.

1. INTRODUCTION
Recently, content-based video retrieval systems have de-

veloped for many applications, such as digital libraries, in-
ternet video search engines and surveillance systems. These
systems can be divided into three categories as follows: (1)
visual feature based retrieval systems [17] which use visual
features of key frames to index frames, shots and scenes,
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(2) keyword based retrieval systems [21] which use man-
ually extracted text information to represent the content
of video segments, and (3) object based systems [4] which
use sptio-temporal features among extracted objects. Three
main issues discussed in the above systems are: (1) how to
efficiently parse a long video into meaningful smaller units
(i.e., shots or scenes), (2) how to compute the (dis)similarity
between two units more accurately, and (3) how to index and
retrieve these units more effectively.

For the first issue, the majority of existing techniques for
video parsing use low level or high level features which are
extracted from the frame level. Mostly used low level fea-
tures are colors, shapes and textures. The frame level sim-
ilarities are computed using these features to find segment
boundaries [15, 22]. However, it is difficult to distinguish
diverse semantic content in a video by using only low level
features. On the other hand, we can represent the seman-
tic content by high level features (i.e., various text informa-
tion). However, extracting these high level features is a very
tedious task since it can be done by manual annotations.

The second issue is to compute the (dis)similarity between
two units according to the feature values extracted from each
unit. Typically, the (dis)similarity is measured by the dis-
tance functions considering time which is the primary factor
of a video. These distance functions include the traditional
distance functions (i.e., Lp-norms), Dynamic Time Warping
(DTW) [11], Longest Common Subsequence (LCS) [7], and
Edit Distance (ED) [4]. Although traditional distance func-
tions are easy to compute, they are not optimal to measure
the difference between the units with multiple and complex
features. The others are perceptually better than the tra-
ditional distance functions. However, they are non-metric
distance functions which cannot be applied to the standard
indexing algorithms.

The third issue is to index and retrieve these units effec-
tively. There have been relatively little efforts on indexing
and retrieving the units. A major difficulty is how to han-
dle spatio-temporal relationships among the objects in these
units. To address this, an indexing structure called 3DR-
tree [26] was proposed. It indexes salient objects by treating
the time (temporal feature) as another dimension in R-tree.
However, simply treating the time as another dimension is
not optimal since spatial and temporal features should be
considered differently. A couple of other index structures,
such as RT-tree [29] and M-tree [5], have been proposed to
handle spatio-temporal features. However, they are ineffi-



cient for various queries on moving objects since they cannot
capture the characteristics of moving objects. Some stud-
ies [14, 20] have proposed a visual representation of video by
constructing graphs. However, in these approaches only spa-
tial features are considered. Temporal relationships among
objects, which are more important characteristics of video
data, are not considered thoroughly.

In order to address the above three issues, first we propose
a new graph-based data structure, called Spatio-Temporal
Region Graph (STRG), which represents the spatio-temporal
features and relationships among the objects extracted from
video sequences. Region Adjacency Graph (RAG) [20] is
generated from each frame, and an STRG is constructed
from RAGs. The STRG is decomposed into its subgraphs,
called Object Graphs (OGs) and Background Graphs (BGs)
in which redundant BGs are eliminated to reduce index size
and search time. Then, we cluster OGs using Expectation
Maximization (EM) algorithm [8] for more accurate index-
ing. To cluster OGs, we need a distance measure between
two OGs. For the distance measure, we propose Extended
Graph Edit Distance (EGED) because the existing measures
are not suitable for the OG which is a special case of graph.
The EGED is defined in a non-metric space first for the
clustering of OGs, and it is extended to a metric space to
compute the key values for indexing. Based on the clusters
of OGs and the EGED, we propose a new indexing method
STRG-Index. Our contributions in this paper are as follows:

• We propose a new data structure, STRG for video data
based on graphs. It can represent not only spatial fea-
tures of video objects, but also temporal relationships
among them.

• We propose a new distance function, EGED which
is defined in both non-metric and metric spaces for
matching and indexing respectively. It provides better
accuracy.

• We propose a new indexing method, STRG-Index which
provides faster and more accurate indexing since it
uses tree structure and data clustering.

The remainder of this paper is organized as follows. In
Section 2, we explain how to generate a RAG from each
frame, how to construct an STRG from RAGs, and how
to decompose STRG into OGs and BGs. In Section 3, we
introduce EGED which is used for graph matching and in-
dexing. The model-based clustering algorithm (EM) is em-
ployed to group similar OGs in Section 4. In Section 5,
we propose STRG-Index for video data. The performance
study is reported in Section 6. Finally, Section 7 presents
some concluding remarks.

2. GRAPH-BASED APPROACH
In this section, we describe Region Adjacency Graph (RAG),

and extend it to Spatio-Temporal Region Graph (STRG)
which will be used for video indexing.

2.1 Region Adjacency Graph
The first step in image and video processing is to decide

the basic unit of processing such as pixel, block or region.
Then, the features are computed from each unit for further
processing. Recently, some studies focused on a graph-based
approach to process image and video data [20, 23], since

a graph can represent not only these units but also their
relationships. We first describe Region Adjacency Graph
(RAG) which is the basic data structure for video indexing.

Assume that a video segment has N frames. To divide a
frame into homogeneous color regions, we use region segmen-
tation algorithm called EDISON (Edge Detection and Image
Segmentation System) [6]. The reason we choose EDISON
among other algorithms is that it is less sensitive to small
changes over the frames, which occur frequently in video se-
quence. The relationships among segmented regions can be
represented by a graph, which is defined as follows:

Definition 1. Given the nth frame fn in a video, a Re-
gion Adjacency Graph of fn, Gr(fn), is a four-tuple Gr(fn)
= {V, ES , ν, ξ}, where

• V is a finite set of nodes for the segmented regions in fn,

• ES ⊆ V ×V is a finite set of spatial edges between adjacent
nodes in fn,

• ν : V → AV is a set of functions generating node at-
tributes,

• ξ : ES → AES
is a set of functions generating spatial edge

attributes.

A node (v ∈ V ) corresponds to a region, and a spatial
edge (eS ∈ ES) represents a spatial relationship between two
adjacent nodes (regions). The possible node attributes (AV )
are size (number of pixels), color and location (centroid) of
corresponding region. The spatial edge attributes (AES )
indicate relationships between two adjacent nodes such as
spatial distance and orientation between centroids of two
regions. A RAG provides a spatial view of regions of frame
as illustrated in Figure 1.
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(a) Frame #105 (b) Region segmentation for (a)

(c) Gr(f105) for (b)

Figure 1: Example of region segmentation and RAG

Figure 1 (a) and (b) show an actual frame and its seg-
mented regions respectively. The RAG in Figure 1 (c),
Gr(f105), is constructed according to Definition 1. Each



circle indicates a segmented region. Here, the radius, the
color and the center of circle correspond to the node at-
tributes such as size, color and location, respectively. In
addition, the lines in Figure 1 (c) represent the spatial edge
attributes, i.e. spatial distance and orientation between two
adjacent nodes.

2.2 Spatio-Temporal Region Graph
A RAG is generated from each frame. A node represent-

ing a region can span across multiple frames. In other words,
the corresponding nodes in the consecutive frames need to
be connected to represent its temporal characteristic. The
temporally connected RAGs are called Spatio-Temporal Re-
gion Graph (STRG). The STRG can handle both temporal
and spatial characteristics of video data. It is defined as
follows:

Definition 2. Given a video segment S, a Spatio-
Temporal Region Graph, Gst(S), is a six-tuple Gst(S) =
{V, ES , ET , ν, ξ, τ}, where

• V is a finite set of nodes for segmented regions from S,

• ES ⊆ V ×V is a finite set of spatial edges between adjacent
nodes in S,

• ET ⊆ V × V is a finite set of temporal edges between tem-
porally consecutive nodes in S,

• ν : V → AV is a set of functions generating node at-
tributes,

• ξ : ES → AES
is a set of functions generating spatial edge

attributes,

• τ : ET → AET
is a set of functions generating temporal

edge attributes.

In an STRG, a temporal edge (eT ∈ ET ) represents the
relationships between two corresponding nodes (regions) in
two consecutive frames, such as velocity (how much their
centroids are changed) and moving direction. Figure 2 shows
a part of STRG for frames #104 − #106 in a sample video.
The horizontal lines between the frames indicate the tem-
poral edges.

Frame #104 Frame #105 Frame #106

Figure 2: Visualization of STRG for frame #104 −
#106

An STRG is an extension of RAGs by adding a set of tem-
poral edges (ET ) to them. ET represents temporal relation-
ships between the corresponding nodes in two consecutive
RAGs. Constructing ET is similar to the problem of object
tracking in video sequence.

Although there are numerous efforts [10, 13] for object
tracking, it is still an open problem. The main reason is

that most of the tracking algorithms use low-level features
such as color, location and texture, but complicated mov-
ing patterns of objects cannot be interpreted easily by the
low-level features. In order to overcome this problem, we
propose a new graph-based tracking method, which consid-
ers not only low-level features but also relationships among
regions. To describe our graph-based tracking algorithm, we
first define subgraph isomorphism as follows (see Definitions
3, 4 and 5).

Definition 3. Given a graph Gr = {V, ES , ν, ξ}, a sub-
graph of Gr is a graph Gr′ = {V ′, E′

S , ν′, ξ′} such that

• V ′ ⊆ V and E′S = ES ∩ (V ′ × V ′),

• ν′ and ξ′ are the restrictions of ν and ξ to V and ES ,
respectively, i.e.

ν′(v) =

{
ν(v) if v ∈ V ′,
undefined otherwise.

ξ′(eS) =

{
ξ(eS) if eS ∈ E′S ,
undefined otherwise.

The notation Gr′ ⊆ Gr is used to indicate that Gr′ is a
subgraph of Gr.

Definition 4. Two graphs Gr = {V, ES , ν, ξ} and Gr′′ =
{V ′′, E′′

S , ν′′, ξ′′} are isomorphic, denoted by Gr ∼= Gr′′, if
there is a bijective function f : V → V ′′ such that,

• ν(v) = ν′′(f(v)) ∀v ∈ V ,

• For any edge eS = (v1, v2) ∈ ES there exists an edge e′′S =
(f(v1), f(v2)) ∈ E′′S such that ξ(e′′S) = ξ(eS), and
for any edge e′′S = (v′′1 , v′′2 ) ∈ E′′S there exists an edge eS =

(f−1(v′′1 ), f−1(v′′2 )) ∈ ES such that ξ(e′′S) = ξ(eS).

Definition 5. A graph Gr is subgraph isomorphic to a
graph Gr′′, if there exist an injective function f : V → V ′′

and a subgraph G′ ⊆ G′′ such that Gr and Gr′ are isomor-
phic (i.e., Gr ∼= Gr′ ⊆ Gr′′).

Now, the tracking problem can be converted to find the
most common subgraph from two consecutive frames since
each frame is represented by a graph. We define the most
common subgraph between two given graphs in Definition
6.

Definition 6. GC is the most common subgraph of two
graphs Gr and Gr′, where GC ⊆ Gr and GC ⊆ Gr′, if and
only if ∀G′C : G′C ⊆ Gr ∧ G′C ⊆ Gr′ ⇒ |G′C | ≤ |GC |, where
|G| denotes the number of nodes of G.

The graph-based tracking method starts with defining the
neighborhood graph GN (v) in Definition 7.

Definition 7. GN (v) is the neighborhood graph of a given
node v in a RAG, if for any nodes u ∈ GN (v), u is the ad-
jacent node of v and has one edge such that eS = (v, u).

GN is a subgraph of a RAG. Let Gm
N and Gm+1

N be sets

of the neighborhood graphs in mth and (m + 1)th frames
respectively. For each node v in mth frame, the goal is to
find the corresponding node v′ in (m+1)th frame. To decide
whether two nodes are corresponding, we use the neighbor-
hood graphs in Definition 7. Therefore, to find the corre-
sponding two nodes v and v′ is converted to find the cor-
responding two neighborhood graphs, GN (v) in Gm

N , and
GN (v′) in Gm+1

N , in which GN (v′) is isomorphic or most



similar to GN (v). First, we find the neighborhood graph in
Gm+1

N , which is isomorphic to GN (v). Second, if we cannot
find any isomorphic graph in Gm+1

N , we find the most similar
neighborhood graph to GN (v) using the following Equation
(1) which computes a similarity between two neighborhood
graphs.

SimGraph(GN (v), GN (v′)) =
|GC |

min(|GN (v)|, |GN (v′)|) (1)

where GC is the most common subgraph between GN (v)
and GN (v′) (see Definition 6). The well-known algorithms
computing GC are based on the maximal clique detection
[16] or the backtracking [18]. We exploit the idea of maxi-
mal clique detection to compute GC since the neighborhood
graph can be easily transformed into maximal clique. The
higher the value of SimGraph, the more similarity between
GN (v) and GN (v′). For GN (v) ∈ Gm

N , GN (v′) is the corre-
sponding neighborhood graph in Gm+1

N , whose SimGraph
with GN (v) is the largest among the neighborhood graphs
in Gm+1

N , and greater than a certain threshold value (Tsim).
In this way, we find all possible pairs of corresponding neigh-
borhood graphs from Gm

N to Gm+1
N . Algorithm 1 provides

the pseudocode of graph-based tracking.

Algorithm 1: Graph-Based Tracking

Input:  two Region Adjacent Graphs: Gr(fm) and Gr(fm+1)
Output: temporal edge set: ET

1: let ET = ∅
2: for each v ∈ Gr(fm) do
3:     let g = GN(v),  maxSim = 0, Sim = 0, maxNode = null;
4:          for each v′ ∈ Gr(fm+1) do
5:               let g′ = GN(v′ ); 
6:               if g and g′ are isomorphic then
7:                    ET = ET ∪ {eT (v, v′ ) }; break;
8:               else
9:                    Sim = SimGraph(g, g′) by Equation (1);
10:             end if
11:             if Sim > maxSim then
12:                  maxNode = v′ ;  maxSim = Sim;
13:        done
14:        if no isomorphic graph of v and maxSim > Tsim then
15: ET = ET ∪ {eT (v, maxNode) };
16: done
17: return ET ;

2.3 STRG decomposition
In this subsection, an STRG is decomposed into Object

Region Graphs (ORGs) and Background Graphs (BGs). The
ORGs belonging to a single object are merged into an Ob-
ject Graph (OG), and the redundant BGs are eliminated to
reduce the search area and the size of index.

2.3.1 Object Region Graph (ORG)
One of the key characteristics of video data is that each

spatial feature needs to be represented as a temporal fea-
ture, since it may change over time. In order to capture the
temporal feature from an STRG, we define a temporal sub-
graph which is a set of sequential nodes connected to each
other by a set of temporal edges (ET ) as follows:

Definition 8. Given a graph Gst = {V, ES , ET , ν, ξ, τ},
a temporal subgraph of Gst is a graph Gst′ = {V ′, E′

S , E′
T , ν′,

ξ′, τ ′} such that

• V ′ ⊆ V , E′S = ES ∩ (V ′ × V ′) and E′T = ET ∩ (V ′ × V ′)

• ν′, ξ′ and τ ′ are the restrictions of ν, ξ and τ to V, ES

and ET , respectively, i.e.

ν′(v) =

{
ν(v) if v ∈ V ′,
undefined otherwise,

ξ′(eS) =

{
ξ(eS) if eS ∈ E′S ,
undefined otherwise,

τ ′(eT ) =

{
τ(eT ) if eT ∈ E′T ,
undefined otherwise.

The notation Gst′ ⊆T Gst is used to indicate that Gst′

is a temporal subgraph of Gst. In Definition 8, when the
spatial edge set ES is empty, the temporal subgraph Gst′

can represent a trajectory of tracked regions. We refer to
this trajectory as an Object Region Graph (ORG). An ORG
is a special case of temporal subgraph. An ORG has sev-
eral characteristics as follows: (1) it is a type of time-varying
data since the temporal edges are constructed based on time.
This is an important feature of an ORG that distinguishes
it from other graphs, (2) unlike existing video indexing tech-
niques [27] which consider only detected objects, an ORG
considers spatial and temporal relationships between nodes,
and (3) it is a linear graph in which each node has only
temporal edges, ET . Thus, it is more efficient to process
matching and indexing.

2.3.2 Object Graph (OG)
Due to the limitations of existing region segmentation al-

gorithms, different colors of regions belonging to a single
object cannot be detected as one region. Moreover, even a
same color region may be segmented into two different re-
gions because of small amount of illumination changes. This
can be addressed by region merging. For instance, a body of
person may consists of several regions such as head, upper
body and lower body. Figure 3 (a) shows an object (a per-
son) which is segmented into four regions over two frames.
Since there are four regions in each frame, we build four
ORGs, i.e., (v1, v5), (v2, v6), (v3, v7) and (v4, v8) like Figure
3 (b). Since they belong to a single object, it is better to
merge those ORGs into one. We refer to the merged ORGs
as an Object Graph (OG).

In order to merge ORGs, we first show how to merge two
subgraphs in Theorem 1.

Theorem 1. For given subgraphs G1, G2, G
′′
1 and G′′2 , if

G1 is subgraph isomorphic to G′′1 , and G2 is subgraph iso-
morphic to G′′2 , then G1 ∪ G2 is subgraph isomorphic to
G′′1 ∪G′′2 .

Proof. See Appendix A for proof.

Theorem 1 states that two pairs of isomorphic subgraphs
can be merged into one pair of isomorphic subgraphs. Sup-
pose that ORGs and ORGt are two object region graphs
which have isomorphic subgraphs with respect to the neigh-
borhood graph of each node. Let vs and vt be nodes in
ORGs and ORGt, respectively. Then, two neighborhood
graphs GN (vs) and GN (vt) are obtained according to Defi-
nition 7. GN (vs) and GN (vt) have an isomorphic subgraph
G′N (vs) and G′N (vt), respectively, because a temporal edge
in an ORG is constructed by an isomorphic subgraph. By
Theorem 1, G′N (vs) ∪G′N (vt) is an isomorphic subgraph of
GN (vs) ∪GN (vt). After repeating this operation to all cor-
responding nodes in ORGs and ORGt, ORGs∪ORGt which
is an OG is obtained eventually.
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Figure 3: Example of subgraph merging

We need to merge ORGs which belong to a single object.
To decide whether two ORGs are included in a single object,
we consider the attributes of ET ; i.e., velocity and moving
direction. If two ORGs have the same moving direction and
the same velocity, these can be merged into a single OG. In
Figure 3 (c), four ORGs are merged into a single OG; i.e.,
(v1, v5).

2.3.3 Background Graph (BG)
A video frame usually consists of two areas; foreground

and background. A foreground is a main target on which a
camera focuses, and a background is a supporting area that
does not change significantly over time. Therefore, fore-
ground/background distinction is a fundamental research
area in video processing [22]. Moreover, from the perspective
of graph-based video indexing, the distinction is more impor-
tant because the size of index can be drastically reduced by
eliminating the redundant backgrounds. Generally speak-
ing, it is sufficient to maintain only one Background Graph
(BG) for each video segment where there is little difference
in the background over the frames.

We subtract all OGs from an STRG, then the remaining
graphs are considered as background graphs (BGs). In order
to eliminate redundant BGs, we overlap all remaining graphs
using temporal edges (ET ).

3. EXTENDED GRAPH EDIT DISTANCE
As mentioned earlier, we index video data using clusters

of OGs. To do that, we need a distance function to match
OGs which are graphs. Among the existing graph matching
algorithms, we select graph edit distance, and extend it to
non-metric and metric spaces.

3.1 Extended Graph Edit Distance
There are many graph matching algorithms. The simplest

one is to use inexact subgraph isomorphism [25]. In spite
of its elegance and intuitiveness, this approach is not suit-
able for large databases due to its exponential time complex-
ity. Messmer and Bunke [19] proposed a new algorithm for

subgraph isomorphism which uses apriori knowledge about
database models to reduce the time complexity. One limita-
tion of their algorithm is that its inexact isomorphism detec-
tion uses an original edit distance which has been used for
traditional string matching. It is not appropriate to handle
image and video data. In order to address this, Shearer et
al. [25] developed an algorithm to find the largest common
subgraph (LCSG) by extending Messmer and Bunke’s work
with the decomposition network algorithm. Since LCSG is
not suitable for graphs with temporal characteristics, we ex-
tend it by combining Chen’s edit distance with real penalty
(ERP) which allows to obey a metric space with local time
shifting [3]. We call this new algorithm Extended Graph Edit
Distance (EGED) for convenience.

The purpose of the edit distance for graphs is to compute
the minimum cost of graph edit operations such as adding,
deleting, and changing nodes, to transform one graph to
the other. Since the main operations to edit graphs deal
with nodes and their attributes rather than edges, we only
consider nodes and their attributes of OGs. Let OGs

m and
OGt

n be sth and tth OGs with m and n number of nodes,
respectively.

OGs
m = {vs

1, v
s
2, . . . , v

s
m, νs}, OGt

n = {vt
1, v

t
2, . . . , v

t
n, νt}

The distance function EGED between OGs
m and OGt

n can
be defined as follows.

Definition 9. The Extended Graph Edit Distance (EGED)
between two object graphs OGs

m and OGt
n is defined as:

EGED(OGs
m, OGt

n) =





∑m
i=1 |vs

i − gi| if n = 1,

∑n
i=1 |vt

i − gi| if m = 1,

min[EGED(OGs
m−1, OGt

n−1) + distged(vs
m, vt

n),
EGED(OGs

m−1, OGt
n) + distged(vs

m, gap),
EGED(OGs

m, OGt
n−1) + distged(gap, vt

n)]
otherwise.

where gap is an added, deleted or changed node, and gi is a gap
for ith node. And,

distged(vs
i , vt

j) =





|vs
i − vt

j | if vs
i ,v

t
j are not a gap

|vs
i − gj | if vt

j is a gap

|vt
j − gi| if vs

i is a gap.

Let v indicate a value ν(v) of node attribute for better
readability. distged is the cost function for editing nodes.
Depending on how to select a gap (gi), various distance
functions are possible. For example, when gi = vi−1, the
cost function is the same as one in DTW, which does not

consider local time shifting. In our case, gi =
vi−1+vi

2
is

used for distged, which can handle local time shifting [3].
However, as long as the cost function distged replicates

the previous nodes, EGED is no longer in metric space
since distged does not satisfy the triangle inequality. For
example, given three simplified OGs; OGr = {0}, OGs

= {1, 1}, and OGt = {2, 2, 3}. Then, EGED(OGr, OGt) >
EGED(OGr, OGs)+EGED(OGs, OGt) because 7 > 2+4.
In order to satisfy the triangle inequality, EGED is spe-
cialized to be metric distance function (see Theorem 2) by
comparing the current value with the fixed constant.

Theorem 2. If gi is a fixed constant, then EGED is a
metric.



Proof. See Appendix B for proof.

EGEDM is used to indicate the metric version of EGED.
In EGEDM , we include the cases that n = 0 and m = 0
since each OG should be measured from the fixed points
on metric space. Let us repeat the previous example with
EGEDM and g = 0. EGEDM (OGr, OGt) = 7. Similarly,
EGEDM (OGr, OGs) = 2 and EGEDM (OGs, OGt) = 5.
Thus, 7 ≤ 2 + 5, which satisfies the triangle inequality.

4. CLUSTERING OGs USING EGED
The proposed graph-based video indexing needs clusters

of OGs for more effective indexing. For this clustering, we
will employ a probabilistic clustering algorithm called Ex-
pectation Maximization (EM) to group similar OGs. For
the distance measure used in clustering, EGED in Defini-
tion 9 is applied for EM clustering algorithm. The results
of clustering will be used for indexing in Section 5.

4.1 EM Clustering with EGED
First, OGs are selected randomly from the M number of

data items (OGs). Let Yj be the jth OG with a dimension d.
Each OG is assigned to a cluster k with a probability of wk

such that
∑K

k=1 wk = 1, which is the sum of the membership
probabilities of all the measurements for Yj to a cluster. A
finite Gaussian mixture model is chosen to cluster OGs since
it is widely used and easy to implement [1]. The density
function (pk(Yj |θk)) of Yj , which is an observed data for
individual j, is formulated as

p(Yj |Θ) =

K∑

k=1

wkpk(Yj |θk)

where Θ (= {θ1, . . . , θK}) is a set of parameters for the
mixture model with K component densities. Each θk is
parameterized by its mean µk and covariance matrix Σk.
The d-dimensional Gaussian mixture density is given by

p(Yj |Θ) =

K∑

k=1

wk

2πd/2|Σk|1/2
e−

1
2 (Yj−µk)T Σ−1

k
(Yj−µk) (2)

In Equation (2), the covariance matrix Σk determines the
geometric features of the clusters. Common cases use a re-
stricted covariance, Σk(= λI), where λ is a scalar value, and
I is an identity matrix in which the number of parameters
per component grows as a square of the dimension of the
data. However, if the dimension of the data is highly relative
to the number of data, the covariance estimates will often
be singular, which causes the EM algorithm to break down
[9]. Specifically, the data (i.e., OGs) in the time-dependant
domain have different dimensions since their time lengths
vary. Therefore, the covariance matrix Σk cannot have an
inverse matrix, consequently we cannot compute Equation
(2). Chris Fraley et al. [9] point out this problem, and sug-
gest using different distance metrics between data points.
Thus, we replace the Mahalonobis distance defined by the
covariance and the mean of each component in Equation (2)

with the EGED in Definition 9 with gi =
vi−1+vi

2
. Since

the covariance matrix is not needed in the EGED, the di-
mension of the Gaussian mixture density is reduced to one.
Therefore, the Equation (2) can be rewritten as follows.

p(Yj |Θ) =

K∑

k=1

wk

2π1/2|σk|e
− 1

2σ2 EGED(Yj ,µk)2
(3)

Equation (3) is a new one-dimensional Gaussian mixture
density function with the EGED for OGs. This mixture
model provides some benefits to handling OGs as follows. It
can reduce the dimension, deal with various time lengths of
OGs, and give an appropriate distance function for OGs in
each cluster. Suppose that Y ’s are mutually independent,
the log-likelihood (L) of the parameters (Θ) for a given data
set Y can be defined from Equation (3) as follows.

L(Θ|Y ) = log

M∏
j=1

p(Yj |Θ) =

M∑
j=1

log

K∑

k=1

wkpk(Yj |θk) (4)

To find appropriate clusters we estimate the optimal val-
ues of the parameters (θk) and the weights (wk) in Equation
(4) using the EM algorithm, since it is a common procedure
used to find the Maximum Likelihood Estimates (MLE) of
the parameters iteratively.

The EM algorithm produces the MLE of the unknown
parameters iteratively. Each iteration consists of two steps:
E-step and M-step.
E-step: It evaluates the posterior probability of Yj , belong-
ing to each cluster k. Let hjk be the probability of jth OG
for a cluster k, then it can be defined as follows:

hjk = P (k|Yj , θk) =
wk

pk(Yj |θk)
(5)

M-step: It computes the new parameter value that maxi-
mizes the probability using hjk in E-step as follows:

wk =
1

M

M∑
j=1

hjk (6)

µk =

∑M
j=1 hjkYj∑M

j=1 hjk

σk =

∑M
j=1 hjkEGED(Yj , µk)2

∑M
j=1 hjk

The iteration of E and M steps is stopped when wk is
converged for all k. After the maximum likelihood model
parameters (Θ̂) in Equation (4) are decided, each OG is

assigned to a cluster, k̂ in terms of the maximum posterior
probability by the following equation.

k̂ = arg max
1≤k≤K

wkpk(Yj |θk)∑K
k=1 wkpk(Yj |θk)

(7)

The complexity of the proposed algorithm using the EM
with the EGED can be analyzed as follows. The complex-
ity of each iteration (one E-step and one M-step) in the
EM using Equation (2) with M data sets of K clusters in
d-dimension is O(d2KM) [1]. We are using Equation (3)
instead of Equation (2). Therefore, the complexity of each
iteration can be reduced to O(KM) since EGED reduces
the complexity of covariance (d2) to 1.

4.2 Optimal Number of Clusters
The EM algorithm described above uses a pre-determined

number of Gaussian densities (i.e., the number of clusters
K). However, it is very difficult to decide the number rea-
sonably at the beginning. Thus, estimating an optimal num-
ber of clusters is a key issue to improve the quality of EM
clustering. Many criteria are proposed in the literatures [13,
24] to decide the optimal number of clusters with a known



Gaussian model. The well-known criteria in the statistics lit-
erature are Bayesian Information Criterion (BIC), Akaike’s
Information Criterion(AIC) and Mallow’s Cp. The basic
idea of those criteria is penalizing the model in some way by
offsetting the increase in log-likelihood with a corresponding
increase in the number of parameters, and seeking to min-
imize the combination of log-likelihood and its parameters.
We employ the BIC to select the number of clusters because
it is convenient for model selection. Let M = {MK : K =
1, . . . , N} be the candidate models. MK is the finite Gaus-
sian mixture model with K clusters. The BIC for MK is
defined as

BIC(MK) = l̂K(Y )− ηMK log(M) (8)

where l̂K(Y ) is the log-likelihood of the data Y by the Kth

model, ηMK is the number of independent parameters for
model MK , and M is the total number of data items. From
Equation (4), the log-likelihood of the data Y is defined as
follows:

l̂K(Y ) = log

M∏
j=1

p(Yj |Θ)

And, for a finite Gaussian mixture model of K component
densities, the number of independent parameters is

ηMK = (K − 1) +
Kd(d + 3)

2

where d is a data dimension; i.e., d = 1 in our model because
the dimension is reduced to 1 using the EGED. For a given
data set Y , we can decide the number of clusters for the
model MK whose BIC value is maximized in Equation (8).

5. STRG-INDEX STRUCTURE
In this section, we propose a graph-based video indexing

method, called Spatio-Temporal Region Graph Index (STRG-
Index) using EGEDM distance metric and clustered OGs.
We illustrate the STRG-Index structure, construction, man-
agement, and search.

5.1 STRG-Index Tree Structure
Now, we have compressed BGs and clustered OGs based

on the techniques discussed in Section 2.3 and 4. The STRG-
Index tree structure consists of three levels of nodes; root
node, cluster node and leaf node as seen in Figure 4.
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Figure 4: Example of STRG-Index Tree Structure

The top-level has the root node which contains the BGs.
Each record in the root node has its identifier (iDroot), an
actual BG (BGr), and an associated pointer (ptr) which ref-
erences the top of corresponding cluster node. The following
figure shows the details of a record in the root node.

1 BG1

iDroot BGr ptr

The mid-level has the cluster nodes which contain the
centroid OGs representing cluster centroids. A record in the
cluster node contains its identifier (iDclus), a centroid OG
(OGclus) of each cluster, and an associated pointer (ptr)
which references the top of corresponding leaf node. The
following figure shows the details of a record in a cluster
node.

1 OGclus1

iDclus OGclus ptr

The low-level has the leaf nodes which contain OGs be-
longing to a cluster. A record in the leaf node has the index
key (which is computed by EGEDM (OGmem, OGclus)), an
actual OG (OGmem), and an associated pointer (ptr) which
references the real video clip in a disk. The following figure
shows the details of a record in a leaf node.

0.01 OGmem1

Key (EGEDM) OGmem ptr

5.2 STRG-Index Tree Construction
Based on the STRG decomposition described in Section

2.3, an input video is separated into foreground (OG) and
background (BG) as subgraphs of the STRG. The extracted
BGs are stored at the root node without any parent. All
the OGs sharing one BG are in a same cluster node. This
can reduce the size of index significantly. For example, in
surveillance videos a camera is stationary so that the back-
ground is usually fixed. Therefore, only one record (BG) in
the root node is sufficient to index the background of the
entire video.

We synthesize a centroid OG (OGclus) for each cluster
which is a representative OG for the cluster. This cen-
troid OG is inserted into an appropriate cluster node as a
record. This centroid OG is updated as the member OGs are
changed such as inserting, deleting, etc. Also, each record
in a cluster node has a pointer to a leaf node.

The leaf node has actual OGs in a cluster, which are in-
dexed by EGEDM . To decide an indexing value for each
OG, we compute EGEDM between the representative OG
(OGclus) in the corresponding cluster and the OG (OGmem)
to be indexed. Since EGEDM is a metric distance by The-
orem 2, the value can be the key of OG to be indexed.

Algorithm 2 shows a psuedocode for building the STRG-
Index tree for a given STRG.

5.3 STRG-Index Tree Node Split
As new data are inserted into the database, the leaf nodes

in low-level grow up arbitrary, which is inefficient for main-
taining a balanced tree. In order to address this, the leaf



Algorithm 2: Building STRG-Index

Input: Spation-Temporal Region Graph: Gst
Output: STRG-Index tree: TR

1: let TR = null;
2: create root node in TR;
3: OG = extracted OGs from Gst by Section 2.3.1 and 2.3.2;
4: BG = extracted BGs from Gst by Section 2.3.3;
5: CLUS = clusters of OGs by Section 4;
6: for each BGr ∈ BG do
7:     create new cluster node;
8:     insert tuple (iDroot, BGr, ptr(new cluster node)) into root in TR;
9:     for each OGclus ∈ CLUS do
10:        create new leaf node;
11:        insert tuple (iDclus,OGclus,ptr(new leaf node)) into cluster in TR;
12:        OGtemp = sort(OGmem, EGEDM(OGclus, OGmem));
13:        for each OGmem ∈ OGtemp do
14:            insert tuple (EGEDM(OGclus,OGmem), OGmem, prt(real clip)) 

into leaf in TR;
15: done; done; done;
16: return TR;

node is split into two nodes if the node satisfies the follow-
ing condition. If a leaf node has more OGs than a predefined
value, we check whether splitting the node is necessary by
using the EM algorithm with K = 2 and the BIC value
described in Section 4. In other words, if the BIC value
when K = 2 is larger than the value when K = 1, the leaf
node is split into two nodes. After splitting, the correspond-
ing records in the cluster node are updated. Otherwise, the
node remains unchanged. The split procedure enables the
STRG-Index to keep the optimal number of leaf nodes, and
provides more accurate results for similarity-based queries.

5.4 Size Analysis
In general, the performance of a database management

system depends on the size of index structure and the mem-
ory utilization. As mentioned earlier, if the STRG-Index is
stored in memory with their actual data items (OGs), it can
provide better query processing performance. Let M be the
number of OGs, and N be the total number of frames in a
video segment which has a single background. The size of
the STRG can be formulated as follows:

size(STRG) =

M∑
m=1

size(OGm) + N × size(BG) (9)

On the other hand, the size of the STRG-Index tree is as
follows:

size(STRG− Index) = (10)

M∑

m=1

size(OGm) +
K∑

k=1

size(OGclusk
) + size(BG)

where K is the number of clusters. As seen in Equation (9)
and (10), the difference between STRG and STRG-Index

mainly depends on N × size(BG) and
∑K

k=1 size(OGclusk ),
since the size of a single BG is relatively small. Because N is
usually much larger than K, the former term is much larger
than the latter, i.e. N × size(BG) À ∑K

k=1 size(OGclusk ).
Hence, the size of the STRG-Index is much smaller than the
STRG.

5.5 Search Algorithm
Once the STRG-Index is constructed, we can search and

retrieve OGs. From a query video segment q, we extract

the background graph BGq and object graphs OGqs us-
ing the procedure described in Section 2. Search and re-
trieval are relatively straightforward tasks. We employ k-
Nearest Neighbor (k-NN) search algorithm. At the query
time, the BGq is compared to each root node to determine
which background OGq belongs to, then each OGq is com-
pared to records in the cluster nodes. Finally, the search
algorithm travels the leaf node to find similar OGs by com-
paring EGEDM (OGq, OGclus) with the index key values.
Algorithm 3 presents a pseudocode of our search algorithm
based on the k-NN search. When a query does not consider
a background, Step 2 in Algorithm 3 is skipped. Instead, the
search algorithm travels all cluster nodes in the STRG-Index
to find the similar centroid OGs (OGcluss).

Algorithm 3: k-NN Search Algorithm

Input:  a query example q, a STRG-Index TR, and k
Output: k most similar OGs

1: extract OGq and BGg from q;
2: find the similar BG for BGq in root node of TR using SimGraph;
3: find the similar OGclus for OGq in cluster node of TR using EGED;
4: Keyq = EGEDM(OGq, OGclus);
5: find k-nearest neighbor OGs to OGq using Key in leaf node of TR

and Keyq

6: return OGs;

6. EXPERIMENTAL RESULTS
We have performed the experiments with synthetic and

real data to assess the proposed STRG-Index method on an
Intel Pentium IV 2.6 GHz CPU computer.

6.1 Experimental Setup
The real data are obtained from four video streams cap-

tured by a video camera. Table 1 shows the description of
the real video data used in the experiments. The first two
video streams (Lab1, Lab2) are taken from the inside of our
laboratory, and the other two (Traffic1, Traffic2) from the
outside, which have some traffic scenes. As seen in Table 1,
our video data is about 45 hours, which is long enough to
evaluate the proposed algorithms.

Table 1: Description of real data
Video # of OGs Duration
Lab1 411 40 hour 38 min
Lab2 147 4 hour 12 min

Traffic1 195 15 min
Traffic2 203 12 min
Total 956 45 hour 7 min

To demonstrate the performance of the proposed STRG-
Index more accurately, synthetic data is generated and used
for the experiments. Since an OG is a type of time-series
data, we generate new data by combining the Pelleg data set
[24] which is widely used to test clustering algorithms, with
the Vlachos data set [28] which is 2-D time-series data with
noises. Our synthetic data is generated as follows. First, we
design 48 moving patterns: vertical (12), horizontal (12),
diagonal (8) and U-turn (16). Each pattern has two di-
rections, different sizes of objects and various time lengths.
Second, we generate time-series data following the approach
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Figure 5: Clustering error rates for noise variances 5%, 10%, 15%, 20%, 25% and 30%
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Figure 6: EM-EGED performances against KM-EGED and KHM-EGED

described in [24]. Here, the data set has 48 clusters and is
distributed by Gaussian with σ = 5. Third, we add some
noises to each data point based on the work in [28]. We
generate 6 different types of data sets which have different
amounts of noises ranging from 5% to 30%. Finally, the
generated data are converted to OGs (temporal subgraph
format) using the nodes, temporal edges and their attribute
values given in Definition 8.

Using the synthetic data described above, the performance
of the STRG-Index is compared with that of the M-tree in-
dex [5]. To be fair, we replace the data structure and the
distance function used in the M-tree with OG and EGEDM ,
respectively. Our experiments demonstrate that:

1. EGED and EM clustering algorithm can prune the
dissimilar data, which reduce the distance computa-
tions and provides better results for various similarity
queries.

2. STRG-Index outperforms M-tree for various query loads
in terms of cost and accuracy.

3. The size of STRG-Index is significantly smaller than
that of STRG, which makes the index reside in memory
for fast query processing.

6.2 Results of Clustering OGs
We first evaluate the performance of the EM clustering

algorithm with the non-metric EGED (EM-EGED) on the
synthetic data. As stated earlier, the quality of clustering
OGs is important in guaranteeing the performance of the

STRG-Index. Our EM-EGED is compared with two other
clustering algorithms; K-Means (KM) and K-Harmonic means
(KHM). The detailed information about KM and KHM can
be found in [12]. Furthermore, in order to verify the per-
formance of distance function, we compare the performance
of EGED with Dynamic Time Warping (DTW) [11] and
Longest Common Subsequence (LCS) [7].

We compare the performance of EM-EGED with EM-LCS
and EM-DTW (Figure 5 (a)), KM-EGED with KM-LCS
and KM-DTW (Figure 5 (b)), and KHM-EGED with KHM-
LCS and KHM-DTW (Figure 5 (c)). In order to evaluate
the clustering algorithms, we use the clustering error rate
defined as;

Clustering Error Rate (%) = (11)

(1− Number of Correctly Clustered OGs

Number Of Total OGs
)× 100

The EGED based algorithms perform much better than
those based on the LCS and the DTW as seen in Figure
5 (a), (b) and (c). Especially, EM-EGED outperforms EM-
DTW since EM tends to break down when the distance func-
tion cannot compute the similarities properly (see Figure 5
(a)). The EGED measures the similarity between OGs bet-
ter than others do. Figure 5 also shows that the EGED is
much more robust to noise than either the LCS or the DTW
is.

Figure 6 shows the performance of EM-EGED compared
with that of KM-EGED and KHM-EGED. The clustering
error rate of EM-EGED is a little better than that of KHM-
EGED (see Figure 6 (a)). The reason KHM-EGED has a
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Figure 7: Performance of STRG-Index comparing with MT-RA and MT-SA

similar clustering performance with EM-EGED is because
its soft membership of data points is similar to hjk of the
EM in Equation (5), and its weight is similar to wk in Equa-
tion (6). As far as the computation time is concerned, EM-
EGED performs much better than KM-EGED and KHM-
EGED. As shown in Figure 6 (b), EM-EGED runs much
faster (around 1.5 to 2 times) than the others do. This can
reduce the time to build the STRG-Index for real-time sys-
tems such as video surveillance. Figure 6 (c) shows the dis-
tortion values of each algorithm under different noise levels.
The distortion is defined as the sum of the distances (i.e.,
in number of pixels) between the detected centroids and
the true centroids. In terms of the distortion, EM-EGED
is similar to KM-EGED, but much more accurate (average
about 2 times) than KHM-EGED. Overall, the quality of the
EM-EGED proposed in this paper is superior to the other
alternatives, such as KM-EGED, KHM-EGED, KM-LCS,
KHM-LCS as well as KM-DTW and KHM-DTW.

6.3 Indexing Power
In this section, we validate the performance of the STRG-

Index on the synthetic data. The proposed STRG-Index
is compared with the M-tree (MT) index based on total
index building time and accuracy. In the MT indexing,
there are several methods based on the criteria selecting
the representative data items. RANDOM (MT-RA) and
SAMPLING (MT-SA) methods are chosen for comparison
purpose, since MT-RA is the fastest and MT-SA is the most
accurate among the methods proposed in [5].

Figure 7 (a) shows the average elapsed times to build an
index structure for different sizes of databases. It shows that
the time for building the STRG-Index is much less (average
15% to 50%) than that for MT-RA or MT-SA, even though
the STRG-Index and MT consist of tree structure. This
is because their complexities for the index construction are
different: the STRG-Index is O(KM) (Section 4.1) and the
MT is O(RM logR M) by [2], where K is the number of
cluster nodes, M is the size of the data set, and R is the
overflow size. The complexity of building the STRG-Index
is the same as that of clustering because the index structure
is built during the clustering process. However, the MT
uses a split procedure during the index construction, which
makes it slower.

The performance of the k-NN query is shown in Figure 7
(b). In [2], the total time (T ) to evaluate a query can be

formulated as:

T = # of distance evaluation × complexity of d()

+ extra CPU time + I/O time

where d() is a distance function. T should be minimized
for better performance. However, evaluating d() is so costly
that the other components (extra CPU time and I/O time)
can be neglected. In other words, the number of distance
evaluations performed during query processing is the dom-
inant component for the performance of search. Thus, we
count the number of distance computations to evaluate the
performance of k-NN query in which k ranges from 5 to
30. Figure 7 (b) shows that the number of distance compu-
tations to build the STRG-Index is smaller (average 22%)
than that of MT-RA which is the fastest split policy in M-
tree. Since both STRG-Index and MT use the same dis-
tance measure EGEDM , the performance of k-NN query
using STRG-Index is better than using the MT index.

Figure 7 (c) shows the accuracy of each indexing struc-
ture for k-NN query. In order to measure the accuracy, the
precision and the recall of query results are computed and
plotted. Recall is the ratio of relevant items retrieved to
the total number in the database, and Precision is the ratio
of relevant items retrieved to the total number of items re-
trieved. The query data is composed of OGs that are not
presented in the data sets, and the query results are verified
by their cluster memberships. From Figure 7 (c), it is ob-
vious that the STRG-Index outperforms both the MT-RA
and the MT-SA. These results show that the STRG-Index
outperforms the M-tree index in terms of both accuracy and
speed.

6.4 Real Video Data Set
We apply the proposed STRG-Index to real videos in Ta-

ble 1. Because each video data is captured without any
pre-defined moving patterns, it is hard to decide the opti-
mal number of clusters, and the cluster membership of OGs
to a certain cluster. We find the optimal number of clusters
for each video stream using the BIC measure. The EM al-
gorithm is performed for k (the number of clusters) ranging
from 1 to 15. Then, the BIC values are computed using
Equation (8). Figure 8 shows the BIC value corresponding
to various number of clusters for each video. Here, the op-
timal number of clusters for a particular video is the peak
value of the corresponding curve. For example, the opti-
mal clusters of Lab1 video is 9. From the third and fourth



columns of Table 2, we can see that there is little differ-
ence between the actual number of clusters and the number
of clusters found using the BIC measure. Also, the second
column of the table shows the clustering error rate of the
EM-EGED algorithm. Note that the clustering error rates
for the traffic videos (Traffic1 and Traffic2) are lower than
those of the indoor videos (Lab1 and Lab2). This is be-
cause the traffic videos have more uniform content such as
bidirectional movement of vehicles.
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Concerning the index size, the last two columns of Table 2
clearly show that the STRG-Index is 10 to 15 times smaller
than that of the STRG. The small size of the STRG-Index
allows it to be stored entirely in memory for fast processing.

Table 2: Clustering Error Rate and the number of
clusters for video streams

Video EM- Optimal Found STRG STRG-Idx
EGED Cluster Cluster size size

Lab1 16.8% 9 9 72.2MB 0.4MB
Lab2 14.4% 6 5 6.4MB 0.1MB

Traffic1 8.8% 6 6 1.4MB 0.2MB
Traffic2 9.5% 6 6 1.2MB 0.2MB

7. CONCLUDING REMARKS
In this paper, we propose an efficient method for indexing

and retrieving video data, called STRG-Index. It expresses
the video content as spatio-temporal region graph (STRG),
and uses a tree structure and EM clustering algorithm for
fast and accurate video indexing. Unlike existing graph-
based data structures which provide only spatial view of in-
dividual frames, the STRG provides temporal relationships
between consecutive frames. In addition, Extended Graph
Edit Distance (EGED) is introduced for graph matching.
The EGED is defined on both non-metric and metric spaces.
The non-metric EGED is used for clustering which provides
more accurate and fast indexing, and the metric EGED is
used to index the STRG. Experimental results on both syn-

thetic data and real video data show the effectiveness and
accuracy of the proposed approach.
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APPENDIX

A. PROOF OF THEOREM 1

Proof. By the Definition 5,
∃ subgraph G′1 ⊆ G′′1 3 f1 is a graph isomorphism from G1

to G′1,
∃ subgraph G′2 ⊆ G′′2 3 f2 is a graph isomorphism from G2

to G′2,
and G′1 ∪G′2 ⊆ G′′1 ∪G′′2 .

f1 ◦ f2 is a graph isomorphism from G1 ∪G2 to G′1 ∪G′2,
because

(1) ν1(ν2(v)) = ν′1(ν
′
2(f1(f2(v)))) ∀v ∈ G1 ∪G2 ⇒

ν1 ◦ ν2(v) = ν′1 ◦ ν′2(f1 ◦ f2(v)) ∀v ∈ G1 ∪G2.

(2) For any edge eS = (v1, v2) in G1 ∪G2

∃ an edge e′S = (f1 ◦f2(v1), f1 ◦f2(v2)) in G′1∪G′2 such
that ξ(e′S) = ξ(eS), and
for any edge e′S = (v′1, v

′
2) in G′1 ∪G′2,

∃ an edge eS = (f−1
2 ◦f−1

1 (v′1), f
−1
2 ◦f−1

1 (v′2)) in G1∪G2

such that ξ(e′S) = ξ(eS).

(1) and (2) satisfy the conditions of Definition 4 for a graph
isomorphism between G1 ∪G2 to G′1 ∪G′2.

Since f1 and f2 are injective functions, f1 ◦ f2 is an injec-
tive function too.

Therefore, G1∪G2 is subgraph isomorphic to G′′1∪G′′2 .

B. PROOF OF THEOREM 2

Proof. Suppose that R, S and T are OGs. It is obvious
that EGED satisfies non-negative, symmetry and reflexiv-
ity. However, the non-trivial case is the triangle inequality,
i.e.

EGED(Rl, Tn) ≤ EGED(Rl, Sm) + EGED(Sm, Tn)

We prove it by induction. EGED(Rl, Tn) can be written as
follows by Definition 9.

EGED(Rl, Tn) = min[EGED(Rl−1, Tn−1) + |vr
l − vt

n|, (12)

EGED(Rl−1, Tn) + |vr
l − g|,

EGED(Rl, Tn−1) + |g − vt
n|]

where g is a fixed constant for gi. To compute the cost to
transform vr

l to vt
m, consider the three terms in the right

hand side of Equation (12), which correspond to the follow-
ing cases:

1. Use EGED(Rl−1, Tn−1) + |vr
l − vt

n| to edit vr
l−1 into

vt
n−1 by replacing vr

l with vt
n.

2. Use EGED(Rl−1, Tn)+ |vr
l − g| to edit vr

l−1 into vt
n by

deleting vr
l .

3. Use EGED(Rl, Tn−1)+ |g−vt
n| to edit vr

l into vt
n−1 by

adding vt
n.

Since Equation (12) uses a fixed constant g, the three
terms in the right hand side are optimal, which means that
the term on the left is also optimal. For the last step of
graph editing, one cannot do better than making a single
change or not making any change at all. Therefore, EGED
also satisfies the triangle inequality since EGED(Rl, Tn) is
optimal.


